Cremona's table of elliptic curves

Curve 93024l1

93024 = 25 · 32 · 17 · 19



Data for elliptic curve 93024l1

Field Data Notes
Atkin-Lehner 2+ 3- 17- 19+ Signs for the Atkin-Lehner involutions
Class 93024l Isogeny class
Conductor 93024 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 313344 Modular degree for the optimal curve
Δ -1007492434386624 = -1 · 26 · 39 · 17 · 196 Discriminant
Eigenvalues 2+ 3-  2 -2 -4  2 17- 19+ Hecke eigenvalues for primes up to 20
Equation [0,0,0,-15069,1684960] [a1,a2,a3,a4,a6]
Generators [65:990:1] Generators of the group modulo torsion
j -8110908618688/21594059379 j-invariant
L 6.4752222233242 L(r)(E,1)/r!
Ω 0.43564011462338 Real period
R 3.7159239938712 Regulator
r 1 Rank of the group of rational points
S 1.000000000747 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 93024t1 31008u1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations