Cremona's table of elliptic curves

Curve 96432bq1

96432 = 24 · 3 · 72 · 41



Data for elliptic curve 96432bq1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 41- Signs for the Atkin-Lehner involutions
Class 96432bq Isogeny class
Conductor 96432 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 725760 Modular degree for the optimal curve
Δ -345677263110144 = -1 · 215 · 37 · 76 · 41 Discriminant
Eigenvalues 2- 3+ -1 7- -2  7 -7  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-211696,-37430336] [a1,a2,a3,a4,a6]
j -2177286259681/717336 j-invariant
L 0.890272002131 L(r)(E,1)/r!
Ω 0.11128397801438 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 12054bm1 1968k1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations