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Abstract
It has been proven that any static system that is spacetime-geodesically com-
plete at infinity, and whose spacelike-topology outside a compact set is that of

35 minus a ball, is asymptotically flat. The matter is assumed to be compactly
supported and no energy condition is required. A similar (though stronger)
result also applies to black holes. This allows us to state a large generalization
concerning the uniqueness of the Schwarzschild solution in not requiring
asymptotic flatness. The Korotkin–Nicolai static black-hole shows that for the
given generalization, no further flexibility in the hypothesis is possible.

Keywords: isolated systems, static solutions, asymptotic

1. Introduction

Asymptotic flatness is the basic notion used in general relativity (GR) to model systems that
can be thought of as ‘isolated’ from the rest of the universe. It was used by Einstein himself,
at least in heuristic form, and is now a standard piece of differential geometry and of
gravitational and theoretical physics.

The notion of asymptotic flatness is also epistemologically linked to the Newtonian
theory of gravitation1. In the 1916 manuscript The Foundation of the Generalized Theory of
Relativity, Einstein addressed what he called an epistemological defect (but not mistake) of
classical mechanics, whose origin he linked to Mach. He imagined two bodies, A and B,
made of the same fluid material and sufficiently separated from each other that none of the
properties of one could be attributed to the existence of the other. Observers at rest in one
body see the other body rotating at a constant angular velocity, yet these same observers
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measure a perfectly round surface in one case and an ellipsoid of rotation in the other case. He
then asked: ‘Why is this difference between the two bodies?’. Necessarily, he continues, the
answer cannot be found inside the system A + B only; it must lie exterior to the system: the
outer empty space. Einstein found that the source of the peculiar disparity was omitting that
the empty space should also obey physical laws. These laws, which treat parts A and B of the
system A + B + EXTERIOR EMPTY SPACE on an equal footing, are the Einstein equations of GR.
There is one point in Einstein’s elegant conclusions that remains slightly inconclusive. It can
be argued on the basis of GR that the absolute space of the 18th and 19th centuries was an
inevitable concept, as ‘corrections’ to the Newtonian gravity are simply too small. Although
this is unquestionable, it can also be demanded of GR to explain why this ‘background
solution’, representing the EXTERIOR EMPTY SPACE of the system described earlier, is so
distinguished in a theory that treats the geometry and the asymptotic of space essentially as a
variable.

Despite their importance, mathematical analysis of these questions was only recently
initiated. The first general result came in 2000 with Anderson’s uniqueness of the Minkowski
spacetime [1] 2. The result says that a geodesically complete static spacetime with no material
sources (i.e. vacuum) is flat, and therefore covered by the Minkowski spacetime. Thus, the
only geodesically complete and simply connected solution of the static Einstein equations
empty of matter is Minkowski. This nicely illustrates the distinguished place that the Min-
kowski spacetime has among the physically relevant solutions. Around the same time,
Anderson [2] started a systematic analysis of the global geometry of geodesically incomplete
spacetimes including, for instance, spacetimes with boundary or singularities, and sufficient
conditions for AF were given. The conclusions of [2] apply directly to spacetimes with
compact sources as one can always excise a region containing matter and restrict the attention
to the resulting space. More recently, necessary and sufficient conditions for asymptotic

Figure 1. Representation of an AF end and a non-AF end.

2 The results in [1] apply to strictly stationary solutions as well. In this article, we will refer only to static solutions.

Class. Quantum Grav. 32 (2015) 195001 M Reiris

2



flatness were investigated again in [8, 9] (see also [10]). We explain these results in some
detail as they will be relevant for the rest of the paper. We begin with a formal definition of
the vacuum static data set that will be useful later.

Definition 1.1. A static vacuum data set g N( ; , )Σ consists of a smooth three-manifold Σ,
possibly with boundary, a smooth Riemannian metric g, and a smooth function N, such that,

(i) g( ; )Σ is metrically complete,
(ii) N is strictly positive in the interior Σ◦ of Σ, and
(iii) (g, N) satisfies the vacuum static Einstein equations,

N N NRic , 0. (1.1)� � Δ= =

Note that if N vanishes somewhere, then it does so only in points at the boundary of Σ
(though N could also be strictly positive there). For instance, Σ can be part of a larger space
after removing a region containing the sources (if any). The results in [8] and [9] concern the
asymptotic of the ends of Σ and are independent of the geometry of the state in the ‘bulk’ of
the manifold (including the boundary). They are stated as follows. Suppose that a closed
region Σ′ in the interior Σ◦ of Σ is diffeomorphic to 35 minus an open three-ball 3% . If the
space g N g( , )2Σ′ ′ = is metrically complete, then the space g N( ; , )Σ′ is asymptotically flat
with Schwarzschildian fall off. The analysis in [8, 9] is made using the conformal metric
g N g2′ = because of the remarkable properties that this metric has. The Ricci curvature is

N NRic 2 ln lng � �= ⊗′ and, in particular, is non-negative. Moreover, as also shown in
[1], the space g( , )Σ′ ′ has quadratic curvature decay (from Σ∂ ′) provided that it is metrically
complete. If g( , )Σ′ is metrically complete and N N 00⩾ > , then g( , )Σ′ ′ is metrically
complete, but in principle there is no reason to assume the completeness of the second space
without any assumption on N. In this article, we prove that the completeness of g( , )Σ′ ′ (in a
situation as described above) follows from the suitable and physically natural
geodesic completeness (until the boundary) of the associated spacetime. The result is sum-
marized in theorem 1.3 and says that isolated systems, as defined below, are indeed always
asymptotically flat.

As should be clear to the reader, the definition below is intended to capture the intuitive
notion of a physical isolated system, but of course without making any reference to the
asymptotic. The definition is a bit formal but it will give a good mathematical frame to be
used later.

Definition 1.2. A globally hyperbolic static space-time M g( , ) is called a static isolated
system if there is an open set K of M containing (if any) the material sources, such that,

(i) the region M K⧹ is diffeomorphic to

( ), (1.2)3 35 5 %× ⧹

and on this region the space-time metric is of the form

N t gg d , (1.3)2 2= − +
where the lapse N 0> and the spatial metric g are t-independent ( t∂ is the static
Killing), and
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(ii) M K g( , )⧹ is geodesically complete until its boundary, namely, geodesics (of any
spacetime character) at either end of its boundary or defined for infinite parametric time.

To illustrate this definition, the simplest example of a static isolated system that one can
imagine is a static spherically symmetric star. In this case, the space-time M is diffeomorphic
to 35 5× and the material source (the star) is contained inside the open spacetime region

p r p rK M{ : 0 ( ) 2 *}= ∈ ⩽ < , where r is the areal coordinate and r* is the radius of the
star. This region is represented schematically in the left of figure 1. Outside this region K, the
spacetime is Schwarzschild and clearly satisfies (i) and (ii).

We comment on several aspects of the definition. The topological condition (1.2) in (i) of
the definition above is the most natural if one is describing an astrophysically realistic system
like a neutron star. On the other hand, the existence of a static Killing field does not auto-
matically imply the existence of global coordinates where the spacetime metric takes the form
of (1.3) (though locally this is always the case where 0t∣∂ ∣ ≠ ). The problem of the global
existence of such coordinates is difficult and will not be considered here. In this sense, (1.3)
has to be considered as an assumption and not as a consequence of staticity.

The geodesic completeness until the boundary in (ii) is a necessary condition to ensure
that (roughly speaking) the physical boundary of M K⧹ is just K∂ . Geodesics are either
‘infinite’ or they reach K∂ . The information that will be crucial for proving the metric
completeness of g N g( , )3 3 25 %Σ′ = ⧹ ′ = (from which AF will follow as explained earlier) is
that concerning the completeness of the geodesics that move further and further away from
the boundary. This should become clear during the proofs later. Once more, we stress that as
M K⧹ is free of matter, the data set (N, g) on t M K{ 0} ( )∩Σ′ = = ⧹ satisfies the vacuum
static equations

N N NRic , 0. (1.4)� � Δ= =

From now on we will call (ii) simply geodesic completeness at infinity: This terminology is
justified by the following fact: geodesic completeness until the boundary holds if every
spacetime geodesic, whose projection into 3 35 %⧹ leaves any compact set, is complete.

In this setup we prove the following.

Theorem 1.3. Static isolated systems are asymptotically flat with Schwarzschildian fall off.

This theorem is an expression of the remarkable consistency of GR as a physical theory
and shows the inevitability of asymptotic flatness in certain contexts.

The definition of Schwarzschildian fall off that we use in this theorem (and also above) is
the simplest one and refers to the decay of g and N on a (suitable) coordinate patch. Con-
cretely, g g N N r( ) ( ) ( )i

S
i

S
i2∣∂ − ∣ + ∣∂ − ∣ = − − , where g m r r r(1 2 ) (d d )S

4 2 2 2Ω= + +
and N m r m r(1 2 ) (1 2 )S = − + are, respectively, the usual metric and lapse of the
Schwarzschild solution. The Schwarzschildian fall off does not play any special technical role
in this article but it is important to state, as we did in theorem 1.3, the type of decay that static
isolated systems have.

Along the same lines as in theorem 1.3, we can generalize the celebrated uniqueness of
the Schwarzschild solution (Israel [6] 3, Robinson [11], Bunting–Masood-Ul Alam [3]) to a
uniqueness statement among a (a priori) much larger class of static solutions than those AF.
Accordingly, we consider static solutions given by vacuum static data g N( ; , )Σ , i.e. with

3 The Israel breakthough in 1967 was the first uniqueness theorem for Schwarschild and required that N could be
chosen as a global radial coordinate.
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N N NRic , 0, (1.5)� � Δ= =

and with a compact but not necessarily connected horizon N{ 0}Σ∂ = = ≠ ∅. As stated
earlier, the solutions are said to be geodesically compete at infinity if spacetime geodesics, of
any spacetime character, either end at the horizon (i.e. the boundary) or are defined for infinite
parametric time.

The uniqueness theorem is the following.

Theorem 1.4. Let g N( ; , )Σ be the data set of a static vacuum spacetime with a compact
horizon and which is geodesically complete at infinity. Then, the spacetime is Schwarzschild
if a connected component of the complement of an open set of Σ containing the boundary is
diffeomorphic to 3 35 %⧹ .

Essentially, the AF hypothesis that was required in earlier versions of the uniqueness
theorem can be replaced by a necessary and sufficient topological condition.

Observe that in this statement nothing is said about the other connected components (if
any) of the complement of the compact set. In principle, there could be many other
unbounded connected components. That this cannot happen must be discerned after some
analysis. This is similar in spirit to ‘topological censorship’—the same type of theorems as in
[4], although our technique is different as we cannot rely on any given structure at infinity.

To understand the importance and scope of this theorem, let us consider two purely
relativistic examples. The first is of course the Schwarzschild black hole. It is a static vacuum
solution with a topological-spherical hole, its curvature decays to zero at infinity, and the
spacetime is geodesically complete at infinity. However (though not always properly
emphasized), Schwarzschild is not the only static vacuum black hole solution in 3 + 1
dimensions enjoying these attributes. The other solution we are referring to is the Korotkin–
Nicolai static black hole [7]. It represents a topologically spherical hole that is not inside an
open (infinite) three-ball 3% as in Schwarzschild, but inside an open (infinite) solid-torus

2 1% 6× . It is axially symmetric and has the asymptotic of a static Kasner [7] spacetime. Its
space is not simply connected; for this reason, the horizon is prolate, as it feels the influence
of itself along an axis of symmetry of finite length. The particular Kasner asymptotic is the
simultaneous result of the presence of the hole on one side and of the non-trivial global
topology on the other. Finite covers of the solution yield static spacetimes with a finite
number of black holes in equilibrium. From the point of view of the general theory of
relativity, the Korotkin–Nicolai and Schwarzschild solutions are perfectly acceptable,
although one is AF and the other is not. This shows that the topological assumption in
theorem 1.4 cannot be eliminated altogether.

In parallel to the discussion given at the beginning of the introduction, it is worth noting
that theorem 1.3 can be interpreted as a result of ‘asymptotic uniqueness’ (here asymptotic
flatness), and that, in this sense, it is a close relative of the uniqueness of the flat Minkowski
spacetime among complete (simply connected) vacuum static spacetimes as proved by
Anderson in [1]. Anderson’s result is a direct consequence of a curvature decay that we will
explain in section 2.1. We stress, however, that such decay is not nearly sufficient to deduce
asymptotic flatness. The Korotkin–Nicolai solution satisfies this curvature decay and is
not AF.

The rest of the article is roughly organized as follows. Sections 2.1, 2.2 and 2.3 deal with
some important facts about the global structure of the vacuum static solutions. Section 3
contains the proofs of theorems 1.3 and 1.4. Proposition 3.1 shows the existence of a natural
partition of static ends of the form 3 35 %⧹ . Proposition 3.2 then proves that the lapse N can
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have only three types of behaviours at infinity and proposition 3.3 proves the completeness of
N g2 on the end. The proof of theorems 1.3 and 1.4 are given afterwards.

2. Background material

A smooth Riemannian metric g on a smooth connected manifold Σ (with or without
boundary, compact or not) induces the metric

{ }( )p q p qdist( , ) inf length : smooth curve joining to . (2.1)pq pqγ γ=

The space g( ; )Σ is said to be metrically complete if ( ; dist)Σ is complete. If Σ has a compact
boundary, then metric completeness is equivalent to the geodesic completeness until the
boundary of g( ; )Σ (by Hopf–Rinow). On the other hand, geodesics in g( ; )Σ lift to geodesics
perpendicular to the static Killing field in the associated spacetime, i.e. in

N t gM g, d . (2.2)2 25 Σ= × = − +
Hence, if Σ∂ is compact, then geodesic completeness until the boundary of M g( ; ) implies the
metric completeness of g( ; )Σ . This is used in proposition 3.3.

Geodesic completeness until the boundary of M g( ; ) is a basic assumption in the two
main theorems in this article. However, regarding possible mathematical applications, it is
important to assume only the metric completeness of the data whenever possible. We will
make some remarks in this respect.

If Σ∂ ≠ ∅, we define the metric annulus a b( , ) of radii a b0 < < by

a b p a p b( , ) { : dist( , ) }, (2.3) Σ Σ= ∈ < ∂ <
where p p q qdist( , ) inf{dist( , ): }Σ Σ∂ = ∈ ∂ .

2.1. Anderson’s curvature decay

Anderson’s curvature decay [1] is an important property of static solutions. It says that there
is a universal constant 0η > such that for any static data g N( ; , )Σ , we have

p
p

N
N

p
p

Ric ( )
dist ( , )

, and ( )
dist ( , )

. (2.4)
g g
2

2

2

�η
Σ

η
Σ

∣ ∣ ⩽
∂

⩽
∂

The optimal constant η can be seen to be greater than or equal to one, but it is not know if it is
one. Upper bounds can be given, but they are far from one.

As an application of the curvature decay, let us prove here the proposition that will be
used in the proof of theorem 1.4 to rule multiple ends when it is known that there is one that is
AF. In the statement, we use Σδ to denote the manifold resulting from removing from Σ the
tubular neighbourhood of Σ∂ and radius δ, i.e. p p{ : dist ( , ) }gΣ Σ Σ δ= ⧹ ∂ <δ . We assume
that 0δ δ< with 0δ small enough that Σ∂ δ is always smooth.

Proposition 2.1. Let g N( ; , )Σ be a static vacuum initial data set with a compact horizon
( N{ 0}Σ∂ = = ≠ ∅) and g( ; )Σ be metrically compete. Then there is 0 10ϵ< < such that
for every 0ϵ ϵ< there is 0δ δ< , such that N g( ; )2Σδ ϵ− is metrically complete and Σ∂ δ is
strictly convex (with respect to the outward normal).
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Proof. Given 0 1ϵ< < , the convexity of Σ∂ δ for small enough 0δ δ⩽ is direct (and we
leave it to the reader) as the factor N 2ϵ− ‘blows up’ the boundary Σ∂ uniformly (observe,
however, that as 1ϵ < , Σ∂ ‘remains’ at a finite distance from the bulk of Σ).

So let us prove that if we chose small enough ϵ, the space N g( , )2Σδ ϵ− is metrically
complete. As we assume 0δ δ< , it is sufficient to prove that if ϵ is small enough, then

N g( , )2
0Σδ ϵ− is metrically complete4. We will do that below, and the argument is thus

independent of δ.
It is enough to prove that if ϵ is small enough, then the following holds: for any sequence

of points pi whose g distance to 0Σ∂ δ diverges, the N g( )2ϵ− distance to 0Σ∂ δ also diverges.
Equivalently, it is sufficient to prove that for any sequence of curves iγ starting at 0Σ∂ δ and
ending at pi, we have

( )N s
s

1

( )
d , (2.5)

s

i0

i∫ γ
⟶ ∞ϵ

where s is the g arc length of iγ starting from 0Σ∂ δ . Now, as we will show below, the curvature
decay (2.4) immediately implies the estimate

( )( )N p c p( ) 1 dist , (2.6)g 0Σ⩽ + ∂ δ
η

for any p Σ∈ , where 0η > is universal but c depends on g( , )Σ and 0δ . As
s sdist ( ( ), )g i 0γ Σ∂ ⩽δ , then we have

( )N s c s( ) (1 ) . (2.7)iγ ⩽ + η

Thus, if 1ϵ η< , then

( )( ) ( ) ( )
N s

s
c s

s
c

s
1

( )
d

1
(1 )

d
1

1
1 1 (2.8)

s

i

s

i
0 0

1i i∫ ∫γ ϵ η
⩾

+
=

−
+ −ϵ ϵ ϵ η ϵ

ϵ η−

( )( )( )c
p

1
1

1 dist , 1 (2.9)g i

1

0ϵ η
Σ⩾

−
+ ∂ − ⟶ ∞ϵ δ

ϵ η−⎛
⎝⎜

⎞
⎠⎟

as wished.
Now we briefly comment on the derivation of (2.6). Let s( )γ be a geodesic joining a point

p to 20Σ∂ δ and realizing the distance between p and 20Σ∂ δ . Let p0 be the point of intersection
between γ and 0Σδ . Then

( )( )
( ) ( )N p

N p

N

N
s

s
sln

( )
( )

d d (2.10)
p

p s p

0 dist , 2

dist , ( )

2

dist ,

g

g g

0 0 2 0

0 2

0

0 2�∫ ∫ η= ⩽ ⩽′

Σ δ

Σ γ

δ

Σ

∂ =

∂ ∂

δ

δ δ

( )p
ln

dist ,

2
, (2.11)

2

0

0Σ
δ⩽

∂ δ
η⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

4 As ( )0 0∪Σ Σ Σ Σ= ⧹δ δ δ δ and ( )0Σ Σ⧹δ δ is a smooth compact manifold, the manifold N g( , )2Σδ ϵ− is metrically

complete if N g( , )2
0Σδ ϵ− is metrically complete.
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and hence

( )
N p N p

p
( ) ( )

dist ,

2
. (2.12)0

2

0

0Σ
δ⩽

∂ δ
η⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

One then uses the general estimates p pdist ( , 2) dist ( , ) 2g g 00 0Σ Σ δ∂ ⩽ +δ δ and
N p N q q( ) max{ ( ): }0 Σ⩽ ∈ ∂ δ to show easily (2.6) for a suitable c big enough. □

There are two properties about the spaces N( , )2Σδ ϵ− that will be central in the
proof of theorem 3.1 and that are worth highlighting here. First, the manifold

N g( , )2Σδ ϵ− is geodesically convex, that is, any two points in Σδ
◦ can be joined by a

length-minimizing geodesic contained inside Σδ
◦. This is indeed a direct consequence of

the strict convexity and compactness of the boundary Σ∂ δ
5. In particular, if Σ has two

ends, then so does Σδ, and one can guarantee the existence of a line diverging along the
two ends. Second, but not less important, the Ricci curvature of the metric g N g˜ 2= ϵ−

has the expression6

f
c

f fRic˜ ˜ ˜ 1 ˜ ˜ , (2.13)� � � �= − +

where f and c depend on ϵ and are given by

( )
f N

c
(1 )ln , and

1 1 2

(1 )
. (2.14)

2

2
ϵ

ϵ ϵ
ϵ

= − + =
− −

+

In particular, if 0 2 1ϵ< < − , then c 0> and the c-Bakry–Emery Ricci tensor Ric˜
f
c ,

which is defined by

f
c

f fRic˜ Ric˜ ˜ ˜ 1 ˜ ˜ , (2.15)f
c � � � �= + −

is zero. In the proof of theorem 3.1, we will use these two observations together to make some
simple mean-curvature comparisons (a‵ la Bakry–Emery).

2.2. The ball covering property

As observed in [2], Liu’s ball covering property holds for (metrically complete) static
solutions g( ; )Σ with compact boundaries. Namely, for any a b0 < < , there is r0 and n0 such
that for any r r0⩾ there is a set of balls B p ar p ar br i n n{ ( , 2), ( , ), 1, , }i i r 0∈ = … ⩽
covering ar br( , ) . Here and below  is the closure of .

As a direct corollary, we see that for any a b0 < < and r r0⩾ , as in the ball covering
property, any two points in the same connected component of ar br( , ) can be joined by a
curve of length less than or equal to n ar0 entirely contained in ar br( 3, 3 ) .

5 Observe that a length-minimizing sequence of curves (with fixed end-points) must remain at a definite distance
away from the boundary, as otherwise their lengths could be reduced in a definite amount (due to the strict
convexity). With this property granted, the limit of the sequence (or of a subsequence if necessary) must be a
geodesic in Σδ

◦ by standard arguments.
6 For this, if g g˜ e2= ϕ , then gRic˜ Ric ( ) ( )2� � � � �ϕ ϕ ϕ Δϕ ϕ= − − − + ∣ ∣ and V V˜i j i j� �= −
V V V g( ( ) )j i i j

k
k ij� � �ϕ ϕ ϕ+ − .
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Let ar br( , )c be a connected component of ar br( , ) . By the curvature decay (2.4),
we have N N ar3� η∣ ∣ ⩽ all over ar br( 3, 3 )c . By integrating this inequality along curves
as in the previous paragraph, we obtain7

{ }
{ }

N p p ar br

N p p ar br
C a b

max ( ): ( , )

min ( ): ( , )
( , ). (2.16)

c

c




∈
∈

⩽

This is a type of Harnack inequality for N and is fundamental.

Remark 2.2. It is not known at the moment if a similar ball covering property holds for
strictly stationary solutions. This is a main obstacle to extending theorem 1.3 to stationary
isolated systems.

2.3. Spacetime geodesics in static spacetimes

Let g N( ; , )Σ be a static vacuum data and let M g( , ) be its associated spacetime. We recall
here a useful way to describe spacetime geodesics ( )Γ τ in terms of certain metrics conformal
to g in Σ. This goes back at least to the work of Weyl [13] from 1917.

Let ( )γ Π Γ= be the projection of Γ into Σ. Then it is easy to see that γ satisfies the
equation

a
N

N
, (2.17)2

3
�

�γ′ = −γ′

where d dγ γ τ′ = and a is the constant a g( , )tΓ= ′ ∂ . Moreover, we have

a

N
, (2.18)2

2

2
γ ε∣ ′∣ = +

where the norm on the left-hand side is with respect to g and 1, 0, 1ε = − according to the
character type of the geodesic.

Then define e2ϕ by

a

N
e , (2.19)2

2

2
ε= +ϕ

⎛
⎝⎜

⎞
⎠⎟

wherever the right-hand side is positive (this includes the projection of the geodesic). Finally,
we consider the conformal metrics

g g g gˆ e , ˇ e , (2.20)2 2= =ϕ ϕ−

and use ds, s sdˆ e d= ϕ , and s sdˇ e d= ϕ− to denote the elements of length of γ with respect to
g g, ˆ and ǧ, respectively.

In this setup, we have the following characterization: if ( )Γ τ is a spacetime geodesic,
then s( ˆ)γ is a geodesic of ĝ and sd dˇτ = . Conversely, if s( ˆ)γ is a geodesic of ĝ, then the curve

( )( )
( )

( )s
a

N s
s s Mˇ

ˇ
dˇ , ˇ (2.21)

š

2
5∫Γ

γ
γ Σ= −

′
′ ⊂ × =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

is a spacetime geodesic with g( , )Γ Γ ε′ ′ = , and hence with šτ = .

7 If s( )γ is a curve of length less than or equal to n ar0 joining the points p1 and p2, then
N p N p N N s ar n ar nln ( ) ( ) ( ) d (3 ) 31 2 0 0�∫ η η∣ ∣ = ∣ ∣ ⩽ =γ′ . From this we deduce

N p N pe ( ) ( ) en n3
2 1

30 0⩽ ⩽η η− and (2.16) follows (note n n a b( , )0 0= ).
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Two points are particularly important about this characterization of spacetime geodesics:
(i) spacetime geodesics can be constructed out of the projected curves which in turn can be
easily found through length-minimization, and (ii) as the affine parameter of spacetime
geodesics is the ǧ-arc length of the projected curve, there is a way to link spacetime geodesic
completeness at infinity to the metric completeness of g N gˇ 2= . We will exploit these two
observations during the proof of proposition 3.3. We will only use the characterization of null
geodesics, i.e. 0ϵ = , although other types of geodesics can be useful in similar contexts.

3. The proofs

Every smooth, connected, compact, boundaryless and orientable surface F embedded in 35
divides 35 into two connected components. Below we will work with such surfaces F
embedded in 3 35 %⧹ and will denote by M(F) the closure of the bounded connected com-
ponent of F( )3 35 %⧹ ⧹ . Two facts are simple to check. First, for any disjoint F1 and F2 such
that M F( )i

3%∂ ⊂ for i = 1, 2, either F M F( )1 2⊂ ◦ or F M F( )2 1⊂ ◦ (here interior=◦ ). Second,
if a set F i n{ , 1, , 1}i = … ⩾ of such surfaces is such that 3%∂ belongs to a bounded com-
ponent of Fi

i n
i1Σ⧹⋃ =

= then there is at least one Fi such that M F( )i
3%∂ ⊂ . We will use these

facts in the proof of the following proposition.

Proposition 3.1. Let g N( ; , )Σ be a metrically complete vacuum static data set with
3 35 %Σ ≈ ⧹ . Then, there is a set of (smooth, connected, compact, boundaryless and

orientable) surfaces S j{ ; 0, 1, 2, 3, }j = … , such that the following holds for every j:

1. Sj is embedded in (2 , 2 )j j1 2 2 2 + + ,
2. M S( )jΣ∂ ⊂ , and
3. M S M S( ) ( )j j 1⊂ + .

The surfaces Si will be used only as references inside the manifold Σ; their geometries
play no role. Observe that M S M S M S( ) ( ) ( )k j k

j
j j1Σ⧹ = ⋃ ⧹=

=∞
+ with the union disjoint and

that S S M S M S( ( ) ( ))j j j j1 1∪ = ∂ ⧹+ + ◦ . This last observation will be used when we apply the
maximum principle to N on M S M S( ) ( )j j1 ⧹+ ◦ .

Proof. In the argument that follows, we treat Σ and 3 35 %⧹ indistinctly. The construction of
the surfaces S j, 0, 1, 2,j = … is as follows. Let f : [0, )Σ → ∞ be a (any) smooth function
such that f 1≡ on p p{ : dist( , ) 2 }j1 2Σ∂ ⩽ + and f 0≡ on p p{ : dist( , ) 2 }j2 2Σ∂ ⩾ + . Let x be
any regular value of f in (0, 1). Then we can write f x F F( ) n

1
1 ∪ ∪= ⋯− , where each Fi is a

(connected, compact, boundaryless and orientable) surface embedded in (2 , 2 )j j1 2 2 2 + + .
Now, as Σ is the disjoint union of the sets f x(( , ))1 ∞− , f x F( ) i

i
i

1
1= ⋃−

=
=∞ and

f x(( , ))1 −∞− , and as p p f x{ : dist( , ) 2 } (( , ))j2 2 1Σ∂ ⩾ ⊂ −∞+ − , we conclude that Σ∂ ,
which lies inside f x(( , ))1 ∞− , must belong to a bounded component of Fi

i n
i1Σ⧹⋃ =

= . Hence
M F( *)iΣ∂ ⊂ for some Fi*, (see the beginning of this section). We set S F*j i= .

We now verify that the surfaces Sj satisfy properties 1–3. By construction the Sjs already
satisfy 1 and 2. Now, either M S M S( ) ( )j j 1⊂ ◦ + or M S M S( ) ( )j j1 ⊂+ ◦ . If M S M S( ) ( )j j1 ⊂+ ◦ ,
then S p p{ : dist( , ) 2 }j

j
1

2 2Σ⊂ ∂ <+ + , which is impossible because S (2 , 2 )j
j j

1
3 2 4 2⊂+ + + .

Thus, M S M S( ) ( )j j 1⊂ ◦ + , showing property 3. □
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We claim that for any j 0⩾ , the surfaces Sj 1+ and Sj lie in the same connected
component of the annuli (2 , 2 )j j1 2 4 2 + + . To see this, consider a ray s( )γ , s 0⩾ , starting
at Σ∂ at s = 0, (i.e. s sdist( ( ), )γ Σ∂ = for all s 0⩾ ; s is arc-length). Let sj be the last
time that s S( ) jγ ∈ and let sj 1+ be the first time that s S( ) j 1γ ∈ + . Then, s 2j

j1 2⩾ +

because S (2 , 2 )j
j j1 2 2 2⊂ + + and s 2j

j
1

4 2⩽+ + because S (2 , 2 )j
j j

1
3 2 4 2⊂+ + + . Hence the

arc s s s s{ ( ): [ , ]}j j 1γ ∈ + must lie inside (2 , 2 )j j1 2 4 2 + + because s sdist( ( ), )γ Σ∂ = for
all s. We then conclude that Sj and Sj 1+ must lie in the same connected component of

(2 , 2 )j j1 2 4 2 + + .
This claim and proposition 3.1 will be used in the proof of the following proposition.

Proposition 3.2. Let g N( ; , )Σ be a metrically complete vacuum static data set with
3 35 %Σ ≈ ⧹ and N 0> . Then, one of the following holds:

1. N converges uniformly to zero over the end of Σ ,
2. N converges uniformly to infinity over the end of Σ ,
3. C N C1 2< < for constants C C0 1 2< < < ∞.

Proof. To shorten notation, we will write N N p pmax{ ; }: max{ ( ): }Ω Ω∈ , where Ω are
compact sets (same notation for Nmin{ ; }Ω ).

Suppose that there is a divergent sequence pi for which N p( ) 0i → as i → ∞. We claim
that, in this case, N tends uniformly to zero over the end.

For every i let ji be such that p M S M S( ) ( )i j j 1i i
∈ ⧹ ◦ − . Suppose first that

{ }N Smax ; 0. (3.1)ji →

Then, for any i i′ > , the maximum principle gives

{ } { }( ) ( ) { } { }N M S M S N S N Smax ; max max ; , max ; . (3.2)j j j ji i i i
⧹ ⩽◦

′ ′

Letting i′ → ∞ and using (3.1), we obtain

{ }( ) { }N p p M S N Ssup ( ): max ; , (3.3)j ji i
Σ∈ ⧹ ⩽◦

where the right-hand side tends to zero as i tends to infinity. This proves that N tends
uniformly to zero as claimed.

To prove (3.1), we recall, as was pointed out earlier, that Sji and Sj 1i − lie in the same

connected component of (2 , 2 )j j2 1 2 2 − + . Observe too that the annuli (2 , 2 )j j2 1 2 2 − + can be
written as ar br( )i i with a 1 2= , b = 4 and r 2i

j2 i= . Therefore, we can use the discussion of
section 2.2 to deduce that

{ } { }N S c N S Smax ; min ; , (3.4)j j j 1i i i∪⩽ −

where the constant c is independent of i. On the other hand, by the maximum principle, we
have

{ }( ) ( ){ }N S S N M S M S N pmin ; min ; ( ). (3.5)j j j j i1 1i i i i∪ ⩽ ⧹ ⩽− ◦ −
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Combining (3.4) and (3.5), we obtain

{ }N S N pmax ; ( ), (3.6)j ii
⩽

where the right-hand side tends to zero. This implies (3.1) as desired.
In the same manner, one proves that if there is a divergent sequence pi such that

N p( )i → ∞ as i → ∞, then N tends uniformly to infinity over the end.
If none of the situations considered above occur, then C N C0 1 2< < < for the constants

C C,1 2. □

To show the asymptotic flatness for isolated systems using [8, 9], we need only to prove
the completeness of N g2 using the assumption that the static spacetime is geodesically
complete at infinity. This is done in the next proposition.

Proposition 3.3. Let g N( ; , )Σ be a static vacuum data set, with 3 35 %Σ ≈ ⧹ and N 0> on
Σ. Assume that the associated spacetime

N t gM g, d (3.7)2 25 Σ= × = − +
is geodesically complete at infinity. Then the space N g( ; )2Σ is metrically complete.

Proof. The proof is made by contradiction. So let us assume that N g( ; )2Σ is not metrically
complete. We will explain later how this contradicts the geodesic completeness at infinity.
During the proof, we use the same notation as in proposition 3.2. We will also assume, as was
explained in section 2, that under the hypothesis of the proposition, the space g( ; )Σ is
metrically complete.

We begin by proving that

{ }N Smax ; 2 . (3.8)
j

j

j
j

1

2∑ < ∞
=

=∞

Let s s M S M S: [ , ] ( ) ( )j j j j1 1β → ⧹+ + ◦ be any curve with s S( )j jβ ∈ and s S( )j j1 1β ∈+ + . We
claim that then

{ }N s s c N S( ( ))d max ; 2 , (3.9)
s

s

j
j

1
2

j

j 1∫ β ⩾+

where the constant c1 is independent of j. To see this, we write

{ }( ) ( )N s s N M S M S( ( ))d min ; length( ) (3.10)
s

s

j j1
j

j 1∫ β β⩾ ⧹+ ◦+

and note that

1. length( ) (2 2 ) 6 2j j j3 2 1 2 2β ⩾ − =+ + , because it is S (2 , 2 )j
j j1 2 2 2⊂ + + , and

S (2 , 2 )j
j j

1
3 2 4 2⊂+ + + ,

2. N M S M S N Smin{ ; ( ) ( )} max{ ; }j j j1 ⧹ ⩾+ ◦ , because

{ }( ) ( ) { }N M S M S N S Smin ; min ; (3.11)j j j j1 1 ∪⧹ ⩾+ ◦ +

by the maximum principle, and because
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{ } { }N S S c N Smin ; max ; , (3.12)j j j1 2∪ ⩾+

where c2 is independent of j, as was explained in section 2.2,8.

The formula (3.9) is then obtained making c c61 2= .
Now, if N g( ; )2Σ is not metrically complete, then one can find a sequence of points pi,

with pdist ( , )g i Σ∂ → ∞ but with pdist ( , )N g i2 Σ∂ uniformly bounded. From the definition of
dist, this implies that there is a sequence of curves s s s( ); [0, ]i iα ∈ starting at Σ∂ and ending
at pi, for which

N s s K( ( ))d , (3.13)
s

s s

0

i∫ α ⩽ < ∞
=

=

where K is independent of j. For every i let ji be the greatest j such that p M S( )i j∉ . Then, for
every j j 1i⩽ − one can find an interval s s[ , ]j i j i, 1,+ such that the curve jβ defined by

s s( ) ( )j iβ α= , s s s[ , ]j i j i, 1,∈ + , has range in M S M S( ) ( )j j1 ⧹+ ◦ and moreover with
s S( )j j i j,β ∈ and s S( )j j i j1, 1β ∈+ + . Using (3.9) we write

( ) { }K N s N s c N S( )d d max ; 2 . (3.14)
s

s s

j

j j

s

s

j
j

j j

j
j

0
1

1

1

1

1
2

i
i

j i

j i
i

,

1,∫ ∫∑ ∑α β⩾ ⩾ ⩾
=

=

=

= −

=

= −
+

Taking the limit i → ∞ gives (3.8) as wished.
We proceed now with the proof. By proposition 3.2 we know that N must go uniformly

to zero at infinity otherwise N would be bounded from below away from zero and the metric
N g2 would be automatically complete. If N 0→ uniformly at infinity, then N g( ; )2Σ − is
metrically complete.

As was explained in section 2.3, null-spacetime geodesics project into N g( )2− geodesics
and the affine parameter is the N g( )2 arc length. We will see below that if N g( ; )2Σ is not
metrically complete, then there is an infinite N g( )2− geodesic whose N g( )2 length is finite.
This would be against the hypothesis that the spacetime is geodesically complete at infinity
and the proof will be finished.

Let s( )Γ , s 0⩾ be a ray for the metric to N g2− starting at Σ∂ . For each j 1⩾ , let sj be the
last time that s S( ) jΓ ∈ . Let jΓ be the restriction of Γ to s s[ , ]j j 1+ . Then M S( ( ))j jΓ Σ⊂ ⧹ ◦ and
Γ is the concatenation of the curves jΓ , j 1⩾ . Now,

( ) ( ){ }N s s N s s N S( ( ))d ( ) d max ; length , (3.15)
s s

s

j

j

s

s

j
j

j

j j
1 1j

j

1

1∫ ∫∑ ∑Γ Γ Γ= ⩽
=

=∞

=

=∞

=

=∞
+

where to obtain the inequality we use

{ } { }( ) ( ) { }N s s s s N p p M S N Ssup ( ) : [ , ] sup ( ): max ; , (3.16)j j j j j1Γ Σ∈ ⩽ ∈ ⧹ ⩽+ ◦

which is obtained from the inclusion M S( ( ))j jΓ Σ⊂ ⧹ ◦ (for the first inequality) and the
maximum principle (for the second). Thus, if we prove that for a constant c3 independent of j
we have

( ) clength 2 , (3.17)j
j

3
2Γ ⩽

8 As in the proof of proposition 3.2, recall that Sj and Sj 1+ lie in the same connected component of (2 , 2 )j j1 2 3 2 + +

(see remark after the proof of proposition 3.1), and observe too that we can write ar br(2 , 2 ) ( , )j j
j j

1 2 3 2 =+ + with

a = 2, b = 16 and r 2j
j2= ).
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then we can use (3.8) in conjunction to (3.15) to conclude that

N s s( ( ))d (3.18)∫ Γ < ∞

which would imply that there is an incomplete null geodesic in the spacetime.
Let us prove then the inequality (3.17). We will play with the fact that Γ is a ray for

N g2− .
First, note

( )
( ) ( )

{ } { }N s
s

N N S

1

( )
d

length

max ;

length

max ;
, (3.19)

s

s

j

j

j

j

jj

j 1∫ Γ
Γ
Γ

Γ
⩾ ⩾+

where the second inequality is obtained from the inclusion M S( )j jΓ Σ⊂ ⧹ ◦ and because
N M S N Smax{ ; ( )} max{ ; }j jΣ⧹ ⩽ by the maximum principle.
Then recall from the discussion after proposition 3.1 that Sj and Sj 1+ lie in the same

connected component (2 , 2 )c
j j1 2 4 2 + + of (2 , 2 )j j1 2 4 2 + + . Hence, s S( )( )j jΓ ∈ and

s S( )( )j j1 1Γ ∈+ + also lie in (2 , 2 )c
j j1 2 4 2 + + . Then, as in section 2.2, we can join s( )jΓ to

s( )j 1Γ + through a curve jΓ′ of length less than or equal to c22j, (c is a constant independent of
j), entirely contained in a connected component (2 3, 32 )c

j j1 2 4 2 + + of (2 3, 3 2 )j j1 2 4 2 + + .
This curve jΓ′ must have N g( )2− ) length greater than or equal to the N g( )2− length of jΓ
because jΓ , (being a ray), minimizes the N g( )2− length between any two of its points. Thus,
we can write

{ }( )( )N s
s

N s
s

c

N

1
( ( ))

d
1

( )
d

2

min ; 2 3, 3 2
. (3.20)

s

s

s

s

j

j

c
j j

2

1 2 4 2j

j

j

j1 1

∫ ∫Γ Γ
⩽

′ ′
′ ⩽

′

′

+ +

+ +

Together with (3.19), we obtain

{ }( )( ) { }
c

N

N
length

max ;

min ; 2 3, 32
2 . (3.21)j

j

c
j j

j
1 2 4 2

2

Γ
Γ

⩽
+ +

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

But from (2.16) we have

{ }
{ }
{ }( )

( )
( )

{ }N

N

N

N
c

max ;

min ; 2 3, 32

max ; 2 3, 32

min ; 2 3, 32
, (3.22)

j

c
j j

c
j j

c
j j1 2 4 2

1 2 4 2

1 2 4 2



Γ
⩽ ⩽ ′

+ +

+ +

+ +

where c′ is independent of j. Thus, (3.17) follows. □

Proof of theorem 1.3. From the same definition of a static isolated system, we know that the
spacetime outside a set (invariant under the Killing field) is

( ) N t gM g, d , (3.23)3 3 2 25 5 %= × ⧹ = − +

which is described by the data g N( ; , )3 35 %⧹ . As the spacetime is geodesically complete at
infinity, we can use proposition 3.3 to deduce that the metric N g2 is complete on 3 35 %⧹ .
Theorem 1.3 in [8] then apples and asymptotic flatness follows.

(Remark: the concept of an isolated system used in [8] is the same as in this paper but
with the extra assumption that N is bounded from below away from zero outside a compact
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set. As noted in [8], theorem 1.3 still holds if this hypothesis on N is replaced by the metric
completeness of N g2 .) □

Remark 3.4. If the matter model (which is always assumed to be compactly supported),
satisfies the weak energy condition, then the conclusions of theorem 1.3 can be seen to follow
only from the metric completeness of the static data. The geodesic completeness at infinity is
unnecessary.

We can now prove theorem 1.4.

Proof of theorem 1.4. Suppose that a connected component of the complement of a
compact set in Σ is diffeomorphic to 35 minus a closed ball. Then, as in the proof of theorem
1.3, this component has to be an AF end of Σ. If we prove that Σ has only one end, then the
main theorem in [5] shows that Σ is diffeomorphic to 35 minus a finite set of open balls. The
Israel [6]—Robinson [11]—Bunting–Masood-ul Alam [3] uniqueness theorem then applies
and the solution is Schwarzschild. Let us prove then that Σ must have only one end.

We will proceed by contradiction. Assume then that Σ has more than one end. From now
on, we work in a space N g( , )2Σδ ϵ− as in proposition 2.1 but with 2 1ϵ < − .

The end that was AF (and had Schwarzschildian fall off) for g is also AF for N g2ϵ− . On
this end consider large (‘almost round’) embedded spheres S. On these spheres we have

N S1 area( )N g2�∣ ∣ ≲ϵ− , while for the mean curvature Sθ (with respect to the outward unit
normal n) we have S2 4 area( )Sθ π≈ . Hence, one can clearly take an embedded sphere S
sufficiently far away that

n N
N

(1 )
( )

0 (3.24)Sθ ϵ− + >

at every point of S. We work with such S below. The particular combination (3.24) will be
relevant. The sphere S divides Σδ into two connected components. Denote by Σ ′δ the closure
of the connected component of SΣ ⧹δ containing Σ∂ . We have S∪Σ Σ∂ ′ = ∂δ and, more
importantly, Σ ′δ contains at least one more end. Since Σ∂ δ is strictly convex, we can construct
a geodesic ray s( )γ , s 0⩾ , in Σ Σ′⧹∂δ and with the following properties:

1. s( )γ starts at S and perpendicular to it,
2. s( )γ diverges through and ends in Σ ′δ as s → ∞,
3. s S sdist ( ( ), )N g2 γ =ϵ− for all s 0⩾ .

These properties imply that the expansion s( )θ , along the geodesic s( )γ , of the
congruence of geodesics emanating perpendicularly to S must remain finite for all s (i.e.

s( )θ > −∞ for all s 0⩾ ). If not then there is a focal point on γ after which property 3 fails.
We will prove now that indeed s( )θ = −∞ for some s 0> , thus reaching a contradiction.

Let

m s s
N s
N s

( ) ( ) (1 )
( )
( )

, (3.25)θ ϵ= + + ′

where N s N s( ) ( ( ))γ= and N s N s s( ) d ( ( )) dγ′ = . At s = 0, m is equal to minus the left-hand
side of (3.24), and is therefore negative (note that n(0)γ′ = − ). On the other hand, as we
explained in section 2.1, if 2 1ϵ < − , then the Bakry–Emery Ricci tensor
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f
c

f fRic Ric
1

(3.26)f
c � � � �= + −

is zero, where f N(1 )lnϵ= + and c1 (1 2 ) (1 )2 2ϵ ϵ ϵ= − − + . Now, it is shown in [12]
(appendix A) that m(s) satisfies the differential inequality

m
m

c2
. (3.27)

2
′ ⩽ − +

Thus, if m (0) 0< , then there is s 0′ > such that m s( )′ = −∞. But as N s N s( ) ( )′ is finite for
all s, then we must have s( )θ ′ = −∞. □

Remark 3.5. If the complement of a compact set in Σ is diffeomorphic to 3 35 %⧹ and g( ; )Σ
is metrically complete, then the solution is also Schwarzschild (i.e. the geodesic completeness
of the spacetime at infinity is unnecessary). To see this, observe first that N cannot go
uniformly to zero on the end of Σ because this would violate the maximum principle (N is
harmonic and is zero only on Σ∂ ). By proposition 3.3 N is then bounded away from zero on
the end and asymptotic flatness follows.

Remark 3.6. It is easy to show that propositions 3.1, 3.2 and 3.3 hold true when
5Σ ≈ × + with  being a compact two-surface of arbitrary genus (proposition 3.1

corresponds to 26 = ). This could be of interest in further studies.
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