▲□▶ ▲□▶ ▲ □▶ ▲ □▶ - □ = - のへで

A combined strategy for multivariate density estimation.

Alejandro Cholaquidis

CMAT-Facultad de Ciencias, UdelaR Montevideo Uruguay

Joint work with: R. Fraiman, B. Ghattas and J. Kalemkerian

Seminario de Probabilidad y Estadística

- An alternative approach
- Optimality

2 A Central limit theorem

- An alternative approach
- Optimality

A Central limit theorem

The general setup	A Central limit theorem	
000000000	00	00000
The idea		

Our approach is based on two main ideas:

The 00

1) Compute the estimator of f at x using

$$\{y: |f(y) - f(x)| \le \epsilon\} \equiv B^*(\epsilon, x),$$

instead of a neighborhood of x,

Figure: Left: a density whose concentration mass varies significantly in its support. Right: the 0.2-neighborhood for the level f(x) = 0.2 is given by the union of the intervals $I_1 = [-1.01, -0.78]$ and $I_2 = [1.86, 1.92]$

イロト 不得 トイヨト イヨト 3

The general setup	A Central limit theorem	
000000000	00	00000
The idea		

Our approach is based on two main ideas:

1) Compute the estimator of f at x using

$$\{y: |f(y) - f(x)| \le \epsilon\} \equiv B^*(\epsilon, x),$$

instead of a neighborhood of *x*,

Figure: Left: a density whose concentration mass varies significantly in its support. Right: the 0.2-neighborhood for the level f(x) = 0.2 is given by the union of the intervals $I_1 = [-1.01, -0.78]$ and $I_2 = [1.86, 1.92]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Central limit theorem
00

The idea

Our approach is based on two main ideas:

1) Compute the estimator of f at x using

$$\{y: |f(y) - f(x)| \le \epsilon\} \equiv B^*(\epsilon, x),$$

instead of a neighborhood of *x*,

Figure: *B*(0.02,-neighbourhood for a mixture of three bi-variate gaussian distributions: one with mean (0, 0) and covariance matrix $\Sigma = diag(1, 1)$, the second one with mean (1, 1) and covariance matrix $\Sigma = diag(1/2, 1/2)$, the last one with mean (1, -1) and covariance matrix $\Sigma = diag(1, 1)$, f(x) = 0.05

The general setup	A Central limit theorem	
00000000		
The idea		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The general setup	A Central limit theorem	
000000000	00	00000
The idea		

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - り へ (~)

Notation

1) $f: S \subset \mathbb{R}^d \to \mathbb{R}$ is a density bounded from above and $\int f^2(x) dx < \infty$

The general setup	A Central limit theorem	
00000000	00	00000
The idea		

Notation

1) $f: S \subset \mathbb{R}^d \to \mathbb{R}$ is a density bounded from above and $\int f^2(x) dx < \infty$

2) $\mathcal{D}_n = \{X_1, \dots, X_n\}$ iid from X with density f. We split \mathcal{D}_n into two disjoint subsets, namely $\mathcal{D}_k = \{X_1, \dots, X_k\}$ and $\mathcal{E}_l = \{X_{k+1}, \dots, X_n\}$ with l = n - k.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - り へ (~)

The general setup	A Central limit theorem	
00000000	00	00000
The idea		

Notation

1) $f: S \subset \mathbb{R}^d \to \mathbb{R}$ is a density bounded from above and $\int f^2(x) dx < \infty$

2) $\mathcal{D}_n = \{X_1, \dots, X_n\}$ iid from X with density f. We split \mathcal{D}_n into two disjoint subsets, namely $\mathcal{D}_k = \{X_1, \dots, X_k\}$ and $\mathcal{E}_l = \{X_{k+1}, \dots, X_n\}$ with l = n - k.

ション ふゆ アメリア メリア しょうかん

3) $\mathbf{f}_{\mathbf{k}}(x) = (f_1(x), \dots, f_M(x))$ density estimators computed with \mathcal{D}_k .

The general setup	A Central limit theorem	
00000000	00	00000
The idea		

Notation

1) $f: S \subset \mathbb{R}^d \to \mathbb{R}$ is a density bounded from above and $\int f^2(x) dx < \infty$

2) $\mathcal{D}_n = \{X_1, \dots, X_n\}$ iid from X with density f. We split \mathcal{D}_n into two disjoint subsets, namely $\mathcal{D}_k = \{X_1, \dots, X_k\}$ and $\mathcal{E}_l = \{X_{k+1}, \dots, X_n\}$ with l = n - k.

ション ふゆ アメリア メリア しょうかん

3) $\mathbf{f}_{\mathbf{k}}(x) = (f_1(x), \dots, f_M(x))$ density estimators computed with \mathcal{D}_k .

・ロト・日本・日本・日本・日本・日本・日本

The estimator

Let $\epsilon > 0$ and $x \in \mathbb{R}^d$, define

$$B(\epsilon, x) = \left\{ y \in \mathbb{R}^d : \bigcap_{m=1}^M |f_m(y) - f_m(x)| < \epsilon \right\}.$$

$$N(\epsilon, x) = \frac{1}{l} \#(\mathcal{E}_l \cap B(\epsilon, x))$$

The general setup	A Central limit theorem
000000000	00

The estimator

Let $\epsilon > 0$ and $x \in \mathbb{R}^d$, define

$$B(\epsilon, x) = \left\{ y \in \mathbb{R}^d : \bigcap_{m=1}^M |f_m(y) - f_m(x)| < \epsilon \right\}.$$

$$N(\epsilon, x) = \frac{1}{l} \#(\mathcal{E}_l \cap B(\epsilon, x))$$

Intuitively, observe that

$$\frac{P_X(B(\epsilon, x))}{\mu(B(\epsilon, x))} = \frac{1}{\mu(B(\epsilon, x))} \int_{B(\epsilon, x)} f(x) dx \sim f(x),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The general setup	A Central limit theorem
000000000	00

The estimator

Let $\epsilon > 0$ and $x \in \mathbb{R}^d$, define

$$B(\epsilon, x) = \left\{ y \in \mathbb{R}^d : \bigcap_{m=1}^M |f_m(y) - f_m(x)| < \epsilon \right\}.$$

$$N(\epsilon, x) = \frac{1}{l} \#(\mathcal{E}_l \cap B(\epsilon, x))$$

Intuitively, observe that

$$\frac{P_X(B(\epsilon,x))}{\mu(B(\epsilon,x))} = \frac{1}{\mu(B(\epsilon,x))} \int_{B(\epsilon,x)} f(x) dx \sim f(x),$$

and for *l* large enough

$$P_X(B(\epsilon, x)) \sim \frac{1}{l} \#(\mathcal{E}_l \cap B(\epsilon, x)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

The general setup	A Central limit theorem
000000000	00

The estimator

Let $\epsilon > 0$ and $x \in \mathbb{R}^d$, define

$$B(\epsilon, x) = \left\{ y \in \mathbb{R}^d : \bigcap_{m=1}^M |f_m(y) - f_m(x)| < \epsilon \right\}.$$

$$N(\epsilon, x) = \frac{1}{l} \#(\mathcal{E}_l \cap B(\epsilon, x))$$

Intuitively, observe that

$$\frac{P_X(B(\epsilon,x))}{\mu(B(\epsilon,x))} = \frac{1}{\mu(B(\epsilon,x))} \int_{B(\epsilon,x)} f(x) dx \sim f(x),$$

and for *l* large enough

$$P_X(B(\epsilon, x)) \sim \frac{1}{l} \#(\mathcal{E}_l \cap B(\epsilon, x)).$$

The aggregated density estimator is defined as

$$\hat{f}_{agg}(x) = \frac{N(\epsilon, x)}{\mu(B(\epsilon, x))}$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 夕 � @

The general setup	A Central limit theorem
000000000	

・ロト・日本・日本・日本・日本・日本

Let $\epsilon > 0$ and $0 \le \eta < 1$,

$$B^{\eta}(\epsilon, x) = \left\{ y \in \mathbb{R}^d : \frac{1}{M} \sum_{m=1}^M \mathbb{I}_{\{|f_m(y) - f_m(x)| < \epsilon\}} \ge 1 - \eta \right\}.$$

general setup	A Ce
00000000	00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Let $\epsilon > 0$ and $0 \le \eta < 1$,

The

$$B^{\eta}(\epsilon, x) = \left\{ y \in \mathbb{R}^d : \frac{1}{M} \sum_{m=1}^M \mathbb{I}_{\{|f_m(y) - f_m(x)| < \epsilon\}} \ge 1 - \eta \right\}.$$

For $\eta = 0$ we get $B^{\eta}(\epsilon, x) = B(\epsilon, x)$.

Define the η -density estimator, $\hat{f}_{agg,\eta}(x)$ as

$$\tilde{f}_{\text{agg},\eta}(x) = \frac{1}{\mu(B^{\eta}(\epsilon, x))l} \#(\mathcal{E}_l \cap B^{\eta}(\epsilon, x)).$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Given X independent of \mathcal{D}_n , let us define,

 $T(\mathbf{f}_{\mathbf{k}}(X)) = \mathbb{E}(f(X)|\mathbf{f}_{\mathbf{k}}(X)).$

Proposition

$$\mathbb{E}|\hat{f}_{agg}(X) - f(X)|^2 \le \min_{m=1,\dots,M} \mathbb{E}|f_m(X) - f(X)|^2 + \mathbb{E}|\hat{f}_{agg}(X) - T(\mathbf{f}_{\mathbf{k}}(X))|^2$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Given X independent of \mathcal{D}_n , let us define,

 $T(\mathbf{f}_{\mathbf{k}}(X)) = \mathbb{E}(f(X)|\mathbf{f}_{\mathbf{k}}(X)).$

Proposition

$$\mathbb{E}|\hat{f}_{agg}(X) - f(X)|^2 \le \min_{m=1,\dots,M} \mathbb{E}|f_m(X) - f(X)|^2 + \mathbb{E}|\hat{f}_{agg}(X) - T(\mathbf{f}_{\mathbf{k}}(X))|^2$$

The	general	setup
00	0000	0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s, as $i \to \infty$. Then

$$\lim_{\to\infty} \mathbb{E} \left| \mathbb{E}[f(X)|f_i(X)] - f(X) \right|^2 = 0.$$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s., as $i \to \infty$. Then

$$\lim_{\to\infty} \mathbb{E} \left| \mathbb{E}[f(X)|f_i(X)] - f(X) \right|^2 = 0.$$

Lemma

Let *X* be random variable with distribution P_X whose density *f* is continuous. Let be f_1, \ldots, f_M continuous, such that for all $m = 1, \ldots, M$, $|f_m(x) - f(x)| \to 0$ a.s., as $k \to \infty$ for almost all *x* w.r.t to μ . Let $\epsilon > 0$, then for all *x* such that

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s., as $i \to \infty$. Then

$$\lim_{t \to \infty} \mathbb{E} \left| \mathbb{E}[f(X)|f_i(X)] - f(X) \right|^2 = 0.$$

Lemma

Let *X* be random variable with distribution P_X whose density *f* is continuous. Let be f_1, \ldots, f_M continuous, such that for all $m = 1, \ldots, M$, $|f_m(x) - f(x)| \to 0$ a.s., as $k \to \infty$ for almost all *x* w.r.t to μ . Let $\epsilon > 0$, then for all *x* such that

•
$$f_m(x) \to f(x)$$
 for $m = 1, ..., M$, a.s., as $k \to \infty$.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s, as $i \to \infty$. Then

$$\lim_{t \to \infty} \mathbb{E} \left| \mathbb{E}[f(X)|f_i(X)] - f(X) \right|^2 = 0.$$

Lemma

Let *X* be random variable with distribution P_X whose density *f* is continuous. Let be f_1, \ldots, f_M continuous, such that for all $m = 1, \ldots, M$, $|f_m(x) - f(x)| \to 0$ a.s., as $k \to \infty$ for almost all *x* w.r.t to μ . Let $\epsilon > 0$, then for all *x* such that

•
$$f_m(x) \to f(x)$$
 for $m = 1, ..., M$, a.s., as $k \to \infty$.

•
$$\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon - \gamma, x)] \to 0 \text{ as } \gamma \to 0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s, as $i \to \infty$. Then

$$\lim_{t \to \infty} \mathbb{E} \left| \mathbb{E}[f(X)|f_i(X)] - f(X) \right|^2 = 0.$$

Lemma

Let *X* be random variable with distribution P_X whose density *f* is continuous. Let be f_1, \ldots, f_M continuous, such that for all $m = 1, \ldots, M$, $|f_m(x) - f(x)| \to 0$ a.s., as $k \to \infty$ for almost all *x* w.r.t to μ . Let $\epsilon > 0$, then for all *x* such that

•
$$f_m(x) \to f(x)$$
 for $m = 1, ..., M$, a.s., as $k \to \infty$.

•
$$\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon - \gamma, x)] \to 0 \text{ as } \gamma \to 0.$$

• $\overline{B^*(\epsilon, x)}$ is compact, and $\overline{B(\epsilon, x)}$ is compact a.s.

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s, as $i \to \infty$. Then

$$\lim_{\to\infty} \mathbb{E} \left| \mathbb{E}[f(X)|f_i(X)] - f(X) \right|^2 = 0.$$

Lemma

Let *X* be random variable with distribution P_X whose density *f* is continuous. Let be f_1, \ldots, f_M continuous, such that for all $m = 1, \ldots, M$, $|f_m(x) - f(x)| \to 0$ a.s., as $k \to \infty$ for almost all *x* w.r.t to μ . Let $\epsilon > 0$, then for all *x* such that

•
$$f_m(x) \to f(x)$$
 for $m = 1, \dots, M$, a.s., as $k \to \infty$.

•
$$\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon - \gamma, x)] \to 0 \text{ as } \gamma \to 0.$$

• $\overline{B^*(\epsilon, x)}$ is compact, and $\overline{B(\epsilon, x)}$ is compact a.s.

we have

$$\mu(B(\epsilon, x)) \to \mu(B^*(\epsilon, x)) \quad a.s., \text{ as } k \to \infty, \tag{1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

and

K1 A random variable X with distribution P_X and density f fulfils K1, if $\mathbb{P}(f(X) = a) = 0$ for all $a \in \mathbb{R}$.

Lemma

Let us assume that K1 holds. Let f_i be a density estimator of f such $f_i(X) \to f(X)$ a.s, as $i \to \infty$. Then

$$\lim_{t \to \infty} \mathbb{E} \big| \mathbb{E}[f(X)|f_i(X)] - f(X) \big|^2 = 0.$$

Lemma

Let *X* be random variable with distribution P_X whose density *f* is continuous. Let be f_1, \ldots, f_M continuous, such that for all $m = 1, \ldots, M$, $|f_m(x) - f(x)| \to 0$ a.s., as $k \to \infty$ for almost all *x* w.r.t to μ . Let $\epsilon > 0$, then for all *x* such that

•
$$f_m(x) \to f(x)$$
 for $m = 1, \dots, M$, a.s., as $k \to \infty$.

•
$$\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon - \gamma, x)] \to 0 \text{ as } \gamma \to 0.$$

• $\overline{B^*(\epsilon, x)}$ is compact, and $\overline{B(\epsilon, x)}$ is compact a.s.

we have

$$\mu(B(\epsilon, x)) \to \mu(B^*(\epsilon, x)) \quad a.s., \text{ as } k \to \infty,$$
(1)

and

$$P_X(B(\epsilon, x)) \to P_X(B^*(\epsilon, x)) \quad a.s., \text{ as } k \to \infty.$$
(2)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

A Central limit theorem 00 Simulations 00000

We will consider the following set of assumptions

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - り へ (~)

We will consider the following set of assumptions

H1 The density estimators f_1, \ldots, f_M based on a sample \mathcal{D}_k fulfils H1 if with probability one, the sequences $\{f_1\}_k, \ldots, \{f_M\}_k$ are uniformly equicontinuous and the $\delta = \delta(\epsilon)$ of the uniform equicontinuity is bounded from below by $\delta_0(\epsilon) > 0$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - り へ (~)

We will consider the following set of assumptions

- H1 The density estimators f_1, \ldots, f_M based on a sample \mathcal{D}_k fulfils H1 if with probability one, the sequences $\{f_1\}_k, \ldots, \{f_M\}_k$ are uniformly equicontinuous and the $\delta = \delta(\epsilon)$ of the uniform equicontinuity is bounded from below by $\delta_0(\epsilon) > 0$.
- H2 The density estimators f_1, \ldots, f_M based on a sample \mathcal{D}_k fulfils H2 if for almost all x w.r.t. $\mu, f_j(x) \to f(x)$, a.s., for all $j = 1, \ldots, M$ as $k \to \infty$.

We will consider the following set of assumptions

- H1 The density estimators f_1, \ldots, f_M based on a sample \mathcal{D}_k fulfils H1 if with probability one, the sequences $\{f_1\}_k, \ldots, \{f_M\}_k$ are uniformly equicontinuous and the $\delta = \delta(\epsilon)$ of the uniform equicontinuity is bounded from below by $\delta_0(\epsilon) > 0$.
- H2 The density estimators f_1, \ldots, f_M based on a sample \mathcal{D}_k fulfils H2 if for almost all x w.r.t. $\mu, f_j(x) \to f(x)$, a.s., for all $j = 1, \ldots, M$ as $k \to \infty$.

Theorem

Let us assume K1, H1 and H2. Assume also that,

• for all x such that $f_m(x) \to f(x)$ for all m = 1, ..., M there exists $\epsilon_0(x)$ such that for all $0 < \epsilon < \epsilon_0(x)$, the set $\overline{B^*(\epsilon, x)}$ is compact and the set $\overline{B(\epsilon, x)}$ is compact a.s.

•
$$\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon - \gamma, x)] \to 0 \text{ as } \gamma \to 0.$$

Let $k = k(l) \to \infty$ as $l \to \infty$, then

$$\lim_{\epsilon \to 0} \lim_{l \to \infty} \mathbb{E} |\hat{f}_{agg}(X) - T(\mathbf{f}_{\mathbf{k}}(X))|^2 = 0.$$
(3)

ション ふゆ アメリア メリア しょうかん

A Central limit theorem
● ○

- An alternative approach
- Optimality

2 A Central limit theorem

	A Central limit theorem	
00000000	0•	00000

Let us denote
$$B^*(\epsilon, x) = \{y : |f(x) - f(y)| < \epsilon\}.$$

Theorem

Let $\epsilon = \epsilon_l \to 0$ such that $l\epsilon_l^2 \to 0$. Then, for all x such that f(x) > 0 and

- $\mu(\{y: f(x) = f(y)\}) = 0$
- $\overline{\mu(B^*(\epsilon, x))}$ is compact, and $\overline{B(\epsilon, x)}$ is compact a.s.
- $\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon \gamma, x)] \to 0 \text{ as } \gamma \to 0$
- $\bullet \ \mu(B^*(\epsilon,x))l \to \infty$

•
$$f_m(x) \to f(x)$$
 for all $m = 1, \ldots, M$.

We have,

$$\lim_{l \to \infty} \lim_{k \to \infty} \sqrt{\mu(B^*(\epsilon, x))l} \left[\hat{f}_{agg}(x) - f(x) \right] \stackrel{d}{=} N(0, f(x)).$$
(4)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

ne general setup	A Central limit theorem	
00000000	0•	00000

Let us denote
$$B^*(\epsilon, x) = \{y : |f(x) - f(y)| < \epsilon\}.$$

Theorem

Let $\epsilon = \epsilon_l \to 0$ such that $l\epsilon_l^2 \to 0$. Then, for all x such that f(x) > 0 and

- $\mu(\{y: f(x) = f(y)\}) = 0$
- $\overline{\mu(B^*(\epsilon, x))}$ is compact, and $\overline{B(\epsilon, x)}$ is compact a.s.
- $\mu[B^*(\epsilon + \gamma, x) \setminus B^*(\epsilon \gamma, x)] \to 0 \text{ as } \gamma \to 0$
- $\mu(B^*(\epsilon, x))l \to \infty$

•
$$f_m(x) \to f(x)$$
 for all $m = 1, \ldots, M$.

We have,

$$\lim_{l \to \infty} \lim_{k \to \infty} \sqrt{\mu(B^*(\epsilon, x))l} \left[\hat{f}_{agg}(x) - f(x) \right] \stackrel{d}{=} N(0, f(x)).$$
(4)

Proposition

Let *f* be a spherical density (i.e., $f(x) = h(||x||^2)$ for some $h : \mathbb{R} \to \mathbb{R}$) such that *h* is strictly decreasing and *h'* is continuous on a neighbourhood containing $||x||^2$, then, for all *x* such that f(x) > 0, and $||\nabla f(x)|| > 0$,

$$\lim_{l \to \infty} \frac{\mu(B^*(\epsilon, x))}{2\epsilon} = \frac{2\pi^{d/2} ||x||^{d-1}}{\Gamma(\frac{d}{2}) ||\nabla f(x)||},$$

where Γ is the Euler's gamma function.

The general	

- An alternative approach
- Optimality

2 A Central limit theorem

A Central	
00	

Three different distributions were considered:

• Beta, given by
$$\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$$
.

Three different distributions were considered:

• Beta, given by
$$\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$$
.

• Normal, with mean 0 and variance $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix.

ション ふゆ アメリア メリア しょうかん

Three different distributions were considered:

- Beta, given by $\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$.
- Normal, with mean 0 and variance $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix.
- Weibull, whose density is given by $\left(\frac{k}{\lambda^k}\right)^d (x_1 \cdots x_d)^{d(k-1)} \exp\left(-\sum_{i=1}^d (x_i/\lambda)^k\right)$,

ション ふゆ アメリア メリア しょうかん

Three different distributions were considered:

- Beta, given by $\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$.
- Normal, with mean 0 and variance $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix.
- Weibull, whose density is given by $\left(\frac{k}{\lambda^k}\right)^d (x_1 \cdots x_d)^{d(k-1)} \exp\left(-\sum_{i=1}^d (x_i/\lambda)^k\right)$,

To build \hat{f}_{agg} considered 5 kernels $f_{k,\gamma_1}, \ldots, f_{k,\gamma_5}$ computed with $\gamma_1, \ldots, \gamma_5$ where:

• First we compute LOO *hcv* based on a sample of size *k*. This value is kept fixed along the replicates.

ション ふゆ アメリア メリア しょうかん

Three different distributions were considered:

- Beta, given by $\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$.
- Normal, with mean 0 and variance $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix.
- Weibull, whose density is given by $\left(\frac{k}{\lambda^k}\right)^d (x_1 \cdots x_d)^{d(k-1)} \exp\left(-\sum_{i=1}^d (x_i/\lambda)^k\right)$,

To build \hat{f}_{agg} considered 5 kernels $f_{k,\gamma_1}, \ldots, f_{k,\gamma_5}$ computed with $\gamma_1, \ldots, \gamma_5$ where:

- First we compute LOO *hcv* based on a sample of size *k*. This value is kept fixed along the replicates.
- Fix $\gamma_1 = 0.9hcv$, $\gamma_2 = 0.95hcv$, $\gamma_3 = hcv$, $\gamma_4 = 1.05hcv$ and $\gamma_5 = 1.1hcv$.

ション ふゆ アメリア メリア しょうかん

Three different distributions were considered:

- Beta, given by $\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$.
- Normal, with mean 0 and variance $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix.
- Weibull, whose density is given by $\left(\frac{k}{\lambda^k}\right)^d (x_1 \cdots x_d)^{d(k-1)} \exp\left(-\sum_{i=1}^d (x_i/\lambda)^k\right)$,

To build \hat{f}_{agg} considered 5 kernels $f_{k,\gamma_1}, \ldots, f_{k,\gamma_5}$ computed with $\gamma_1, \ldots, \gamma_5$ where:

- First we compute LOO *hcv* based on a sample of size *k*. This value is kept fixed along the replicates.
- Fix $\gamma_1 = 0.9hcv$, $\gamma_2 = 0.95hcv$, $\gamma_3 = hcv$, $\gamma_4 = 1.05hcv$ and $\gamma_5 = 1.1hcv$.
- In general we took k = l = 2000 for d = 2 and k = l = 4000 for d = 4.

Three different distributions were considered:

- Beta, given by $\left(\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)^d (x_1\cdots x_d)^{\alpha-1}(1-x_1)^{\beta-1}\cdots(1-x_d)^{\beta-1}$.
- Normal, with mean 0 and variance $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix.
- Weibull, whose density is given by $\left(\frac{k}{\lambda^k}\right)^d (x_1 \cdots x_d)^{d(k-1)} \exp\left(-\sum_{i=1}^d (x_i/\lambda)^k\right)$,

To build \hat{f}_{agg} considered 5 kernels $f_{k,\gamma_1}, \ldots, f_{k,\gamma_5}$ computed with $\gamma_1, \ldots, \gamma_5$ where:

- First we compute LOO *hcv* based on a sample of size *k*. This value is kept fixed along the replicates.
- Fix $\gamma_1 = 0.9hcv$, $\gamma_2 = 0.95hcv$, $\gamma_3 = hcv$, $\gamma_4 = 1.05hcv$ and $\gamma_5 = 1.1hcv$.
- In general we took k = l = 2000 for d = 2 and k = l = 4000 for d = 4.
- Denote hcvu the LOO based on $\mathcal{D}_k \cup \mathcal{E}_l$. ϵ_l was selected as follows: compute $f_{k+l,\tilde{h}_1}, \ldots, f_{k+l,\tilde{h}_5}$ based on $\mathcal{D}_k \cup \mathcal{E}_l$, where $\tilde{h}_1 = 0.9hcvu$, $\tilde{h}_2 = 0.95hcvu$, $\tilde{h}_3 = hcvu$, $\tilde{h}_4 = 1.05hcvu$ and $\tilde{h}_5 = 1.1hcvu$, define

$$\bar{f}(x) = \frac{f_{k+l,\tilde{h}_1} + \dots + f_{k+l,\tilde{h}_5}}{5}$$

Finally $\epsilon_l = \operatorname{argmin} \|\hat{f}_{agg} - \overline{f}\|_2$.

うせん 御 (山) (山) (山) (山) (山) (山) (山)

A Central limit theorem

Simulations

	$\alpha = 1.5$	$, \beta = 1.5$	$\alpha = 2.5$	$\beta, \beta = 2.5$
	d = 2,	d = 4,	d = 2	d = 4
n, k	2000	4000	2000	4000
Kernel	G	G	G	G
\hat{f}_{agg}	0.080	0.179	0.122	0.325
$f_{k,0.9*hcv}$	0.113	0.260	0.126	0.385
$f_{k,0.95*hcv}$	0.113	0.262	0.125	0.364
fk,hcv	0.114	0.267	0.125	0.350
$f_{k,1.05*hcv}$	0.116	0.274	0.126	0.343
$f_{k,1.1*hcv}$	0.118	0.282	0.128	0.343
$f_{k+1,0.9*hcv}$	0.094	0.236	0.101	0.249
$f_{k+1,0.95*hcv}$	0.096	0.244	0.103	0.252
$f_{k+1,hcvu}$	0.099	0.236	0.101	0.279
$f_{k+l,1.05*hcv}$	0.103	0.263	0.109	0.271
$f_{k+l,1,1*hcv}$	0.118	0.283	0.129	0.343
	$\alpha = 1.5$	$, \beta = 1.5$	$\alpha = 2.5$	$5, \beta = 2.5$
	$\alpha = 1.5$ $d = 2,$	$\begin{array}{l} \beta = 1.5 \\ d = 4, \end{array}$	$\alpha = 2.5$ $d = 2$	$\frac{\beta, \beta = 2.5}{d = 4}$
k, l	$\alpha = 1.5$ $d = 2,$ 2000	$\beta = 1.5$ d = 4, 4000	$\alpha = 2.5$ $d = 2$ 2000	$b, \beta = 2.5$ $d = 4$ 4000
k, l Kernel	$\alpha = 1.5$ $d = 2,$ 2000 E	$egin{aligned} & , \ eta &= 1.5 \\ \hline d &= 4, \\ 4000 \\ & \mathrm{E} \end{aligned}$	$\alpha = 2.5$ $d = 2$ 2000 E	$5, \beta = 2.5$ $d = 4$ 4000 E
k, l Kernel \hat{f}_{agg}	$\alpha = 1.5$ d = 2, 2000 E 0.065	$\beta = 1.5$ d = 4, 4000 E 0.131	$\alpha = 2.5$ d = 2 2000 E 0.147	$\beta, \beta = 2.5$ d = 4 4000 E 0.240
k, l Kernel \hat{f}_{agg} $f_{k,0.9*hcv}$	$\alpha = 1.5$ d = 2, 2000 E 0.065 0.089	$\beta = 1.5$ d = 4, 4000 E 0.131 0.174	$\alpha = 2.5$ d = 2 2000 E 0.147 0.267	$5, \beta = 2.5$ $d = 4$ 4000 E 0.240 0.319
k, l Kernel \hat{f}_{agg} $f_{k,0.9*hcv}$ $f_{k,0.95*hcv}$	$\alpha = 1.5$ d = 2, 2000 E 0.065 0.089 0.089	$\beta = 1.5$ d = 4, 4000 E 0.131 0.174 0.166	$ \begin{array}{r} \alpha = 2.5 \\ d = 2 \\ 2000 \\ E \\ 0.147 \\ 0.267 \\ 0.258 \end{array} $	$5, \beta = 2.5$ $d = 4$ 4000 E 0.240 0.319 0.293
k, l Kernel Ĵagg Ĵk,0.9 * hcv Ĵk,0.95 * hcv Ĵk,hcv	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ \hline 0.065 \\ 0.089 \\ 0.089 \\ 0.092 \end{array}$	$\beta = 1.5$ $d = 4,$ 4000 E 0.131 0.174 0.166 0.163	$\begin{array}{c} \alpha = 2.5 \\ d = 2 \\ 2000 \\ \text{E} \\ 0.147 \\ 0.267 \\ 0.258 \\ 0.250 \end{array}$	$5, \beta = 2.5$ $d = 4$ 4000 E 0.240 0.319 0.293 0.272
k, l Kernel	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ \textbf{0.065} \\ 0.089 \\ 0.089 \\ 0.092 \\ 0.099 \end{array}$	$\begin{array}{c} \beta = 1.5 \\ \hline d = 4, \\ 4000 \\ \hline \\ \textbf{E} \\ \hline \\ \textbf{0.174} \\ 0.166 \\ 0.163 \\ 0.162 \end{array}$	$\begin{array}{c} \alpha = 2.5 \\ d = 2 \\ \hline 2000 \\ E \\ 0.267 \\ 0.258 \\ 0.250 \\ 0.242 \end{array}$	$5, \beta = 2.5$ $d = 4$ 4000 E 0.240 0.319 0.293 0.272 0.256
k, 1 Kernel Ĵagg fk,0.9*hcv fk,0.95*hcv fk,hcv fk,1.05*hcv fk,1.1*hcv	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ \hline 0.065 \\ 0.089 \\ 0.089 \\ 0.092 \\ 0.099 \\ 0.108 \end{array}$	$\begin{array}{c} , \beta = 1.5 \\ \hline d = 4, \\ 4000 \\ E \\ \hline 0.131 \\ 0.174 \\ 0.166 \\ 0.163 \\ 0.162 \\ 0.165 \end{array}$	$\begin{array}{c} \alpha = 2.5 \\ d = 2 \\ 2000 \\ \text{E} \\ \hline 0.147 \\ 0.267 \\ 0.258 \\ 0.250 \\ 0.242 \\ 0.235 \end{array}$	$5, \beta = 2.5$ $d = 4$ 4000 E 0.240 0.319 0.293 0.272 0.256 0.244
k, l Kernel Ĵagg fk,0.9*hcv fk,0.95*hcv fk,hcv fk,1.05*hcv fk,1.1*hcv fk+1.0.9*hcv	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ \hline 0.065 \\ 0.089 \\ 0.092 \\ 0.099 \\ 0.108 \\ 0.085 \end{array}$	$\begin{array}{c} ,\beta = 1.5 \\ \hline d = 4, \\ 4000 \\ E \\ \hline 0.131 \\ 0.174 \\ 0.166 \\ 0.163 \\ 0.162 \\ 0.165 \\ 0.146 \end{array}$	$\begin{array}{c} \alpha = 2.5 \\ d = 2 \\ \hline 2000 \\ E \\ \hline 0.147 \\ 0.267 \\ 0.258 \\ 0.250 \\ 0.242 \\ 0.235 \\ 0.244 \end{array}$	$\begin{array}{c} \overline{5,\beta} = 2.5\\ \hline d = 4\\ 4000\\ \hline \\ \hline \\ 0.240\\ 0.319\\ 0.293\\ 0.272\\ 0.256\\ 0.244\\ 0.265\\ \end{array}$
k, l Kernel Ĵagg Ĵk,0.9*hcv Ĵk,0.9*hcv Ĵk,hov Ĵk,hov Ĵk,1.0*hcv Ĵk+1,0.9*hcv	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ \hline \textbf{0.065} \\ 0.089 \\ 0.092 \\ 0.099 \\ 0.108 \\ 0.085 \\ 0.085 \end{array}$	$\begin{array}{c} ,\beta = 1.5 \\ \hline d = 4, \\ 4000 \\ \hline \\ 0.131 \\ 0.174 \\ 0.166 \\ 0.163 \\ 0.162 \\ 0.165 \\ 0.146 \\ 0.144 \end{array}$	$\begin{array}{c} \alpha = 2.5 \\ d = 2 \\ \hline 2000 \\ E \\ \hline 0.147 \\ 0.267 \\ 0.258 \\ 0.250 \\ 0.242 \\ 0.235 \\ 0.244 \\ 0.238 \end{array}$	$\begin{array}{c} \overline{5,\beta}=2.5\\ \hline d=4\\ \hline 4000\\ \hline \\ \hline \\ 0.240\\ 0.319\\ 0.293\\ 0.272\\ 0.256\\ 0.244\\ 0.265\\ 0.246\\ \end{array}$
k, l Kernel \hat{f}_{agg} $f_{k,0.9*hcv}$ $f_{k,0.95*hcv}$ $f_{k,hcv}$ $f_{k,1.05*hcv}$ $f_{k,1.05*hcv}$ $f_{k,1.05*hcv}$ $f_{k+1,0.9*hcv}$ $f_{k+1,0.95*hcv}$	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ 0.065 \\ 0.089 \\ 0.092 \\ 0.099 \\ 0.108 \\ 0.085 \\ 0.085 \\ 0.085 \\ 0.089 \end{array}$	$\begin{array}{c} ,\beta = 1.5 \\ \hline d = 4, \\ 4000 \\ E \\ \hline 0.131 \\ 0.174 \\ 0.166 \\ 0.163 \\ 0.162 \\ 0.165 \\ 0.146 \\ 0.144 \\ 0.146 \end{array}$	$\begin{array}{c} \alpha = 2.5\\ d = 2\\ \hline 2000\\ E\\ \hline 0.147\\ 0.267\\ 0.258\\ 0.250\\ 0.242\\ 0.235\\ 0.244\\ 0.238\\ 0.222\\ \end{array}$	$\begin{array}{c} \overline{\textbf{s}, \beta} = 2.5 \\ \hline d = 4 \\ \hline 4000 \\ \hline \textbf{E} \\ 0.240 \\ 0.319 \\ 0.293 \\ 0.272 \\ 0.256 \\ 0.244 \\ 0.265 \\ 0.246 \\ \hline \textbf{0.220} \end{array}$
k, l Kernel Ĵagg fk,0.9*hcv fk,0.9*hcv fk,h.0.9*hcv fk,1.05*hcv fk,1.0.9*hcv fk+1,0.9*hcv fk+1,0.9*hcv	$\begin{array}{c} \alpha = 1.5 \\ d = 2, \\ 2000 \\ \text{E} \\ 0.065 \\ 0.089 \\ 0.092 \\ 0.099 \\ 0.108 \\ 0.085 \\ 0.085 \\ 0.085 \\ 0.085 \\ 0.089 \\ 0.096 \end{array}$	$\begin{array}{c} ,\beta = 1.5 \\ d = 4, \\ 4000 \\ \hline \\ 0.131 \\ 0.174 \\ 0.166 \\ 0.163 \\ 0.162 \\ 0.165 \\ 0.146 \\ 0.144 \\ 0.144 \\ 0.147 \end{array}$	$\begin{array}{c} \alpha = 2.5 \\ d = 2 \\ \hline 2000 \\ E \\ \hline 0.147 \\ 0.267 \\ 0.258 \\ 0.250 \\ 0.242 \\ 0.235 \\ 0.244 \\ 0.238 \\ 0.222 \\ 0.225 \\ \end{array}$	$\begin{array}{c} \overline{}, \beta = 2.5\\ \hline d = 4\\ 4000\\ \hline \\ \hline \\ 0.240\\ 0.319\\ 0.293\\ 0.272\\ 0.256\\ 0.244\\ 0.265\\ 0.244\\ 0.265\\ 0.246\\ \hline \\ 0.220\\ 0.271\\ \end{array}$

Table: L_2 error over 100 repetitions with beta distributions.

	$\lambda = 1, k = 1$		$\lambda = 1, k = 0.5$	
	d = 2,	d = 4,	d = 2	d = 4
n, k	2000	4000	2000	4000
Kernel	E	G	E	G
\hat{f}_{agg}	0.035	0.065	0.139	0.054
$f_{k,0.9*hcv}$	0.041	0.064	0.184	0.083
$f_{k,0.95*hcv}$	0.039	0.066	0.183	0.083
fk,hev	0.038	0.067	0.182	0.083
$f_{k,1,05*hcv}$	0.036	0.068	0.182	0.084
$f_{k,1,1*hcv}$	0.035	0.069	0.181	0.086
$f_{k+1,0,9*hcv}$	0.035	0.064	0.179	0.083
$f_{k+1,0.95*hcv}$	0.034	0.065	0.179	0.082
$f_{k+1,hcvu}$	0.034	0.065	0.180	0.082
$f_{k+l,1,05*hcv}$	0.032	0.068	0.178	0.084
$f_{k+l,1.1*hcv}$	0.035	0.069	0.181	0.086

Table: L_2 error over 100 repetitions with Weibull distributions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

	d=2	d=2	d = 4
	$\sigma_1 = 1, \sigma_2 = 0.4$	$\sigma_1 = 1, \sigma_2 = 0.1$	$\sigma_1 = .1 = \sigma_2,$
			$\sigma_3 = 1 = \sigma_4$
n = k	2000	2000	4000
Kernel	E	E	Е
\hat{f}_{agg}	0.0130	0.0328	0.065
$f_{k,0.9*hcv}$	0.0162	0.0425	0.083
$f_{k,0.95*hcv}$	0.0163	0.0418	0.086
fk.hcv	0.0164	0.0415	0.087
$f_{k,1,05*hcv}$	0.0169	0.0416	0.089
$f_{k,1,1*hcv}$	0.0174	0.0420	0.091
$f_{k+l,0,9*hcv}$	0.0154	0.0373	0.083
$f_{k+1,0.95*hcv}$	0.0156	0.0372	0.085
$f_{k+1,hcvu}$	0.0154	0.0374	0.087
$f_{k+l,1,05*hcv}$	0.0164	0.0379	0.089
$f_{k+l,1,1*hcv}$	0.0175	0.0420	0.091

Table: L_2 error for the Normal distribution over 100 repetitions using Epanechnikov's kernel. In \mathbb{R}^2 $\Sigma = diag(\sigma_1^2, \sigma_2^2)$, and in $\mathbb{R}^4 \Sigma = diag(\sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2)$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - り へ (~)

Agrawala, A.K. (1970). Learning with a probabilistic teacher. IEEE Transactions on Automatic Control, (19), 716-723

Belkin, M. and Niyogi, P. (2004). Semi-supervised learning on Riemannian manifolds. Machine Learning 56 pp. 209-239.

Ben-David, S., Lu, T. and Pal, D.(2008). Does unlabelled data provably help?. Worst-case analysis of the sample complexity of semi-supervised learning. In 21st Annual Conference on Learning Theory (COLT). Available at http://www. informatik.uni-trier.de/~ley/db/conf/colt/colt2008.html.

Chapelle, O., Schölkopf, B. and Zien, A., eds. (2006) Semi-supervised learning. Adaptative computation and machine learning series. MIT

Fralick, S.C. (1967) Learning recognize patterns without teacher. IEEE Transactions on Information Theory (13) 57-64.

Haffari, G. and Sarkar, A. (2007) Analysis of Semi-Supervised Learning with the Yarkowsky algoritm.

In Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, UAI 2007. Vancouver, BC. July 19-22, 2007.

Zhu, X. (2008) Semi-supervised learning literature survey.

http:

//pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html