Cremona's table of elliptic curves

Curve 98880cb1

98880 = 26 · 3 · 5 · 103



Data for elliptic curve 98880cb1

Field Data Notes
Atkin-Lehner 2- 3- 5- 103- Signs for the Atkin-Lehner involutions
Class 98880cb Isogeny class
Conductor 98880 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 120832 Modular degree for the optimal curve
Δ 123600000000 = 210 · 3 · 58 · 103 Discriminant
Eigenvalues 2- 3- 5-  0 -4  2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1245,-525] [a1,a2,a3,a4,a6]
Generators [-10:105:1] Generators of the group modulo torsion
j 208583809024/120703125 j-invariant
L 8.0027075197416 L(r)(E,1)/r!
Ω 0.8820224333108 Real period
R 2.268283440342 Regulator
r 1 Rank of the group of rational points
S 1.0000000002231 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 98880h1 24720b1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations