Cremona's table of elliptic curves

Curve 99540s1

99540 = 22 · 32 · 5 · 7 · 79



Data for elliptic curve 99540s1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 79- Signs for the Atkin-Lehner involutions
Class 99540s Isogeny class
Conductor 99540 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 645120 Modular degree for the optimal curve
Δ 8128769841480960 = 28 · 314 · 5 · 75 · 79 Discriminant
Eigenvalues 2- 3- 5- 7+ -5 -5  0  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-93432,-10100284] [a1,a2,a3,a4,a6]
Generators [-140:486:1] Generators of the group modulo torsion
j 483329334943744/43556937165 j-invariant
L 5.4047793202264 L(r)(E,1)/r!
Ω 0.27464435944646 Real period
R 3.2798654874096 Regulator
r 1 Rank of the group of rational points
S 0.99999999723679 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 33180d1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations