Cremona's table of elliptic curves

Curve 99918l1

99918 = 2 · 32 · 7 · 13 · 61



Data for elliptic curve 99918l1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 13+ 61- Signs for the Atkin-Lehner involutions
Class 99918l Isogeny class
Conductor 99918 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 85786624 Modular degree for the optimal curve
Δ 2.5897352024366E+26 Discriminant
Eigenvalues 2+ 3- -4 7- -4 13+  0  2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-746587539,-7813345512011] [a1,a2,a3,a4,a6]
j 63130378792349009267026529329/355244883736154779680768 j-invariant
L 0.23113551488601 L(r)(E,1)/r!
Ω 0.028891928155193 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 33306o1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations