Gorenstein projective Precovers

Dia 2024-08-16 11:15:00-03:00
Hora 2024-08-16 11:15:00-03:00
LugarSalón de Seminarios del IMERL y a través de Zoom

Gorenstein projective Precovers

Víctor Becerril (Centro de Ciencias Matemáticas. Universidad Nacional Autónoma de México)

El álgebra homológica de Gorenstein es la versión relativa del álgebra homológica que sustituye las resoluciones proyectivas clásicas por las Gorenstein proyectivas. Pero mientras que en el álgebra homológica clásica la existencia de las resoluciones proyectivas sobre anillos arbitrarios es bien conocida, las cosas son un poco diferentes cuando se trata del álgebra homológica  Gorenstein. La pregunta: "¿Cuál es la clase más general de anillos sobre los que todos los módulos tienen resoluciones Gorenstein proyectivas?" sigue abierta. La situación no es muy diferente cuando tratamos los objetos (X, Y)-Gorenstein proyectivos relativos en Mod(R), denotado GP(X,Y).

En esta charla abordaremos esta última situación y veremos varios casos en los que se consigue que la clase GP(X,Y) es precubriente especial en Mod(R).

Abordamos también un reciente resultado de Moradifar y Saroch que establece una relación entre el hecho que GP^ \cap mod(R) es precubriente (los módulos finitamente generados de dimensión Gorenstein proyectiva finita) con la segunda conjetura finitista.