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The general setup A Central limit theorem Simulations

The idea

Our approach is based on two main ideas:

1) Compute the estimator of f at x using

{y : |f (y)− f (x)| ≤ ε} ≡ B∗(ε, x),

instead of a neighborhood of x,

Figure: Left: a density whose concentration mass varies significantly in its support. Right: the
0.2-neighborhood for the level f (x) = 0.2 is given by the union of the intervals I1 = [−1.01,−0.78]
and I2 = [1.86, 1.92]
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The idea

Our approach is based on two main ideas:
1) Compute the estimator of f at x using

{y : |f (y)− f (x)| ≤ ε} ≡ B∗(ε, x),

instead of a neighborhood of x,

Figure: B(0.02,-neighbourhood for a mixture of three bi-variate gaussian distributions: one with mean
(0, 0) and covariance matrix Σ = diag(1, 1), the second one with mean (1, 1) and covariance matrix
Σ = diag(1/2, 1/2), the last one with mean (1,−1) and covariance matrix Σ = diag(1, 1),
f (x) = 0.05



The general setup A Central limit theorem Simulations

The idea

2) Perform a nonlinear aggregation method to combine several estimators. This will improve
the behavior when for instance the underling true density f is not unimodal, and the
concentration of mass varies significantly within its support.

Notation

1) f : S ⊂ Rd → R is a density bounded from above and
∫

f 2(x)dx <∞

2) Dn = {X1, . . . ,Xn} iid from X with density f . We split Dn into two disjoint subsets,
namely Dk = {X1, . . . ,Xk} and El = {Xk+1, . . . ,Xn} with l = n− k.

3) fk(x) = (f1(x), . . . , fM(x)) density estimators computed with Dk .
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The estimator

Let ε > 0 and x ∈ Rd , define

B(ε, x) =

{
y ∈ Rd :

M⋂
m=1

|fm(y)− fm(x)| < ε

}
.

N(ε, x) =
1
l
#(El ∩ B(ε, x))

Intuitively, observe that

PX(B(ε, x))

µ(B(ε, x))
=

1
µ(B(ε, x))

∫
B(ε,x)

f (x)dx ∼ f (x),

and for l large enough

PX(B(ε, x)) ∼
1
l
#(El ∩ B(ε, x)).

The aggregated density estimator is defined as

f̂agg(x) =
N(ε, x)

µ(B(ε, x))
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Let ε > 0 and 0 ≤ η < 1,

Bη(ε, x) =

{
y ∈ Rd :

1
M

M∑
m=1

I{|fm(y)−fm(x)|<ε} ≥ 1− η
}
.

For η = 0 we get Bη(ε, x) = B(ε, x).

Define the η-density estimator, f̂agg,η(x) as

f̃agg,η(x) =
1

µ(Bη(ε, x))l
#(El ∩ Bη(ε, x)).
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Given X independent of Dn, let us define,

T(fk(X)) = E(f (X)|fk(X)).

Proposition

E|̂fagg(X)− f (X)|2 ≤ min
m=1,...,M

E|fm(X)− f (X)|2 + E|̂fagg(X)− T(fk(X))|2
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K1 A random variable X with distribution PX and density f fulfils K1, if P(f (X) = a) = 0 for
all a ∈ R.

Lemma

Let us assume that K1 holds. Let fi be a density estimator of f such fi(X)→ f (X) a.s, as
i→∞. Then

lim
i→∞

E
∣∣E[f (X)|fi(X)]− f (X)

∣∣2 = 0.

Lemma

Let X be random variable with distribution PX whose density f is continuous. Let be f1, . . . , fM
continuous, such that for all m = 1, . . . ,M, |fm(x)− f (x)| → 0 a.s., as k→∞ for almost all x
w.r.t to µ. Let ε > 0, then for all x such that

fm(x)→ f (x) for m = 1, . . . ,M, a.s., as k→∞.

µ[B∗(ε+ γ, x) \ B∗(ε− γ, x)]→ 0 as γ → 0.

B∗(ε, x) is compact, and B(ε, x) is compact a.s.

we have
µ(B(ε, x))→ µ(B∗(ε, x)) a.s., as k→∞, (1)

and
PX(B(ε, x))→ PX(B∗(ε, x)) a.s., as k→∞. (2)
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We will consider the following set of assumptions

H1 The density estimators f1, . . . , fM based on a sample Dk fulfils H1 if with probability one,
the sequences {f1}k, . . . , {fM}k are uniformly equicontinuous and the δ = δ(ε) of the
uniform equicontinuity is bounded from below by δ0(ε) > 0.

H2 The density estimators f1, . . . , fM based on a sample Dk fulfils H2 if for almost all x w.r.t.
µ, fj(x)→ f (x), a.s., for all j = 1, . . . ,M as k→∞.

Theorem

Let us assume K1, H1 and H2. Assume also that,

for all x such that fm(x)→ f (x) for all m = 1, . . . ,M there exists ε0(x) such that for all
0 < ε < ε0(x), the set B∗(ε, x) is compact and the set B(ε, x) is compact a.s.

µ[B∗(ε+ γ, x) \ B∗(ε− γ, x)]→ 0 as γ → 0.

Let k = k(l)→∞ as l→∞, then

lim
ε→0

lim
l→∞

E|̂fagg(X)− T(fk(X))|2 = 0. (3)



The general setup A Central limit theorem Simulations

We will consider the following set of assumptions

H1 The density estimators f1, . . . , fM based on a sample Dk fulfils H1 if with probability one,
the sequences {f1}k, . . . , {fM}k are uniformly equicontinuous and the δ = δ(ε) of the
uniform equicontinuity is bounded from below by δ0(ε) > 0.

H2 The density estimators f1, . . . , fM based on a sample Dk fulfils H2 if for almost all x w.r.t.
µ, fj(x)→ f (x), a.s., for all j = 1, . . . ,M as k→∞.

Theorem

Let us assume K1, H1 and H2. Assume also that,

for all x such that fm(x)→ f (x) for all m = 1, . . . ,M there exists ε0(x) such that for all
0 < ε < ε0(x), the set B∗(ε, x) is compact and the set B(ε, x) is compact a.s.

µ[B∗(ε+ γ, x) \ B∗(ε− γ, x)]→ 0 as γ → 0.

Let k = k(l)→∞ as l→∞, then

lim
ε→0

lim
l→∞

E|̂fagg(X)− T(fk(X))|2 = 0. (3)



The general setup A Central limit theorem Simulations

We will consider the following set of assumptions

H1 The density estimators f1, . . . , fM based on a sample Dk fulfils H1 if with probability one,
the sequences {f1}k, . . . , {fM}k are uniformly equicontinuous and the δ = δ(ε) of the
uniform equicontinuity is bounded from below by δ0(ε) > 0.

H2 The density estimators f1, . . . , fM based on a sample Dk fulfils H2 if for almost all x w.r.t.
µ, fj(x)→ f (x), a.s., for all j = 1, . . . ,M as k→∞.

Theorem

Let us assume K1, H1 and H2. Assume also that,

for all x such that fm(x)→ f (x) for all m = 1, . . . ,M there exists ε0(x) such that for all
0 < ε < ε0(x), the set B∗(ε, x) is compact and the set B(ε, x) is compact a.s.

µ[B∗(ε+ γ, x) \ B∗(ε− γ, x)]→ 0 as γ → 0.

Let k = k(l)→∞ as l→∞, then

lim
ε→0

lim
l→∞

E|̂fagg(X)− T(fk(X))|2 = 0. (3)



The general setup A Central limit theorem Simulations

We will consider the following set of assumptions

H1 The density estimators f1, . . . , fM based on a sample Dk fulfils H1 if with probability one,
the sequences {f1}k, . . . , {fM}k are uniformly equicontinuous and the δ = δ(ε) of the
uniform equicontinuity is bounded from below by δ0(ε) > 0.

H2 The density estimators f1, . . . , fM based on a sample Dk fulfils H2 if for almost all x w.r.t.
µ, fj(x)→ f (x), a.s., for all j = 1, . . . ,M as k→∞.

Theorem

Let us assume K1, H1 and H2. Assume also that,

for all x such that fm(x)→ f (x) for all m = 1, . . . ,M there exists ε0(x) such that for all
0 < ε < ε0(x), the set B∗(ε, x) is compact and the set B(ε, x) is compact a.s.

µ[B∗(ε+ γ, x) \ B∗(ε− γ, x)]→ 0 as γ → 0.

Let k = k(l)→∞ as l→∞, then

lim
ε→0

lim
l→∞

E|̂fagg(X)− T(fk(X))|2 = 0. (3)



The general setup A Central limit theorem Simulations

1 The general setup
An alternative approach
Optimality

2 A Central limit theorem

3 Simulations



The general setup A Central limit theorem Simulations

Let us denote B∗(ε, x) = {y : |f (x)− f (y)| < ε}.

Theorem

Let ε = εl → 0 such that lε2
l → 0. Then, for all x such that f (x) > 0 and

µ({y : f (x) = f (y)}) = 0

µ(B∗(ε, x)) is compact, and B(ε, x) is compact a.s.

µ[B∗(ε+ γ, x) \ B∗(ε− γ, x)]→ 0 as γ → 0

µ(B∗(ε, x))l→∞
fm(x)→ f (x) for all m = 1, . . . ,M.

We have,

lim
l→∞

lim
k→∞

√
µ(B∗(ε, x))l

[
f̂agg(x)− f (x)

]
d
= N(0, f (x)). (4)

Proposition

Let f be a spherical density (i.e., f (x) = h(‖x‖2) for some h : R→ R) such that h is strictly
decreasing and h′ is continuous on a neighbourhood containing ‖x‖2, then, for all x such that
f (x) > 0, and ‖∇f (x)‖ > 0,

lim
l→∞

µ(B∗(ε, x))

2ε
=

2πd/2‖x‖d−1

Γ( d
2 )‖∇f (x)‖

,

where Γ is the Euler’s gamma function.
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decreasing and h′ is continuous on a neighbourhood containing ‖x‖2, then, for all x such that
f (x) > 0, and ‖∇f (x)‖ > 0,

lim
l→∞

µ(B∗(ε, x))

2ε
=

2πd/2‖x‖d−1

Γ( d
2 )‖∇f (x)‖

,

where Γ is the Euler’s gamma function.
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Three different distributions were considered:

Beta, given by
(

Γ(α+β)
Γ(α)Γ(β)

)d
(x1 · · · xd)α−1(1− x1)β−1 · · · (1− xd)β−1.

Normal, with mean 0 and variance Σ = diag(σ2
1 , . . . , σ

2
d) is a diagonal matrix.

Weibull, whose density is given by
(

k
λk

)d
(x1 · · · xd)d(k−1) exp

(
−
∑d

i=1(xi/λ)k
)
,

To build f̂agg considered 5 kernels fk,γ1 , . . . , fk,γ5 computed with γ1, . . . , γ5 where:

First we compute LOO hcv based on a sample of size k. This value is kept fixed along the
replicates.

Fix γ1 = 0.9hcv, γ2 = 0.95hcv, γ3 = hcv, γ4 = 1.05hcv and γ5 = 1.1hcv.

In general we took k = l = 2000 for d = 2 and k = l = 4000 for d = 4.

Denote hcvu the LOO based on Dk ∪ El.
εl was selected as follows: compute fk+l,h̃1

, . . . , fk+l,h̃5
based on Dk ∪ El, where

h̃1 = 0.9hcvu, h̃2 = 0.95hcvu, h̃3 = hcvu, h̃4 = 1.05hcvu and h̃5 = 1.1hcvu, define

f (x) =
fk+l,h̃1

+ . . .+ fk+l,h̃5

5
.

Finally εl = argmin‖f̂agg − f‖2.
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α = 1.5, β = 1.5 α = 2.5, β = 2.5
d = 2, d = 4, d = 2 d = 4

n, k 2000 4000 2000 4000
Kernel G G G G

f̂agg 0.080 0.179 0.122 0.325
fk,0.9∗hcv 0.113 0.260 0.126 0.385
fk,0.95∗hcv 0.113 0.262 0.125 0.364

fk,hcv 0.114 0.267 0.125 0.350
fk,1.05∗hcv 0.116 0.274 0.126 0.343
fk,1.1∗hcv 0.118 0.282 0.128 0.343

fk+l,0.9∗hcv 0.094 0.236 0.101 0.249
fk+l,0.95∗hcv 0.096 0.244 0.103 0.252

fk+l,hcvu 0.099 0.236 0.101 0.279
fk+l,1.05∗hcv 0.103 0.263 0.109 0.271
fk+l,1.1∗hcv 0.118 0.283 0.129 0.343

α = 1.5, β = 1.5 α = 2.5, β = 2.5
d = 2, d = 4, d = 2 d = 4

k, l 2000 4000 2000 4000
Kernel E E E E

f̂agg 0.065 0.131 0.147 0.240
fk,0.9∗hcv 0.089 0.174 0.267 0.319
fk,0.95∗hcv 0.089 0.166 0.258 0.293

fk,hcv 0.092 0.163 0.250 0.272
fk,1.05∗hcv 0.099 0.162 0.242 0.256
fk,1.1∗hcv 0.108 0.165 0.235 0.244

fk+l,0.9∗hcv 0.085 0.146 0.244 0.265
fk+l,0.95∗hcv 0.085 0.144 0.238 0.246

fk+l,hcvu 0.089 0.146 0.222 0.220
fk+l,1.05∗hcv 0.096 0.147 0.225 0.271
fk+l,1.1∗hcv 0.108 0.165 0.235 0.244

Table: L2 error over 100 repetitions with beta distributions.
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λ = 1, k = 1 λ = 1, k = 0.5
d = 2, d = 4, d = 2 d = 4

n, k 2000 4000 2000 4000
Kernel E G E G

f̂agg 0.035 0.065 0.139 0.054
fk,0.9∗hcv 0.041 0.064 0.184 0.083
fk,0.95∗hcv 0.039 0.066 0.183 0.083

fk,hcv 0.038 0.067 0.182 0.083
fk,1.05∗hcv 0.036 0.068 0.182 0.084
fk,1.1∗hcv 0.035 0.069 0.181 0.086

fk+l,0.9∗hcv 0.035 0.064 0.179 0.083
fk+l,0.95∗hcv 0.034 0.065 0.179 0.082

fk+l,hcvu 0.034 0.065 0.180 0.082
fk+l,1.05∗hcv 0.032 0.068 0.178 0.084
fk+l,1.1∗hcv 0.035 0.069 0.181 0.086

Table: L2 error over 100 repetitions with Weibull distributions.
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d=2 d=2 d = 4
σ1 = 1, σ2 = 0.4 σ1 = 1, σ2 = 0.1 σ1 = .1 = σ2 ,

σ3 = 1 = σ4
n = k 2000 2000 4000
Kernel E E E

f̂agg 0.0130 0.0328 0.065
fk,0.9∗hcv 0.0162 0.0425 0.083
fk,0.95∗hcv 0.0163 0.0418 0.086

fk,hcv 0.0164 0.0415 0.087
fk,1.05∗hcv 0.0169 0.0416 0.089
fk,1.1∗hcv 0.0174 0.0420 0.091

fk+l,0.9∗hcv 0.0154 0.0373 0.083
fk+l,0.95∗hcv 0.0156 0.0372 0.085

fk+l,hcvu 0.0154 0.0374 0.087
fk+l,1.05∗hcv 0.0164 0.0379 0.089
fk+l,1.1∗hcv 0.0175 0.0420 0.091

Table: L2 error for the Normal distribution over 100 repetitions using Epanechnikov’s kernel. In R2

Σ = diag(σ2
1 , σ

2
2), and in R4 Σ = diag(σ2

1 , σ
2
2 , σ

2
3 , σ

2
4).
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