Cremona's table of elliptic curves

Curve 92565bb1

92565 = 32 · 5 · 112 · 17



Data for elliptic curve 92565bb1

Field Data Notes
Atkin-Lehner 3- 5+ 11- 17+ Signs for the Atkin-Lehner involutions
Class 92565bb Isogeny class
Conductor 92565 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 645120 Modular degree for the optimal curve
Δ -120540938655072375 = -1 · 37 · 53 · 1110 · 17 Discriminant
Eigenvalues  1 3- 5+  0 11- -2 17+ -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,100710,-11325825] [a1,a2,a3,a4,a6]
Generators [2729620542:50902214673:16194277] Generators of the group modulo torsion
j 87469256519/93336375 j-invariant
L 5.7332474552376 L(r)(E,1)/r!
Ω 0.17928887317821 Real period
R 15.988854605782 Regulator
r 1 Rank of the group of rational points
S 1.000000000676 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 30855s1 8415k1 Quadratic twists by: -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations