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The idea
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Figure: Left: a density whose concentration mass varies significantly in its support. Right: the
0.2-neighborhood for the level f(x) = 0.2 is given by the union of the intervals I; = [—1.01, —0.78]
and I, = [1.86,1.92]



The general setup
[e]e] lelele]

The idea

Our approach is based on two main ideas:

1) Compute the estimator of f at x using

P O) =) < €} = B™(e,%),

instead of a neighborhood of x,

<+
o

@
<}

02

0.1

0.0
I

Figure: Left: a density whose concentration mass varies significantly in its support. Right: the
0.2-neighborhood for the level f(x) = 0.2 is given by the union of the intervals /;, = [—1.01, —0.78]
and I, = [1.86, 1.92]



The general setup
[e]e]e] Jele]

The idea

Our approach is based on two main ideas:
1) Compute the estimator of f at x using

) —f&)| < e} =B (e, %),

instead of a neighborhood of x,

T T T T T
2 -1 [ 1 2

Figure: B(0.02,-neighbourhood for a mixture of three bi-variate gaussian distributions: one with mean
(0, 0) and covariance matrix ¥ = diag(1, 1), the second one with mean (1, 1) and covariance matrix
3 = diag(1/2,1/2), the last one with mean (1, —1) and covariance matrix X = diag(1, 1),

f(x) =0.05
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Let e > 0 and x € RY, define

M
B(e,x) = {y R () ) —fun®)] < 6} :
m=1

N(e, x) :%#(81 N B(e, x))

Intuitively, observe that

Px(B(e,x)) . 1 et
w(B(e,x))  wu(B(e,x)) /B(m)f( )dx ~ f(x),

and for / large enough

Px(B(e,x)) ~ ;#(5, A B(e, ).

The aggregated density estimator is defined as

~ _ N(ex)
Fes) = e )
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Lete >0and0<n <1,

M
1
d
B (e, x) = {y ERT: D L) (<) 2 1= 77} :

m=1

For nn = 0 we get B" (e, x) = B(e, x).
Define the 7)-density estimator, fygo, (X) as

fozgm (%) = l#(gl N B (e, x)).

H(B (€, x))
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H1 The density estimators fi, . . ., fir based on a sample Dy, fulfils H1 if with probability one,
the sequences {f} }«, - - - , {fu } are uniformly equicontinuous and the § = §(¢) of the
uniform equicontinuity is bounded from below by &y(€) > 0.

H2 The density estimators f, . . . , fy based on a sample Dy fulfils H2 if for almost all x w.r.t.
w, fij(x) = f(x),as., forallj=1,... ,Mask — oco.

Theorem

Let us assume K1, H1 and H2. Assume also that,

o for all x such that f;,,(x) — f(x) forallm = 1, ..., M there exists €y(x) such that for all
0 < e < €y(x), the set B* (e, x) is compact and the set B(e, x) is compact a.s.

o u[B*(e+v,x) \B*(e —v,x)] = 0asy — 0.
Let k = k() — oo as [ — oo, then

lim lim Elfue (X) — T(fi(X))|* = 0. 3)

e—0l—00
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@ fiu(x) = f(x)forallm=1,...,M.
‘We have,
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Proposition

Let f be a spherical density (i.e., f(x) = h(||x||?) for some / : R — R) such that  is strictly
decreasing and /' is continuous on a neighbourhood containing ||x||2, then, for all x such that
f(x) > 0,and | Vf(x)|| > 0,

o KB () _ 2m 2!
e 2 OO

where I is the Euler’s gamma function.
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Three different distributions were considered:

d
. I(« - - -
@ Beta, given by (%) (x1---x)2 N (1 —x))P=1 oo (1 — xg)P L.
o Normal, with mean 0 and variance ¥ = diag(alz, RN O’Z) is a diagonal matrix.

: e o K \¢ ¢ d
@ Weibull, whose density is given by (V) (x1 -+ xg)4*=D exp ( -4, (x,-/>\)k>7
To buildﬁgg considered 5 kernels fi ~,, - - -, fk,vs computed with ~y, ..., 75 where:

o First we compute LOO hcv based on a sample of size k. This value is kept fixed along the
replicates.

o Fix vy = 0.9hcv, v = 0.95hcv, v3 = hev, v4 = 1.05hcv and 5 = 1.1hcv.

o In general we took k = [ = 2000 ford = 2 and k = [ = 4000 for d = 4.

@ Denote hcvu the LOO based on Dy, U &;.
€; was selected as follows: (:omputcfkﬁ_[]l1 e 7fk+/ is based on Dy U &, where

ﬁl = 0.9hcvu, fzz = 0.95hcvu, I~13 = hcevu, iz4 = 1.05hcvu and iz5 = 1.1hcvu, define

= fk+lﬁ +"'+fk+1/"
flo) = =

Finally ¢, = argmin||fyee — f||2-



a=15pB=15 «=258=25

d=2, | d=4, d= d =
n,k 2000 4000 2000 4000

Kernel G G G G
fage 0.080 0.179 0.122 0.325
Fi,0.95hev 0.113 0.260 0.126 0.385
f.0.95%hev 0.113 0.262 0.125 0.364
S hev 0.114 0.267 0.125 0.350
S 1.05%hev 0.116 0.274 0.126 0.343
Fi 1. he 0.118 0.282 0.128 0.343
Jet1,0.95hev 0.094 0.236 0.101 0.249
Sit-1,0.95 % hev 0.096 0.244 0.103 0.252
Sitt hevu 0.099 0.236 0.101 0.279
Sit1,1.05%hev 0.103 0.263 0.109 0.271
St 1 1. 1her 0.118 0.283 0.129 0.343

a=15pB=15 a=258=25

d=2, | d= d = d =
k1 2000 4000 2000 4000

Kernel E E E E
fage 0.065 0.131 0.147 0.240
Ji,0.95hev 0.089 0.174 0.267 0.319
fr.0.95%hev 0.089 0.166 0.258 0.293
S hev 0.092 0.163 0.250 0.272
i 1.05hev 0.099 0.162 0.242 0.256
Fe1 Vv 0.108 0.165 0.235 0.244
Jet1,0.95hev 0.085 0.146 0.244 0.265
fit-1,0.95hev 0.085 0.144 0.238 0.246
Fitt,hev 0.089 0.146 0.222 0.220
fit1,1.05%hev 0.096 0.147 0.225 0.271
Febi,1. hev 0.108 0.165 0.235 0.244

Table: L, error over 100 repetitions with beta distributions.




A=1,k=1 A=1,k=0.5
d=2, d =4, d=2 d=4
n, k 2000 4000 2000 4000
Kernel E G E G
Jage 0.035 0.065 0.139 0.054
Sr,0.9%hev 0.041 0.064 0.184 0.083
J5.0.95%hey 0.039 0.066 0.183 0.083
Sk hev 0.038 0.067 0.182 0.083
Si.1.05%hev 0.036 0.068 0.182 0.084
S 1 1 xhey 0.035 0.069 0.181 0.086
Sie4-1,0.9%hev 0.035 0.064 0.179 0.083
Jk41,0.95%hev 0.034 0.065 0.179 0.082
Set-1,hevu 0.034 0.065 0.180 0.082
Jk1,1.05%hev 0.032 0.068 0.178 0.084
S0 1hey 0.035 0.069 0.181 0.086

Table: L, error over 100 repetitions with Weibull distributions.



Table: L, error for the Normal distribution over 100 repetmom using Epanechnikov’s kernel. In R?

¥ = diag(o

2
1

d=2 d=2 d=14
oy =1,0p =04 o =1,0p =0.1 o =.1=o0y,
o3 =1=o0y
n=k 2000 2000 4000
Kernel E E E
fagg 0.0130 0.0328 0.065
Ji,0.9%hev 0.0162 0.0425 0.083
Jk,0.955%hev 0.0163 0.0418 0.086
Sk hev 0.0164 0.0415 0.087
S, 1.055%hev 0.0169 0.0416 0.089
S, 1 1 xhev 0.0174 0.0420 0.091
Jk+1,0.9%hev 0.0154 0.0373 0.083
Ji1,0.95%hev 0.0156 0.0372 0.085
S, hevu 0.0154 0.0374 0.087
Jii1,1.05%hev 0.0164 0.0379 0.089
Jkbi,1. 1 xhey 0.0175 0.0420 0.091

o?),and in R* £ = diag(o?, 03,03, 07).
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