Cremona's table of elliptic curves

Curve 97104bi3

97104 = 24 · 3 · 7 · 172



Data for elliptic curve 97104bi3

Field Data Notes
Atkin-Lehner 2- 3+ 7+ 17+ Signs for the Atkin-Lehner involutions
Class 97104bi Isogeny class
Conductor 97104 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 1.4274924443993E+21 Discriminant
Eigenvalues 2- 3+  2 7+  0 -6 17+  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-3139792,1132969408] [a1,a2,a3,a4,a6]
Generators [-504:50864:1] [328:11760:1] Generators of the group modulo torsion
j 34623662831857/14438442312 j-invariant
L 10.648424733351 L(r)(E,1)/r!
Ω 0.13716083068504 Real period
R 4.8521618197934 Regulator
r 2 Rank of the group of rational points
S 1.0000000000201 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12138ba3 5712bb4 Quadratic twists by: -4 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations