Cremona's table of elliptic curves

Curve 97812h1

97812 = 22 · 32 · 11 · 13 · 19



Data for elliptic curve 97812h1

Field Data Notes
Atkin-Lehner 2- 3- 11+ 13- 19- Signs for the Atkin-Lehner involutions
Class 97812h Isogeny class
Conductor 97812 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 347136 Modular degree for the optimal curve
Δ -379627543152 = -1 · 24 · 38 · 114 · 13 · 19 Discriminant
Eigenvalues 2- 3-  0 -4 11+ 13-  5 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-194385,32986969] [a1,a2,a3,a4,a6]
Generators [293:1089:1] Generators of the group modulo torsion
j -69640911682528000/32546943 j-invariant
L 5.521202807192 L(r)(E,1)/r!
Ω 0.77744167160655 Real period
R 0.59181318748441 Regulator
r 1 Rank of the group of rational points
S 1.0000000003825 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 32604f1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations