Cremona's table of elliptic curves

Curve 94800cz2

94800 = 24 · 3 · 52 · 79



Data for elliptic curve 94800cz2

Field Data Notes
Atkin-Lehner 2- 3- 5+ 79- Signs for the Atkin-Lehner involutions
Class 94800cz Isogeny class
Conductor 94800 Conductor
∏ cp 240 Product of Tamagawa factors cp
Δ -5.317153457472E+19 Discriminant
Eigenvalues 2- 3- 5+ -2 -2  1 -8 -5 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1854052008,30727147655988] [a1,a2,a3,a4,a6]
Generators [16134:2239176:1] [21348:936150:1] Generators of the group modulo torsion
j -11013097281880624350095521/830805227730 j-invariant
L 12.628302560778 L(r)(E,1)/r!
Ω 0.11064161545366 Real period
R 0.47557085207522 Regulator
r 2 Rank of the group of rational points
S 1.0000000000057 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 11850b2 18960o2 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations