Cremona's table of elliptic curves

Curve 98400bi3

98400 = 25 · 3 · 52 · 41



Data for elliptic curve 98400bi3

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 41- Signs for the Atkin-Lehner involutions
Class 98400bi Isogeny class
Conductor 98400 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 14119324488000000 = 29 · 316 · 56 · 41 Discriminant
Eigenvalues 2+ 3- 5+ -4 -4  2 -2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-65608,3003788] [a1,a2,a3,a4,a6]
Generators [47:162:1] Generators of the group modulo torsion
j 3904008380936/1764915561 j-invariant
L 6.2422678206284 L(r)(E,1)/r!
Ω 0.3553456359009 Real period
R 2.1958437025191 Regulator
r 1 Rank of the group of rational points
S 1.0000000009842 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 98400l3 3936d2 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations