Cremona's table of elliptic curves

Curve 96075bf1

96075 = 32 · 52 · 7 · 61



Data for elliptic curve 96075bf1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 61+ Signs for the Atkin-Lehner involutions
Class 96075bf Isogeny class
Conductor 96075 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 1096704 Modular degree for the optimal curve
Δ -23263389675421875 = -1 · 320 · 56 · 7 · 61 Discriminant
Eigenvalues  2 3- 5+ 7-  4  4  3 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-100875,-14349969] [a1,a2,a3,a4,a6]
Generators [8824730758728949740:108474942827808151381:19703127256618688] Generators of the group modulo torsion
j -9966135808000/2042327763 j-invariant
L 15.824642353775 L(r)(E,1)/r!
Ω 0.13248489059623 Real period
R 29.861220933493 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 32025v1 3843e1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations