El Grafo de Flujos de Anosov
Dia | 2024-06-21 14:30:00-03:00 |
Hora | 2024-06-21 14:30:00-03:00 |
Lugar | Salón de seminarios del IMERL |
El Grafo de Flujos de Anosov
Mario Shannon (Penn State)
Dado un flujo de Anosov en una 3-variedad cerrada, es posible construir muchos otros haciendo cirugías de Fried a lo largo de órbitas periódicas. El grafo cuyos vértices son clases de equivalencia orbital (Flujo Anosov, 3-variedad) y cuyas aristas representan cirugías de Fried entre éstos, se llama Grafo de Flujos de Anosov.
Este grafo permite organizar el conjunto de clases de equivalencia orbital de flujos de Anosov de una manera bien estructurada, de modo que el estudio de su topología da información acerca de esta familia de clases de equivalencia (de forma alternativa al problema de la clasificación de flujos de Anosov a través de invariantes de tipo finito). Sin embargo, muy poco se conoce acerca de la topología de este grafo. Por ejemplo, un problema aún abierto es entender sus diferentes componentes conexas.
Nuestro trabajo consiste en mostrar que la topología de este grafo puede ser estudiada de forma sistemática, a través de Estructuras Afines en Superficies Cerradas y, más aún, a través de Intercambios Afines de Intervalos.