Cremona's table of elliptic curves

Curve 96048bf1

96048 = 24 · 32 · 23 · 29



Data for elliptic curve 96048bf1

Field Data Notes
Atkin-Lehner 2- 3- 23+ 29- Signs for the Atkin-Lehner involutions
Class 96048bf Isogeny class
Conductor 96048 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 1474560 Modular degree for the optimal curve
Δ -122779640114823168 = -1 · 214 · 318 · 23 · 292 Discriminant
Eigenvalues 2- 3- -4  0  0 -2 -4 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-2029467,-1112937910] [a1,a2,a3,a4,a6]
j -309586644846318169/41118653052 j-invariant
L 0.50595346860828 L(r)(E,1)/r!
Ω 0.063244184930152 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12006u1 32016t1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations