Cremona's table of elliptic curves

Curve 94350bi1

94350 = 2 · 3 · 52 · 17 · 37



Data for elliptic curve 94350bi1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 17+ 37- Signs for the Atkin-Lehner involutions
Class 94350bi Isogeny class
Conductor 94350 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 1221120 Modular degree for the optimal curve
Δ -221980414570312500 = -1 · 22 · 312 · 510 · 172 · 37 Discriminant
Eigenvalues 2- 3+ 5+  2 -4  2 17+ -5 Hecke eigenvalues for primes up to 20
Equation [1,1,1,67487,21668531] [a1,a2,a3,a4,a6]
Generators [27142:1572729:8] Generators of the group modulo torsion
j 3480836587175/22730794452 j-invariant
L 8.8791612769511 L(r)(E,1)/r!
Ω 0.22843114559135 Real period
R 4.8587733298389 Regulator
r 1 Rank of the group of rational points
S 1.0000000015453 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 94350ba1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations