
CONDITIONAL EXPECTATIONS ON FELL BUNDLES

FERNANDO ABADIE

Abstract. We show that the existence of a continuous conditional

expectation from a Fell bundle to a Fell subbundle implies that the

full cross-sectional C*-algebra of the subbundle is contained in the full

cross-sectional C*-algebra of the bundle, and moreover there exists a

conditional expectation from the latter algebra to the former. A similar

fact holds for the reduced cross-sectional C*-algebras. Besides, the

subbundle is amenable whenever so is the bundle.
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1. Introduction and preliminaries

A very important concept in probability theory is that of conditional

expectation. Adapted to the “non-commutative” realm of operator algebras,

here too it became an important tool, first for von Neumann algebras and

then for C* algebras. In this case, the conditional expectation is a certain

type of linear operator from an algebra to a subalgebra (we refer to [15] for a

nice description and applications of this passage from the classical probability

theory to the world of operator algebras).

If A is a C*-subalgebra of a C*-algebra B, a conditional expectation

from B to A is a linear map E : B → A such that E2 = E (i.e.: E is

an idempotent), E(B) = A, E(aba′) = aE(b)a′ for a, a′ ∈ A, b ∈ B, and

moreover E is completely contractive and completely positive (ccp). However,

thanks to Tomiyama’s theorem [7, Theorem 1.5.10], they can be more easily

described simply as contractive idempotents whose range is a C*-subalgebra.

Conditional expectations have been studied in particular in relation to

one of the most important constructions in operator algebras, that of crossed

products of C*-algebras by groups ([5], [6], [14], [13], [16]).
1
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In addition to crossed products, there are a variety of other constructions

that give rise to graded algebras over groups that are equally useful, and

for which it would be nice to enjoy similar results as for crossed products.

Fortunately, such algebras can often be described as sectional algebras of

Fell bundles.

Thus in this paper we study conditional expectations on Fell bundles. In

order to describe briefly what we will do, we will use some terminology and

notation that we will only introduce towards the end of this section, and to

which we refer the reader.

If A is a Fell subbundle of a Fell bundle B, it is not in general true that

C∗(A) is a C*-subalgebra of C∗(B). Some recent examples of this situation

can be found in [18] in the realm of crossed prodcuts, and even for Fell

bundles over discrete groups, as shown in [8, Proposition 21.7]. On the other

hand, there are some cases in which we know that C∗(A) is a C*-subalgebra

of C∗(B), for instance when A is an hereditary Fell subbundle of B (see

[3, Theorem 4.3] and [2, Corollary 5.4]). Further back in time we have

the following result from Itoh in relation to crossed products [14] (see also

[16] for the case of discrete groups): suppose α is an action of the locally

compact group G on the C*-algebra B, A is a α-invariant C*-subalgebra

of B and E : B → A is a conditional expectation from B to A such that

αtE = Eαt, ∀t ∈ G. Then Aoα|A G is a C*-subalgebra of B oα G, and E

can be extended to a conditional expectation Eu : B oα G→ Aoα G. This

can be translated to the language of Fell bundles as follows. Let B = G×B
and A = G × A be the semi-direct product Fell bundles associated to the

actions α and α|A respectively, so that A is a Fell subbundle of B. The

conditional expectation E : B → A extends to a map (that we also call)

E : B → A by means of E(r, b) := (r, E(b)), ∀(r, b) ∈ B. It is easy to see that

this new E is a conditional expectation from the Fell bundle B to its Fell

subbundle A according to Definition 2.1 below. Then Itoh’s result says that,

in this case, there is an inclusion C∗(A) ⊆ C∗(B), and that the conditional

expectation E defines a conditional expectation Eu : C∗(B)→ C∗(A). This

is exactly the first main result we want to prove (Theorem 3.4), but with

the only assumption that A is a Fell subbundle of B and the existence of a

conditional expectation between them.

On the other hand, one can consider the same situation, but replacing

the full cross-sectional C*-algebras of the Fell bundles by the reduced cross-

sectional ones. In this case there is no need to worry about the inclusion of

C∗r (A) in C∗r (B), which always holds ([1, Proposition 3.2], and [10, Proposi-

tion 21.3] for a simple proof in the discrete group case), but it is worth asking

whether there is also a conditional expectation Er : C∗r (B)→ C∗r (A) between

them. Again, this situation has been already considered by Itoh in [13] and

Khoshkam in [16] for actions of general locally compact groups and of discrete

groups respectively, and by Exel for Fell bundles over discrete groups ([10,

Theorem 21.29]). We will also show (Theorem 4.7) that the above-mentioned
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results of Itoh, Khoshkam and Exel generalize for any conditional expectation

E : B → A between Fell bundles over arbitrary locally compact groups.

Although we assume that the reader is familiar with the basic definitions

and facts surrounding Fell bundles over locally compact groups, to fix the

notation and terminology we recall below some of the objects we will be work-

ing with. The reader is referred to the treatise [12] for complete information

on this topic.

If B = (Bt)t∈G is a Fell bundle over the locally compact group G, we

denote by Cc(B) the vector space of compactly supported continuous sections

of B. It is a locally convex topological space with the inductive limit topology

determined by the family of subspaces CK(B) := {f ∈ Cc(B) : supp(f) ⊆ K},
K ⊆ G compact. Besides, Cc(B) is a ∗-algebra (“the compacted ∗-algebra

of B”), with the product given by convolution: f ∗ g(t) :=
∫
G f(s)g(s−1t)ds

(integration with respect to the Haar measure of G) and involution given

by f∗(t) := ∆−1f(t−1)∗, where ∆ is the modular function of G. More-

over, ‖f‖1 :=
∫
G ‖f(t)‖dt is a norm on Cc(B), with which it becomes a

normed ∗-algebra. Its completion, L1(B), is a Banach ∗-algebra whose

non-degenerate representations correspond to the non-degenerate represen-

tations of B (integration of representations of B gives representations of

L1(B)). Its universal enveloping C*-algebra, denoted C∗(B), is called the

full cross-sectional algebra of B. Consequently we have a bijective corre-

spondence between non-degenerate representations of B and non-degenerate

representations of C∗(B) (see [12, VIII]) for the precise statements.

Among the representations of B, there is one of special importance, the

left regular representation. The space Cc(B) is also a right Be-module with

(fb)(t) := f(t)b, ∀f ∈ Cc(B), b ∈ Be and t ∈ G (here e denotes the identity of

the group G). Moreover, the map Cc(B)×Cc(B) 3 (f, g) 7→
∫
G f(r)∗g(r)dr ∈

Be is a pre-inner product on Cc(B), so by completing we obtain a full right

Hilbert Be-module
(
L2(B), 〈 , 〉L2(B)

)
. Given bt ∈ Bt and ξ ∈ Cc(B), we have

that ΛBbt(ξ) : G→ B, given by ΛBbt(ξ)(r) := btξ(t
−1r) is a continuous section

of B, so it belongs also to L2(B). It can be shown that, in fact, the map

ξ 7→ ΛBbtξ can be extended to an adjointable map in L2(B), and it turns out

that b 7→ ΛBb is a representation of B: the left regular representation of B
The image of C∗(B) under the (integrated form of the) representation ΛB is

called the reduced cross-sectional algebra of B, and it is denoted by C∗r (B).

Of course C∗r (B) ⊆ L(L2(B)), the C*-algebra of adjointable operators on

L2(B). When ΛB is injective, so we can identify C∗(B) and C∗r (B), it is said

that the Fell bundle B is amenable.

The organization of the article is as follows. In the next section, after

defining and studying some basic properties of conditional expectations, we

study some maps on certain auxiliary C*-algebras Mt(B) associated with

the bundles, which will prove helpful to prove, in the third section, our

first main result. There we extend the conditional expectation E to a map
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Ec : Cc(B) → Cc(A) such that Ec(f)(t) = E(f(t)), we show that we have

an inclusion C∗(A) ⊆ C∗(B), and that the map Ec extend to a completely

positive and completely contractive map Er : C∗(B) ⊆ C∗(A). To do it

we use the results of the second section, and, crucially, the correspondence

between functionals of positive type and cyclic representations of a Fell

bundle. Then, using that the norm of a completely positive map can be

computed using approximate units, we see that Er is in fact completely

contractive, and therefore a conditional expectation. As an application

we show that if B is amenable, then so is A. We also give an application

concerning the C*-algebras Mt(B). In the last section we prove the second

main result. For this we make a heavy use of a concrete way to see C∗(A)

inside C∗(B), as well as the possibility of creating a useful Hilbert module L2
E

using the conditional expectation E, which allows to conveniently combine

the regular representations of A and B.

2. Conditional expectations on Fell bundles

Definition 2.1. Let B = (Bt)t∈G be a Fell bundle over the locally compact

group G, and let A = (At)t∈G be a Fell subbundle of B. A continuous idem-

potent quasi-linear map E : B → A is said to be a conditional expectation

from B to A if E(B) = A, ‖E|Be‖ = 1 and E(aba′) = aE(b)a′, ∀b ∈ B,

a, a′ ∈ A.

Recall that E is said to be quasi-linear when E : Bt → At is linear for

each t ∈ G.

It is clear that if E is such a conditional expectation, then E(a) = a

∀a ∈ A, and also that the restriction of E to Be is a conditional expectation

from Be to Ae in the sense of C*-algebras.

As we shall see in Corollary 2.5, the definition above implies that ‖E|Bt‖ ≤
1, ∀t ∈ G. In view of Tomiyama’s theorem one may ask whether the bimodule

condition is strictly necessary or can be replaced by the requirement that

E be contractive in each fiber, but we have not attempted to answer this

question.

In our definition of conditional expectation we do not require condition (i)

nor the boundedness of the maps Pg of [10, Definition 21.19]. However, as

it will follows from Lemma 2.4 and Corollary 2.5 below, such requirements

follow automatically, so both definitions are actually equivalent.

Example 2.2 (Canonical expectations). An important role in the theory of

Fell bundles over discrete groups, in particular in relation to the question of

amenability (see [8]), has been played by the canonical expectation E : B →

Be given by E(b) =

{
b if b ∈ Be
0 if b /∈ Be

(we look at Be as a Fell bundle over the

trivial group {e}).
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More generally, given a subgroup H of G, one can define EH : B → BH

by EH(bt) =

{
bt if t ∈ H
0 if t /∈ H

, ∀bt ∈ Bt. Here BH is the retraction of B to H.

Example 2.3 (Inflations). Given a Fell bundle B, we can form the Fell bundle

Mn(B), such that Mn(B)t := Mn(Bt), ∀t ∈ G. Moreover, if E : B → A is a

conditional expectation from B to A, the inflation En : Mn(B) → Mn(A),

such that En(bij) := (E(bij)), is clearly a conditional expectation from Mn(B)

to Mn(A). Alternatively one can see Mn(B) as Mn ⊗ B in the sense of [4],

so En becomes Id⊗ E.

Since the restriction E|Be : Be → Ae is a conditional expectation, it

satisfies E(b∗) = E(b)∗ and E(b∗b) ≥ E(b)∗E(b) ∀b ∈ Be. In fact we can

remove the condition b ∈ Be:

Lemma 2.4. Let E : B → A be a conditional expectation from B to the Fell

subbundle A of B. Then E(b∗) = E(b)∗ and E(b∗b) ≥ E(b)∗E(b), ∀b ∈ B.

Proof. Let b ∈ Bt and a ∈ At. Since a∗b ∈ Be and the restriction of E to Be
is a conditional expectation, we have(

E(b∗)− E(b)∗
)
a = E(b∗a)− E(a∗b)∗ = E(b∗a)− E((a∗b)∗) = 0.

Thus E(b∗) − E(b)∗ = 0, for one can take a = (E(b∗) − E(b)∗)∗. The last

statement follows from the first one:

0 ≤ E
(
(b∗ − E(b)∗)(b− E(b))

)
= E

(
b∗b− b∗E(b)− E(b)∗b+ E(b)∗E(b)

)
= E(b∗b)− E

(
b∗E(b)

)
− E

(
E(b)∗b

)
+ E

(
E(b)∗E(b)

)
= E(b∗b)− E(b)∗E(b).

�

Corollary 2.5. E is contractive: ‖E(b)‖ ≤ ‖b‖, ∀b ∈ B.

Proof. Since 0 ≤ E(b)∗E(b) ≤ E(b∗b), we have ‖E(b)‖2 = ‖E(b)∗E(b)‖ ≤
‖E(b∗b)‖ ≤ ‖b‖2, where the latter inequality follows from the fact that E|Be
is contractive by definition. �

We turn to prove our first main result. For this we will use some auxiliary

algebras that are linked to a Fell bundle, and that have already proved their

usefulness in other occasions (see for instance [3]).

Given t = (t1, . . . , tn) ∈ Gn, define

Mt(B) := {M ∈Mn(B) : Mi,j ∈ Btitj−1 ∀ i, j = 1, . . . , n},

Nt(B) := {N ∈Mn(B) : Ni,j ∈ BtiBt−1
j
∀ i, j = 1, . . . , n},

and

Yt := Bt1 ⊕ · · · ⊕Btn ,

where the latter is a direct sum of right Hilbert Be-modules.
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It is easy to see that, with the usual linear operations, product and

involution of matrices, Mt(B) is a ∗-algebra, and that Yt is a left Mt(B)-

module (we think of the elements of Yt as column matrices). For instance, if

M,N ∈ Mt(B), then

(MN)i,j =
∑
k

Mi,kNk,j ∈
∑
k

Btit−1
k
Btkt−1

j
⊆ Btit−1

j
,

and a similar computation shows that Mt(B)Yt ⊆ Yt. Besides, Nt(B) is clearly

a closed ∗-ideal of Mt(B). Note that, in fact, we have:

K(Yt) = K(⊕ni=1Bti) = (K(Bti , Btj )
n
i,j=1 = (BtiB

∗
tj )

n
i,j=1 = Nt(B).(1)

On the other hand Yt is a full right Hilbert Jt(B)-module over the ideal Jt(B)

of Be, where Jt(B) :=
∑n

i=1B
∗
tiBti . Therefore Yt is an equivalence bimodule

between Nt(B) and Jt(B). We denote by 〈 , 〉l and 〈 , 〉r the corresponding

left and right inner products of Yt.

For t = (t1, . . . , tn) ∈ Gn and r ∈ G, we put tr = (t1r, . . . , tnr) ∈ Gn.

Note that Mtr(B) = Mt(B), ∀r ∈ G, and that Mt(B)Ytr ⊆ Ytr, and Ntr(B) =

(BtirB
∗
tjr)

n
i,j=1 is also an ideal in Mt(B).

Proposition 2.6. Let t = (t1, . . . , tn) ∈ Gn. Then

Mt(B) = span{Ntt−1
k

(B) : k = 1, . . . , n} = span{Ntr−1(B) : r ∈ G}.

Proof. The preceding comments imply span{Ntt−1
k

(B) : k = 1, . . . , n} ⊆
span{Ntr−1(B) : r ∈ G} ⊆ Mt(B). On the other hand, by (1) the (i, j)

component of span{Ntt−1
k

(B) : j = 1, . . . , n} is the set
∑n

m=1Btit−1
m
B∗
tjt
−1
m

,

which clearly contains Btit−1
j

, the (i, j) component of Mt(B). This shows that

Mt(B) ⊆ span{Ntt−1
k

(B) : k = 1, . . . , n}, which ends the proof. �

Corollary 2.7. Let t = (t1, . . . , tn) ∈ Gn, and M ∈ Mt(B). Then M is a

positive element of the C*-algebra Mt(B) if and only if ∀k = 1, . . . , n and

∀y ∈ Ytt−1
k

we have 〈My, y〉r ≥ 0. More explicitly M = (Mij) ∈ Mt(B)+ ⇐⇒∑n
i,j=1 y

∗
iMijyj ∈ B+

e ∀(y1, . . . , yn) ∈ Ytt−1
k

and k = 1, . . . , n.

Proof. It is clear that the positivity ofM implies that 〈My, y〉r ≥ 0 ∀y ∈ Ytt−1
k

and ∀k = 1, . . . , n. To prove the converse, suppose that M satisfies this

latter condition. Since Ytt−1
k

is a Hilbert (Mt(B) − Be)-bimodule, we have

a homomorphism µt−1
k

: Mt(B) → L(Ytt−1
k

), given by µ(N)y := Ny. Note

that µ is injective when restricted to each Ntt−1
k

(B), and in fact above we

identified Ntt−1
k

(B) with K(Ytt−1
k

) under this homomorphism. According

to [17, Lemma 4.1], our assumption implies that µt−1
k

(M) is a positive

element of L(Ytt−1
k

), ∀k = 1, . . . n. Define µ : Mt(B) → ⊕nk=1L(Ytt−1
k

) by

µ(N) := (µt−1
k

(N))k=1,...,n, ∀N ∈ Mt(B). Then µ(M) is positive in the C*-

algebra ⊕nk=1L(Ytt−1
k

), and to see that M is positive it is enough to prove

that µ is injective. So let N ∈ kerµ. Since Ntt−1
k

(B) is an ideal in Mt(B),
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we have NNtt−1
k

(B) ⊆ Ntt−1
k

(B). But µ
(
NNtt−1

k
(B)
)

= µ(N)µ(Ntt−1
k

(B)) = 0

and µ is faithful on Ntt−1
k

(B), which implies NNtt−1
k

(B) = 0, ∀k = 1, . . . , n.

Then, by Proposition 2.6, we conclude that NMt(B) =
∑n

k=1NNtt−1
k

(B) = 0.

Hence N = 0, which ends the proof. �

Proposition 2.8. Let E : B → A be a conditional expectation from B to

A, and t ∈ Gn. Let Et : Mt(B) → Mt(A) be such that Et(M) := (E(Mij)).

Then Et is an idempotent and positive Mt(A)-bimodule map, whose image is

Mt(A).

Proof. It is clear that E2
t = Et and Et(Mt(B)) = Mt(A), and it is easy to

check that Et(N1MN2) = N1Et(M)N2 ∀N1, N2 ∈ Mt(A), M ∈ Mt(B). Let

us show that Et is positive. Let u, v ∈ G, m = (m1, . . . ,mn) ∈ Ytu(B)

and y = (y1, . . . , yn) ∈ Ytv(A), and let M = 〈m,m〉l = (mim
∗
j ), so M ∈

K(Ytu)+ ⊆ Mt(B)+. Then x := m∗1y1 + · · ·+m∗nyn ∈ Bu−1v. Since E(yj) = yj
and E(m∗j ) = E(mj)

∗ ∀j, we have

E(x)∗E(x) =
n∑

i,j=1

y∗jE(mj)E(mi)
∗yi = 〈

(
E(mi)E(mj)

∗)y, y〉r
= 〈〈Ėn(m), Ėn(m)〉ly, y〉r,

where Ėn : Bn → An is such that Ėn(b1, . . . , bn) = (E(b1), . . . , E(bn)). On

the other hand:

E(x∗x) =

n∑
i,j=1

y∗jE(mjm
∗
i )yi = 〈(E(mim

∗
j ))y, y〉r = 〈Et(〈m,m〉l)y, y〉r

Now, 0 ≤ E(x)∗E(x) ≤ E(x∗x) by Lemma 2.4, which in view of the

computations above, together with Corollary 2.7, yields Et(〈m,m〉l) −
〈Ėn(m), Ėn(m)〉l ∈ Mt(A)+. In particular we have that Et(〈m,m〉l) ∈
Mt(A)+. Thus Et(

∑n
k=1〈m(k),m(k)〉l) ∈ Mt(A)+ ⊆ Mt(B)+, ∀m(1), . . . ,m(n) ∈

∪u∈GYtu. It follows that Et is positive, by Proposition 2.6 and the well known

fact that the positive cone of a sum of ideals agrees with the sum of the

positive cones of these ideals. �

As an application of the main result of the next section, Theorem 3.4, we

will see later, in Proposition 3.9, that Et is in fact a conditional expectation

from Mt(B) to Mt(A) .

3. Conditional expectation on the full C*-algebra

If E is a continuous conditional expectation from B to A, and f ∈ Cc(B),

then Ec(f), defined to be Ec(f)(t) := E(f(t)), is obviously an element of

Cc(A). This defines a map Ec : Cc(B)→ Cc(A) which is idempotent with

image Cc(A), and also a Cc(A)-homomorphism of Cc(A)-bimodules.

If C∗� (B) is a C*-completion of Cc(B) and it turns out that Ec is continuous

in the norm of C∗�(B), then we refer to the continuous extension of Ec as
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the unique extension of E to C∗�(B). In what follows ιBK : CK(B) → Cc(B)

indicates the natural inclusion.

Proposition 3.1. Let E : B → A be a continuous conditional expectation

from B to A, and let Ec as defined previously. Then:

(1) Ec is a surjective and contractive map in the uniform norms of Cc(B)

and Cc(A). Moreover Ec(CK(B)) = CK(A), for each compact subset

K of G.

(2) Ec : Cc(B)→ Cc(A) is continuous in the inductive limit topologies

of these spaces.

Proof. By recalling, from Corollary 2.5, that E is contractive, and observing

that Cc(A) ⊆ Cc(B), the first statement follows at once from the comments

preceding the proposition. To prove the second statement is enough to see

that Ec ◦ ιBK : (CK(B), ‖ ‖∞)→ (Cc(A), τA) is continuous, for each compact

subset K of G. But Ec ◦ ιBK = ιAK ◦ Ec|CK(B), and Ec|CK(B) is continuous in

the uniform topologies by (1). Since ιAK : (CK(A), ‖ ‖∞) → (Cc(A), τA) is

continuous, we are done. �

A crucial ingredient in the proof of our first main result is the correspon-

dence between cyclic representations and linear functionals of positive type

of a Fell bundle. For the convenience of the reader, and in order to establish

some notation, we recall the basic facts about this theory developed by Fell

in [11] (see also [12, VIII.20-21]).

A functional of positive type on a Fell bundle B is a continuous quasi-

linear map ϕ : B → C such that for any finite sequence of elements b1, . . . , bn
in B we have

∑n
i,j=1 ϕ(b∗i bj) ≥ 0. For example, if π : B → B(H) is a

representation of B and ξ ∈ H, the functional ϕξ : B → C, given by

ϕξ(b) = 〈π(b)ξ, ξ〉, is a functional of positive type. In fact, any functional of

positive type can be represented in such a way, and if one restricts to cyclic

representations, then the pair (π, ξ) is unique up to unitary equivalence. It

follows that ‖ϕ‖, which is defined to be ‖ϕ‖ := sup‖b‖≤1 |ϕ(b)|, is always

finite, and in fact ‖ϕ‖ = limλ ϕ(uλ), where (uλ)λ is any approximate unit

of Be. In particular ‖ϕξ‖ = ‖ξ‖2. If π̄ : C∗(B) → B(H) is the integrated

form of π, then ϕ̄ξ : C∗(B) → C (the integrated form of ϕ) such that

ϕ̄ξ(x) = 〈π̄(x)ξ, ξ〉 is a positive linear functional, and ‖ϕξ‖ = ‖ϕ̄ξ‖ = ‖ξ‖2.

If πc : Cc(B)→ C is the restriction of π̄ to Cc(B), then ϕcξ(f) = 〈πc(f)ξ, ξ〉
is a positive linear functional on Cc(B), which is continuous in the inductive

limit topology of Cc(B). Besides, any positive linear functional on Cc(B)

that is continuous in the inductive limit topology is of this form. Note that

ϕcξ(f) =
∫
G〈π(f(t))ξ, ξ〉dt ∀f ∈ Cc(B).

Lemma 3.2. Let ϕ : B → C be a linear functional of positive type, and let

t := (t1, . . . , tn) ∈ Gn. Define ϕt : Mt(B) → C by ϕt(M) :=
∑n

i,j=1 ϕ(Mij),

∀M = (Mij) ∈ Mt(B). Then ϕt is a positive linear functional on Mt(B).
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Proof. We may suppose that ϕ = ϕξ for some cyclic representation π : B →
B(H) with cyclic vector ξ. It is clear that πt : Mt(B)→Mn(B(H)) ∼= B(Hn)

such that πt(M) = (π(Mij)) is a representation and, if ξt := (ξ, . . . , ξ) ∈ Hn,

we have ϕt(M) = 〈πt(M)ξt, ξt〉, so ϕt is a positive linear functional on

Mt(B). �

Corollary 3.3. Let E : B → A be a continuous conditional expectation

from B to A, and ψ : A → C a linear functional of positive type. Define

ϕ(b) := ψ(E(b)), ∀b ∈ B. Then ϕ is a linear functional of positive type, and

‖ϕ‖ = ‖ψ‖.

Proof. A direct combination of Proposition 2.8 and Lemma 3.2 shows that ϕ is

a linear functional of positive type, since
∑n

i,j=1 ϕ(b∗i bj) = ψt ◦ Et(b
∗
i bj) ≥ 0,

∀b1, . . . , bn ∈ B. Now, note that (E(uλ)) is an approximate unit of Ae
whenever (uλ) is an approximate unit of Be. Thus

‖ϕ‖ = lim
λ
ϕ(uλ) = lim

λ
ψ(E(uλ)) = ‖ψ‖.

�

Theorem 3.4. Let B be a Fell bundle over the locally compact group G, and

suppose E : B → A is a continuous conditional expectation from B to its Fell

subbundle A. Then C∗(A) ⊆ C∗(B), and E extends uniquely to a conditional

expectation Eu : C∗(B)→ C∗(A) from C∗(B) to C∗(A).

Proof. If ‖ ‖B and ‖ ‖A denote the norms of C∗(B) and C∗(A) respectively,

we know that ‖ ‖B ≤ ‖ ‖A on Cc(A). So to prove that they are equal on

Cc(A), and therefore that Cc(A)
‖ ‖B

= C∗(A), we need to prove the opposite

inequality. To this end, consider a representation π : A → B(H) such that

its integrated form π̄ : C∗(A)→ B(H) is faithful and non-degenerate. Pick

ξ ∈ H, and let ψξ : A → C and ϕ : B → C be given by ψξ(a) = 〈π(a)ξ, ξ〉H
and ϕ(b) := ψξ(E(b)), ∀a ∈ A, b ∈ B. According with Corollary 3.3 and the

comments that precede it, both ψξ and ϕ are linear functionals of positive

type, and ‖ψξ‖ = ‖ϕ‖ = ‖ξ‖2. In particular there is a cyclic representation

ρ : B → B(K) with cyclic vector η, such that ϕ = ϕη, that is ϕ(b) = 〈ρ(b)η, η〉,
∀b ∈ B. Note that ‖η‖ =

√
‖ϕ‖ =

√
‖ψξ‖ = ‖ξ‖.

Now if f ∈ Cc(B) we have ϕ̄(f) =
∫
G〈π(E(f(t)))ξ, ξ〉dt = 〈π̄(Ec(f))ξ, ξ〉.

Thus:

(2) ‖f‖2B‖η‖2 ≥ ‖ρ̄(f)η‖2 = ϕ̄(f∗ ∗ f) = 〈π̄(Ec(f∗ ∗ f))ξ, ξ〉 ≥ 0,

where the latter inequality holds because ϕ̄ is a positive linear functional.

Since (2) holds for any vector ξ, and ‖η‖ = ‖ξ‖, we see that π̄(Ec(f∗ ∗ f))

is a positive operator with norm bounded by ‖f‖2B. Since π̄ is faithful, we

conclude that Ec(f∗ ∗ f) is positive in C∗(A), and

(3) ‖Ec(f∗ ∗ f)‖A = ‖π̄(Ec(f∗ ∗ f))‖ ≤ ‖f∗ ∗ f‖B.

So if g ∈ Cc(A): ‖g‖2A = ‖g∗ ∗ g‖A = ‖Ec(g∗ ∗ g)‖A ≤ ‖g∗ ∗ g‖B = ‖g‖2B.

Thus ‖ ‖A ≤ ‖ ‖B on Cc(B), as claimed, and therefore C∗(A) ⊆ C∗(B).
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We next show that Ec is continuous with respect to ‖ ‖B. Let ξ1, ξ2 ∈ H,

and define ψξ1+ikξ2(a) := 〈π(a)(ξ1 + ikξ2), ξ1 + ikξ2〉, ∀a ∈ A. Then by

polarization we can write:

〈π(a)ξ1, ξ2〉 =
1

4

3∑
k=0

ik〈π(a)(ξ1 + ikξ2), ξ1 + ikξ2〉 =
1

4

3∑
k=0

ikψξ1+ikξ2(a).

If ϕk(b) := ψξ1+ikξ2(E(b)) ∀b ∈ B, as before there exist cyclic representations

(ρk, ηk) such that ϕk(b) = 〈ρk(b)ηk, ηk〉, and ‖ηk‖ = ‖ξ1 + ikξ2‖ ∀k = 0, 1, 2, 3.

Then, passing to the integrated representations, if f ∈ Cc(B) and ‖ξ1‖ = 1 =

‖ξ2‖ (so ‖ηk‖ ≤ 2):

|〈π̄(Ec(f))ξ1, ξ2〉| =
1

4

∣∣∣ 3∑
k=0

ik〈π̄(Ec(f))(ξ1 + ikξ2), ξ1 + ikξ2〉
∣∣∣

=
1

4

3∑
k=0

ikψξ1+ikξ2(Ec(f)) =
1

4

∣∣∣ 3∑
k=0

ikϕ̄k(f)
∣∣∣ =

1

4

∣∣∣ 3∑
k=0

ik〈ρ̄(f)ηk, ηk〉
∣∣∣

≤ 1

4

3∑
k=0

‖ρ̄k(f)‖‖ηk‖2 ≤
1

4

3∑
k=0

‖f‖B‖ηk‖2 ≤ 4‖f‖B.

It follows that

‖Ec(f)‖B = ‖Ec(f)‖A = ‖π̄(Ec(f))‖ = sup
‖ξ1‖,‖ξ2‖=1

|〈π̄(Ec(f))ξ1, ξ2〉| ≤ 4‖f‖B.

Thus Ec is continuous in ‖ ‖B, with ‖Ec‖ ≤ 4, so it extends by continuity

to a positive idempotent map Eu : C∗(B)→ C∗(A) whose image is clearly

C∗(A).

If En : Mn(B) → Mn(A) is the inflation of E (see Example 2.3), En
is a continuous conditional expectation from Mn(B) to Mn(A). Thus by

the previous part of the proof we have C∗(Mn(A)) ⊆ C∗(Mn(B)), and we

have a conditional expectation (En)u : C∗(Mn(B)) → C∗(Mn(A)) from

C∗(Mn(B)) to C∗(Mn(A)) that extends En. On the other hand we can

consider the inflation (Eu)n : Mn(C∗(B))→Mn(C∗(A)). Under the natural

identifications C∗(Mn(B)) ∼= Mn(C∗(B)), it is easy to see that (Eu)n = (Eu)n,

because they are both continuous and they obviously agree on Cc(Mn(B)) ∼=
Mn(Cc(B)). Thus each (Eu)n is a positive map and ‖(Eu)n‖ ≤ 4. In other

words, Eu is a completely positive map such that ‖E‖cb ≤ 4. Since Eu is

completely positive, we in fact have ‖E‖ = ‖E‖cb = supν ‖Eu(wν)‖, where

(wν) is any approximate unit of C∗(B) (see for instance [17, Lemma 5.3]). By

[12, VIII.5.11], we can take an approximate unit (hV,λ)(V,λ) of C∗(B) of the

form hV,λ = ζV fλ, where fλ ∈ Cc(B) is such that (fλ(e))λ is an approximate

unit of Be and ‖fλ‖∞ ≤ 1 ∀λ, and ζV ∈ Cc(G) is a non-negative continuous

function with support contained in the compact neighborhood V of e, and

such that
∫
G ζV = 1 ∀V . Therefore:

‖Eu(ζV fλ)‖ = ‖π̄(Ec(ζV fλ))‖ = sup
‖ξ1‖=1,‖ξ2‖=1

|〈π̄(Ec(ζV fλ))ξ1, ξ2〉|(4)
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We have

|〈π̄(Ec(ζV fλ))ξ1, ξ2〉| =
∣∣∣ ∫

G
〈π(E(ζV (t)fλ(t)))ξ1, ξ2〉dt

∣∣∣(5)

≤
∫
G
ζV (t)

∣∣∣〈π(E(fλ(t)))ξ1, ξ2〉|
∣∣∣dt ≤ ∫

G
ζV (t)‖E(fλ)‖∞‖ξ1‖ ‖ξ2‖dt.(6)

Now, since E is contractive, ‖fλ‖∞ ≤ 1 and
∫
G ζV (t)dt = 1, from (4) and

(5)–(6) we conclude that ‖Eu‖cb = supV,λ ‖Eu(ζV fλ)‖ ≤ 1, which ends the

proof. �

Definition 3.5. In the conditions of Theorem 3.4, we will say that the

conditional expectation Eu is the integrated form of the conditional expecta-

tion E.

Corollary 3.6 (Amenability). Let B be a Fell bundle over the locally compact

group G, and suppose E : B → A is a continuous conditional expectation from

B to its Fell subbundle A. If C∗(B) = C∗r (B), then also C∗(A) = C∗r (A).

Proof. By Theorem 3.4, C∗(A) is the closure of Cc(A) within C∗(B), and

on the other hand C∗r (A) is the closure of Cc(A) within C∗r (B) ([1, Proposi-

tion 3.2]). Since C∗(B) = C∗r (B), we then conclude that C∗(A) = C∗r (A). �

Remark 3.7. If B is a Fell bundle over the locally compact group G, we denote

by Gd the group G with the discrete topology, and by Bd the Fell bundle over

Gd obtained by B by forgetting its original topology, so Bd is just the disjoint

union of the Banach spaces Bt, t ∈ G. Then it is clear that if E : B → A
is a continuous conditional expectation, then E : Bd → Ad is a conditional

expectation as well. Therefore we also have that C∗(Ad) ⊆ C∗(Bd) and E

defines a conditional expaectation Eud : C∗(Bd)→ C∗(Ad).

Proposition 3.8 (Functoriality). Let E : B → A and F : D → C be

continuous conditional expectations on the Fell bundles B and C, and suppose

that ρ : B → D is a homomorphism of Fell bundles that intertwines E and

F : ρ ◦ E = F ◦ ρ. Then, the induced homomorphism ρ̄ : C∗(B) → C∗(D)

intertwines Eu and F u.

Proof. It is immediate that ρc ◦Ec(f) = F c ◦ ρc(f) ∀f ∈ Cc(B), so the result

follows from the continuity of the maps ρ̄ ◦ Eu and F u ◦ ρ̄. �

Proposition 3.9. Let E : B → A be a conditional expectation from B to

A, and t ∈ Gn. Let Et : Mt(B) → Mt(A) be such that Et(M) := (E(Mij)).

Then Et is a continuous conditional expectation from Mt(B) to Mt(A).

Proof. The continuity of Et follows at once from that of E, since the con-

vergence in Mt(B) and in Mt(A) is the convergence entrywise. For the rest

of the proof we do not lose generality by assuming, as we will do, that the

group G is discrete (see Remark 3.7). Since Et is an idempotent positive

map onto Mt(A), we only need to prove that ‖Et‖ ≤ 1.

Let π : A → B(H) be a non-degenerate representation of A on the

Hilbert space H, and π̄ : C∗(A) → B(H) the integrated representation of
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π. Therefore π(at) = π̄(atδt) ∀at ∈ At, t ∈ G, where atδt ∈ Cc(A) ⊆ C∗(A)

is such that atδt(r) = at if r = t,and atδt(r) = 0 otherwise. We will

suppose that π|Ae is faithful. Then the restriction of π to each fiber is

isometric and therefore injective. Define πt : Mt(A)→Mn(B(H)) ∼= B(Hn)

by πt(N) = (π(Nij)) (recall that n = |t|, and that Nij ∈ Atit−1
j
∀j =

1, . . . , n). It is immediate to check that πt is a faithful representation of

Mt(A). Consider now the conditional expectation Eu : C∗(B) → C∗(A)

provided by Theorem 3.4. Then the composition π̄ ◦ Eu : C∗(B)→ B(H) is

a completely positive and completely contractive map. Thus by Stinespring’s

theorem [7, Theorem 1.5.3 and Remark 1.5.4] there exist a non-degenerate

representation ρ̄ : C∗(B)→ B(K) and a contraction W ∈ B(H,K), such that

π̄ ◦Eu(x) = W ∗ρ̄(x)W , ∀z ∈ C∗(B). Let ρ : B → B(K) be the desintegrated

representation of ρ̄. For M = (Mij) ∈ Mt(B) we have:

πt(Et(M)) =
(
π(E(Mij))

)
=
(
π̄(E(Mij)δtit−1

j
)
)

=
(
π̄(Eu(Mijδtit−1

j
)
)

=
(
W ∗ρ̄(Mijδtit−1

j
)W
)

= W ∗n
(
ρ(Mij)

)
Wn = W ∗nρt(Mij)Wn,

where Wn = diagn(W, . . . ,W ). Then, since πt is isometric and Wn and ρ are

contractions, we conclude that

‖Et(M)‖ = ‖πt(Et(M))‖ = ‖W ∗nρt(Mij)Wn‖ ≤ ‖Wn‖2‖ρt(Mij)‖ ≤ ‖M‖.

Therefore Et is contractive, which ends the proof. �

4. Conditional expectation on the reduced C*-algebra

We will see next that any continuous conditional expectation E : B → A
from the Fell bundle B to its Fell subbundleA can be extended to a conditional

expectation Er : C∗r (B)→ C∗r (A). Let us call µ : A → B the natural inclusion.

Recall that C∗r (A) can be identified with the closure of the natural inclusion

of µc : Cc(A) ↪→ Cc(B) within C∗r (B) [1, Proposition 3.2]. However, the fact

that, as in our case, we have that C∗(A) ⊆ C∗(B), allows us to give a very

concrete way of identifying C∗r (A) inside C∗r (B):

Proposition 4.1. If A is a Fell subbundle of the Fell bundle B such that

C∗(A) ⊆ C∗(B), then the map ΛAx
µr7→ ΛBx from C∗r (A) to C∗r (B) is a well

defined isometric homomorphism of C*-algebras.

Proof. Let B be a Fell bundle over the locally compact groupG, π : B → B(H)

be a represntation of B on the Hilbert space H, and λ : G→ B(L2(G)) the left

regular representation ofG. Let πλ : B → B(L2(G)⊗H) be the representation

πλ(bt) = λt ⊗ π(bt). We also denote by πλ : C∗(B) → B(L2(G) ⊗ H)

the corresponding integrated representation. Let C∗R(B) := πλ(C∗(B)) ⊆
B(L2(G)⊗G). In [9] it was proved that, in case π|Be is faithful, then there

exists an isomorphism ΨB : C∗R(B) → C∗r (B) such that ΛBx = ΨBπλ(x),

∀x ∈ C∗(B). Let ρ := π|A : A → B(H) be the restriction of π to the

Fell subbundle A. If π|Be is faithful, then so is ρ|Ae , so by the above

mentioned result there exists an isomorphism ΨA : C∗R(A) → C∗r (A) such
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that ΛAy = ΨAπλ(y), ∀y ∈ C∗(A). Since C∗(A) ⊆ C∗(B), it is clear that

ρλ = πλ|C∗(A), and the following diagram commutes:

(7) C∗(A)

ΛA

zz

� � //

ρλ
��

C∗(B)

πλ
��

ΛB

$$
C∗r (A) C∗R(A)

∼=
ΨA

oo � � // C∗R(B)
ΨB

∼= // C∗r (B)

So if ΛAy = 0 for some y ∈ C∗(A), then the diagram implies that also

ΛBy = 0. Therefore we have a well defined map µr : C∗r (A) → C∗r (B) such

that µr(ΛAy ) = ΛBy . Now it is clear that this is a homomorphism of ∗-algebras,

so it is contractive. But again the diagram shows that ΛBy = 0 implies ΛAy = 0,

so the homomorphism is isometric. �

Proposition 4.2. The map Ec : Cc(B) ⊆ L2(B)→ Cc(A) ⊆ L2(A) extends

by continuity to a contractive Ae-linear map E2 : L2(B)→ L2(A)

Proof. Since E is a conditional expectation into A, if η ∈ Cc(B) and a ∈ Ae
we have: Ec(ηa)(t) = E(η(t)a) = E(η(t))a = Ec(η)(t)a = Ec(η)a(t), so

Ec(ηa) = Ec(η)a. As for the continuity, if η ∈ Cc(B):

〈Ec(η), Ec(η)〉L2(A) =

∫
G
Ec(η)(r)∗Ec(η)(r)dr =

∫
G
E(η(r))∗E(η(r))dr

=

∫
G
E(η(r)∗)E(η(r))dr ≤

∫
G
E(η(r)∗η(r))dr = E

( ∫
G
η(r)∗η(r)dr

)
= E

(
〈η, η〉L2(B)

)
.

Then

‖Ec(η)‖2L2(A) = ‖〈Ec(η), Ec(η)〉L2(A)‖ ≤ ‖E(〈η, η〉L2(B))‖

≤ ‖〈η, η〉L2(B)‖ = ‖η‖2L2(B).

�

Consider now the map [ , ] : L2(B) × L2(B) → Ae, given by [ξ, η] :=

E(〈ξ, η〉L2(B)). Then [ , ] is a semi-inner product on the right Ae-module

L2(B), so ξ 7→ ‖[ξ, ξ]‖1/2 is a seminorm on L2(B). Let L2
E be the Hausdorff

completion of L2(B), and P : L2(B) → L2
E the canonical map. Then L2

E

is a right Hilbert Ae-module with the inner product 〈 , 〉E characterized by

〈Pξ, Pη〉E = [ξ, η], that is 〈Pξ, Pη〉E = E(〈ξ, η〉L2(B)) (see [17, pages 3,4]).

Proposition 4.3. Let T ∈ L(L2(B)), Then T induces an adjointable oper-

ator TE ∈ L(L2
E), characterized by TEPξ = PTξ, ∀ξ ∈ L2(B). The map

ϕE : L(L2(B))→ L(L2
E) thus defined, T 7→ TE, is a unital homomorphism

of C*-algebras.
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Proof. Given ξ ∈ L2(B), we have Tξ ∈ L2(B). Now, since E is increasing,

and using [17, Proposition 1.2], we have:

〈PTξ, PTξ〉E = E(〈Tξ, Tξ〉L2(B)) = E(〈T ∗Tξ, ξ〉L2(B))

≤ ‖T‖2E(〈ξ, ξ〉L2(B)) = ‖T‖2〈Pξ, Pξ〉E

which shows that Pξ 7→ PTξ is a bounded map with norm at most equal

to ‖T‖, so it extends to a bounded map TE : L2
E → L2

E . Moreover, if

ξ, η ∈ L2(B):

〈TEPξ, Pη〉E = 〈PTξ, Pη〉E = E(〈Tξ, η〉L2(B))

= E(〈ξ, T ∗η〉L2(B)) = 〈Pξ, PT ∗η〉E = 〈Pξ, (T ∗)EPη〉E .

Thus TE is adjointable and (TE)∗ = (T ∗)E . The rest of the proof is routine

and left to the reader. �

Proposition 4.4. Let V : L2(A) → L2
E be given by V ξ := Pξ. Then V is

an adjointable isometry, whose adjoint V ∗ is determined by V ∗Pη = Ecη,

∀η ∈ Cc(B).

Proof. If ξ1, ξ2 ∈ L2(A): 〈V ξ1, V ξ2〉E = 〈Pξ1, P ξ2〉E = E(〈ξ1, ξ2〉L2(B))

= E(〈ξ1, ξ2〉L2(A)) = 〈ξ1, ξ2〉L2(A), which shows that V is an isometry.

Now if η ∈ Cc(B), as shown along the proof of Proposition 4.2, we have

〈Ec(η), Ec(η)〉L2(A) ≤ E
(
〈η, η〉L2(B)

)
.

Thus the map Pη 7→ Ecη from P (Cc(B)) to Cc(A) is well defined and is

contractive, so it extends to a contraction L2
E → L2(A). Finally, if ξ ∈ Cc(A),

η ∈ Cc(B):

〈V ξ, Pη〉E = 〈Pξ, Pη〉E = E(〈ξ, η〉L2(B)) = E
( ∫

G
ξ(r)∗η(r)dr

)
=

∫
G
E
(
ξ(r)∗η(r)

)
dr =

∫
G
ξ(r)∗E

(
η(r)

)
dr =

∫
G
ξ(r)∗Ec(η)(r)dr

= 〈ξ, Ec(η)〉L2(A)

Consequently V is adjointable, and V ∗(Pη) = Ec(η) ∀η ∈ Cc(B). �

The isometry V is useful to better understand the structure of the Hilbert

Ae-module L2
E . For if e := V V ∗ ∈ (L2

E), then e∗e = (V V ∗)(V V ∗) =

V (V ∗V )V ∗ = V V ∗ = e, so e is a projection. Thus we can decompose

L2
E = Y ⊕ Y ⊥ as Hilbert Ae-modules, where Y = e(L2

E) = V (L2(A)) (and

therefore Y ⊥ = (id− e(L
2
E)). Then L(L2

E) ∼=
(
L(Y ) L(Y ⊥, Y )

L(Y, Y ⊥) L(Y ⊥)

)
.

By means of the isometry V we still define one more map that is important

to our purposes, namely AdV : L(L2
E) → L(L2(A)), such that AdV (S) :=

V ∗SV .
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Lemma 4.5. Let x ∈ C∗(B). Then we have AdV ((ΛBx )E) = ΛAEu(x) ∀x ∈
C∗(B), that is, the following diagram is commutative:

L2(A)
V //

ΛA
Eu(x)

��

L2
E

(ΛBx )E

��
L2(A) L2

EV ∗
oo

Proof. Given ξ ∈ Cc(A) ⊆ L2(A) and f ∈ Cc(B) ⊆ C∗(B):

V ∗(ΛBf )EV ξ = V ∗PΛBf ξ = Ec(f ∗ ξ) = Ec(f) ∗ ξ = ΛAEc(f)(ξ).

Then V ∗(ΛBf )EV = ΛAEc(f) ∀f ∈ Cc(B). Since Cc(B) is dense in C∗(B)

and Eu is the continuous extension of Ec to C∗(B), we conclude that the

continuous maps x 7→ V ∗(ΛBx )EV and x 7→ ΛAEu(x) agree. �

Define φ : L(L2(B))→ L(L2(A)) by φ = AdV ◦ ϕE (Proposition 4.3 and

Lemma 4.5). According to Lemma 4.5 we have φ(ΛBx ) = ΛAEu(x) ∀x ∈ C
∗(B),

so we have φ(C∗r (B)) = C∗r (A).

Proposition 4.6. The map φ is a positive contraction, such that φ(ΛBx ) =

ΛAEu(x) for all x ∈ C∗(B). Besides φ(C∗r (B)) = C∗r (A) and φµr = IdC∗r (A)

(the map µr was defined in Proposition 4.1).

Proof. Since V is an isometry, AdV is a contraction, and is clearly positive

as well. Also ϕE is a positive contraction, being a homomorphism of C*-

algebras. Therefore φ = AdV ◦ ϕE is also positive and contractive. The

fact that φ(ΛBx ) = ΛAEu(x) is just a rephrasing of Lemma 4.5, from where

it follows also that φ(C∗r (B)) = C∗r (A). Finally, if y ∈ C∗(A), we have

φ(µr(ΛAy )) = φ(ΛBy ) = ΛAEu(y) = ΛAy , which shows that φµr = IdC∗r (A). �

We arrive now to our second main result of this work: up to naturally

identifying C∗r (A) inside C∗r (B), we can extend the conditional expectation

E : B → A to a conditional expectation Er : C∗r (B)→ C∗r (A) between their

reduced cross-sectional algebras.

Theorem 4.7. Let E : B → A be a continuous conditional expectation from

the Fell bundle B to its Fell subbundle A, and let C := µr(C∗r (A)) ⊆ C∗r (B)

(Proposition 4.1). Then E can be extended to a conditional expectation

Er : C∗r (B)→ C. More precisely, the map given by Er(ΛBx ) := µr(φ(ΛBEu(x))),

∀ΛBx ∈ C∗r (B), is a conditional expectation from C∗r (B) to C.

Proof. The map Er is a positive contraction, because both µr and φ so are.

Moreover Er(C∗r (B)) = µr(φ(C∗r (B))) = µr(C∗r (A)) = C. Let x ∈ C∗(B) and

y ∈ C∗(A), so ΛBx ∈ C∗r (B) and ΛBy ∈ C. We have

Er(ΛBxΛBy ) = Er(ΛBxy) = ΛBEu(xy) = ΛBEu(x)y = ΛBEu(x)Λ
B
y = Er(ΛBx )ΛBy .
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Similarly, we have Er(ΛByΛBx ) = ΛByE
r(ΛBx ). Consequently, Er is a C-

bimodule map. Finally, since φµr = IdC∗r (A), for ΛBx ∈ C∗r (B) we have:

(Er)2(ΛBx ) = Er
(
µr(φ(ΛBEu(x)))

)
= µr

(
φ
(
µr(φ(ΛBEu(x)))

))
= µr

(
φ(ΛBEu(x))

)
= Er(ΛBx ).

Then (Er)2 = Er. We have shown that Er is an idempotent, positive, and

contractive C-bimodule map whose image is C. That is, Er is a conditional

expectation. �
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