TENSOR PRODUCTS OF FELL BUNDLES OVER GROUPS

FERNANDO ABADIE

ABSTRACT. We extend the theory of tensor products of C*-algebras to
the larger category of Fell bundles over locally compact groups. We
prove that, like in the case of C*-algebras, there exist maximal and
minimal tensor products. Given two Fell bundles, we compare the ten-
sor products of their cross-sectional algebras with the cross-sectional
algebras of their tensor products. As applications we prove that, un-
der certain conditions, the cross-sectional C*-algebra of a Fell bundle
is nuclear or exact whenever so is its fiber over the unit element of the

group.
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1. INTRODUCTION

The original motivation for the present work was to study nuclearity and
exactness of crossed products by partial actions, both important properties
of C*-algebras related with tensor products.

The best way to define and study crossed products by partial actions is
through the theory of C*-algebraic bundles, today also called Fell bundles
(for a comprehensive treatment of such theory see [13]). According to [11],
given a partial action « of the locally compact group G on the C*-algebra
A, or even a twisted partial action, a Fell bundle B, over G is associated
to a. The cross-sectional algebra of B, is called the crossed-product of A
by the partial action «, and it is denoted by A x, G. Similarly, the reduced
cross-sectional algebra of B, is called the reduced crossed-product of A by
the partial action «, and it is denoted by A X, G (in Section {| we recall
the definition of the reduced cross-sectional algebra of a Fell bundle; for
additional information the reader is referred to [9] and [3]). On the other
hand, Fell bundles are closely related to partial actions, since not only many
of them can be described as associated to twisted partial actions ([11]), but
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any Fell bundle carries a natural partial action of its underlying group on
the spectrum of its unit fiber ([I]) and, in a sense, it is equivalent to the Fell
bundle associated to a partial action (see [5], [19] and [4]).

A point exploited in this paper is that some properties of the cross-
sectional algebras of a Fell bundle are in part just consequences of properties
of the fibers of the bundle itself, which in turn are many times directly re-
lated to those of the unit fiber. Moreover, some constructions with these
algebras are better understood when they are made directly on the bundle.
In particular this viewpoint applies to tensor products. Thus we were led to
define and study tensor products of Fell bundles. So posed in terms of Fell
bundles, what we are interested in studying are the tensor products of cross-
sectional algebras of Fell bundles, and the strategy we follow is to permute
the order in which we consider such constructions, i.e., first define the ten-
sor products of Fell bundles and then consider the cross-sectional algebras of
the resulting bundles. In fact, what we will show is that these constructions
“commute”, in the sense that, starting from two Fell bundles, the result is
independent of the order in which we take the tensor product and the cross-
sectional algebras. Furthermore, we will see that there is a perfect harmony
in relation to the type of construction we choose in each case, i.e., maximal
tensor products and full cross-sectional algebras, or spatial tensor products
and reduced cross-sectional algebras (see below).

Let us describe briefly the contents and structure of the paper.

Since the fibers of a Fell bundle are C*-ternary rings (C*-trings for short),
the study carried out in [6] (in particular Section 5.2) can be considered as a
preliminary step in the direction of studying tensor products of Fell bundles.
In the present work we will make considerable use of the results of [6], so,
for the reader’s convenience, in the next section we will recall and expand
on some of the aspects that interest us most. Also briefly discussed in this
section will be the possibility of extending a C*-norm on the unit fiber of
a *-algebraic bundle to a C*-norm on the entire bundle, which will lead to
consideration of the notion of positive *-algebraic bundle.

In the third section we deal with tensor products of Fell bundles. If
A = (Ap)teg and B = (Bs)sen are Fell bundles over the locally compact
groups G and H respectively, then a tensor product A ), B will be a Fell
bundle over G x H, with fibers A; @), Bs. As in the case of C*-algebras
and C*-trings there are a maximal and a minimal tensor products, which
correspond respectively to the maximal and minimal tensor products of the
corresponding unit fibers of the bundles. First we consider bundles over
discrete groups, and show that the algebraic tensor product A()B is a
positive *-algebraic bundle. Then we define the tensor product A, B for
any C*-norm on A B. Finally, we topologize A B for the case the
base groups of A and B are general locally compact groups. We end the
section by generalizing some results on representations of tensor products of
C*-algebras to the case of Fell bundles.
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The fourth section is devoted to comparing the cross-sectional algebras
of tensor products. Let C*(B) and C;(B) be the full and the reduced cross-
sectional algebras of the Fell bundle B respectively. On one hand we prove
that C*(A Q@) ax B) = C*(A) @ nax C*(B), and in the other hand we show
that also C}(A Q)i B) = Cr(A) @,in Cr (B), which reflects the harmony
between universal constructions on one hand and between spatial ones on
the other hand. Perhaps it is appropriate to comment here that, in reality,
the most useful results we obtain refer to these two norms. However, we have
tried to develop the theory in general, which could be useful for example if
a theory of “exotic tensor products”, in the style of exotic crossed products,
were to be developed in the future.

In the final section we consider some applications. We consider Fell bun-
dles with certain approximation properties and we prove that these approx-
imation properties are preserved by taking tensor products. We show how
to apply our results to prove the nuclearity or exactness of cross-sectional
C*-algebras of Fell bundles under suitable conditions.

This paper corresponds to the first part of [2], and is an expanded version
of the previous work “Tensor products of Fell bundles over discrete groups”
(http://xxx.if .usp.br/abs/funct-an/9712006), which circulated as a
preprint, and where only Fell bundles over discrete groups were considered.
It should also be mentioned that in his 2017 book [§], Exel developed a min-
imal theory of tensor products between C*-algebras and Fell bundles over
discrete groups.

2. C*-TRINGS AND FELL BUNDLES

In the first two parts of this section we will recall from [22], [3] and [0]
some aspects of the theory of C*-ternary rings and their tensor products
that will be needed later. Since in [6] the context is more general than that
of tensor products, we have tried to outline the proofs concerning to our
setting, mainly those leading to Theorem The occasion will also serve
to prove some new results and to introduce some of the notation to be used
later. In the third part of the section we will begin the preparation for
defining tensor products of Fell bundles in the next section.

2.1. C*-trings and the functors of Zettl. A *-ternary ring, or *-tring
for short, is a complex vector space E with a map (called x-ternary product)
w: Ex ExFE — FE, which is linear in the odd variables and conjugate linear
in the second one, and satisfies: u(u(x,y, z),u,v) = ,u(:c,u(u, z,9), v) =
w(z,y, p(z,u,v)), Vo,y,z,u,v € E. A C*seminorm on E is a seminorm
that satisfies [[4(z,y, )| < lellyl12], and u(z, 2,2)] = }o]* Va, y, = € E.
A x-tring F with a C*-norm making it a Banach space is called a C*-ternary
ring, or just a C*-tring. In general we write just (z,y, z) instead of u(z,y, z).
Note that if (E, ) is a C*-tring, its opposite E°P := (E, —u) also is a C*-
tring.
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In [22] Zettl proved that if E is a C*-tring, then there exist a C*-algebra
E" (unique up to isomorphism) and an E"-valued sesquilinear map ( , ), :
E x E — E" such that E is a right E"-module and ( , ), satisfies all the
properties of a right inner product except possibly that of positivity, with
(z,y,2) = z(y,2)r, and ||z]|*> = ||(z,2).|| Vo,y,2 € E, and in addition
span{(y, z), : y,z € E'} is dense in E". Moreover, he showed that, if F :=
{zx € F: {x,x), € E""} and E_ := {z € E : —(z,2), € E""} (here
E™T is the positive cone of the C*-algebra E"), then F, and E_ are sub-
C*-trings of F such that (EF,,E_) = 0 and F = E; & E_ as C*-trings.
When E = E; we say that E is a positive C*-tring (so in this case the
sesquilinear map ( , ), is an inner product). When F = E_, so E is the
opposite of a positive C*-tring, we say that E is a negative C*-tring. Besides,
(B4, (, )r)and (E_,—(, ),) are full right Hilbert modules over (F,)" and
(E_)" respectively, and E" = (E1)" & (E_)" as C*-algebras. Note that,
conversely, Hilbert modules provide examples of C*-trings: if (F,(, )) is a
right Hilbert module, and we define p(z,y, z) := x(y, z), then both (F, u)
and (F, —p) are C*-trings, the former positive.

Actually, C*-trings are the objects of a category, which we denote Ct, in
which the morphisms are linear maps n : £ — F' that preserve the ternary
product, that is w(x,y, z) = (7z, 7y, 72), Va,y,2z € E. As shown in [3], in
this case there exists a unique homomorphism 7" : E™ — F" such that

(1) " ((z,y)r) = (mz,7y) Vr,y € E,

so the the correspondence E — E" is in fact the object part of a functor from
the category Ct of C*-trings to the category C of C*-algebras. In particular,
if E is a full right Hilbert module over the C*-algebra A, and we define
on E the ternary product (x,y,z) := x(y,2)4 as above, then we have an
isomorphism E" 2 A, such that (z,y), — (z,y) 4, Vz,y € E. It is easily seen
that, as is the case with homomorphisms of C*-algebras, morphisms of C*-
trings are automatically contractive and have closed range, and are isometric
exactly when they are injective. In passing, we note that a C*-algebra is
also a C*-tring with the #-ternary product given by (z,y, z) := xy*z. Then
any homomorphism of C*-algebras is also a morphism or *-ternary rings, so
the category of C*-algebras embedds into the category of C*-trings.
Finally, let us mention that, just as we have a Zettl functor (E 5 F) >

(ET L FT) on the right, we also have one on the left: (E 5 F) > (El 1;
F l). Of course, here E' is a C*-algebra and we have an E'-sesquilinear map
(, ) : ExFE — E'such that E is a left E-module and (, ); satisfies
all the properties of a left inner product, except possibly that of positivity,
with (z,v,2) = (x,y)2, V,y, 2 € E, and also E' = span{(y, 2), : y,z € E}.
Combining both Zett] functors we conclude that a positive C*-tring E is an
E' — E" Morita-Rieffel equivalence bimodule. In fact, if E = E, @ E_ is the
Zettl’s decomposition of F, then EP := E; & (E_)°P is a positive C*-tring,
and we have E" = (EP)" and E! = (EP)!, so an arbitrary C*-tring F is close
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to being an equivalence bimodule, and in any case its associated C*-algebras
E! and E" are Morita-Rieffel equivalent. For this reason, many properties
of these C*-algebras can be considered as inherited from the C*-tring. This
is the case of nuclearity and exactness for example, as shown in [0].

2.2. Tensor products of C*-ternary rings and of Hilbert modules.
Suppose that F and F are right Hilbert modules over the C*-algebras A and
B respectively. Then one can form its exterior tensor product E ) F, which
is a right Hilbert module over the C*-algebra A @) B, where the latter is the
spatial tensor product of A and B (see [15]). However, as shown below, it is
possible to make the same construction using other tensor products between
A and B and without major modifications..

In what follows we denote by SN(E) and by N(E) the sets of C*-
seminorms and C*-norms respectively on the *-tring or x-algebra E. Note
that SNV/(F) is a partially ordered set with the pointwise order: 73 <7y <=
m(z) < y2(x) Vo € E.

Recall that if (G, || ||) is a seminormed space, and N := {x € G : ||z|| = 0},
the Hausdorff completion of G is the completion of the quotient space G/N
with respect to the quotient norm ||z + N|| := ||z||.

Suppose that A is a x-algebra and that « is a C*-seminorm on A. Then
the Hausdorff completion of A is a C*-algebra, which we denote by A,. Let
Pa : A — A, be the canonical map. If AT is the set of positive elements
of the C*-algebra A,, the set p;1(Al) is a cone in A, whose elements will
be called a-positive elements of A. Note that if & > S are C*-seminorms,
then the identity id : (4, a) — (A, ) is continuous, so it defines a surjective
homomorphism of C*-algebras oG Ay — Ag such that pg = 0§3Pa- Thus
any a-positive element is also a S-positive element.

Definition 2.1. Let A be a x-algebra. We define the set of positive elements
of A to be the set A" := Nyespn(aps'(Aa), where A, is the Hausdorff
completion of A with respect to the C*-seminorm .

Note that elements of the set Cy := {>_" ,afa; : n € N,ay,...,a, € A}
are a-positive, Vo € SN (A).

Remark 2.2. If N(A) # 0, then A" := Nyeprapa ' (Aa), that is, we only
need C*-norms rather than C*-seminorms to determine the positive ele-
ments. To see this, let 8 be any C*-seminorm on A, and o a C*-norm
that it is supposed to exist on A. Then v := max{«, 8} € N(A) and
v > B. Therefore, as observed before the definition, p; 1(4,) C pEI(AB).
Then Naenr(ayPa ' (Aa) € ﬂﬁesN(A)pgl(Aﬁ) C Naen(a)Pa (Aa), so they are
equal.

We will need the following result, which is exactly [I5, Lemma 4.3], except
that the C*-norm considered here is arbitrary, while Lance’s version is only
stated for the minimal norm. Since the proof is also the same, we omited it.
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Lemma 2.3. Let A and B be C*-algebras, and suppose that a = (aij),
¢ = (ci5) € Mn(A), b = (by;), 0 = (dij) € Mp(B). Let AQ,B be a
C*-tensor product of A and B. Then:
(1) If0<a<cand 0 <b <0, we have 0 < (aij®bij) < (cij®dij) m
M,(AQ, B).
(2) If a, b >0, then E?,j:l ai; @ bj; >0 in A®QB.

Let E and F be right Hilbert modules over the C*-algebras A and B, and
let EOF and A® B their corresponding algebraic tensor products. Using the
universal property of the algebraic tensor product, we easily see that E () F
is a right module over A () B and that we have an A () B-valued sesquilinear
form on E () F. On elementary tensors the action and the form are given
by (x@y)(a®b) = zaG®yband (z © y,2’ ©y) = (z,2") g O (y,y') r. We want
to see that this sesquilinear form is positive, that is, that (z,z) € (A® B)*
according to Definition [2.1

Proposition 2.4. The sesquilinear map (,) : (ECQ F)x(EQF) - A( B,

given by (z,2") = 3L, 25 (i, @i e © (i yp)r for = = 3L i O yi,

2 =370, @ Oy s positive, that is (2,2) € (A® B)* V2 € EQF.

Proof. Since N(A(® B) # 0, by Remark it is enough to show that
(2,2) € (A®q B)T for every a € N(A(® B) (in fact it would be enough to
do so just for || ||max, but the proof is the same).

So let a be any C*normon AQ B,and 2 =Y i 2, 0y; € EQF. By
[15, Lemma 4.2] the Gramian matrices X = ((x;,z;)r) and Y = (i, y;) r)
are positive elements of M, (A) and M, (B) respectively. Therefore (z,z) =
>t j=1(is 5) EO(Yi, y;) F is a positive element of A Q),, B by (2) of Lemma
which ends the proof. U

Let a be a C*-norm on A () B. Since the sesquilinear map just defined
() (EQF)x (EQF)— AQ® B is positive, we can perform the double
completion process described in [I5] top of page 5] to obtain a Hilbert module
E @, F, which is the completion of E() F' with respect to the norm & :
E(F — R given by

(2) a(z) = /a((z,2)), Vze EC)F

Remark 2.5. Lance proves along [15] that for z as in Proposition We have
z=01in EQF if and only if (z,2) = 0 in A() B. This shows that the
sesquilinear maps above are actually inner products.

Definition 2.6. We call the right Hilbert A (), B-module E Q) F the a-
exterior product corresponding to the C*-norm oo € N(E (O F).

Note that E @, F is full whenever E and F' are full Hilbert modules.

We turn again to the C*-trings perspective. Suppose that F and F are
positive C*-trings, so they are full right Hilbert modules over the C*-algebras
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E" and F" respectively. Note that E'() F' has a structure of *-tring with
the ternary product given by (z ® y, 2’ © ¢/, 2 ® 2') := (x,y,2) © (', ¢/, )
on elementary tensors, which in terms of our just defined sesquilinear form
can be written as (z © y,2’ @ v,z 0 2) = (x O y){@' oy, 2" ©y"). So
we have just seen that every C*-norm a on E" () F" defines a C*-norm
& on the #-tring E () F (given by ), whose completion is the positive
C*-tring £ Q, F, and (E Q4 F)" turns out to be E” Q) F" (recall (1)) and
subsequent comments).

Suppose conversely that v is a C*-norm on the *-tring £ () F, and let
E®7 F be the corresponding completion, which is a C*-tring. Let Ej :=
span{(z,z)p : x,2’ € E} and Fj := span{(y,y')r : v,y € F}. Then
Ej and Fjj are dense two-sided ideals of K" and F" respectively. Let z =
hZ?:l Oy € EQF and c:= 3710 (2}, 27)p © (v}, y))r € E"QF". We

ave

m n
o= 30N el e el e = 303 et ) © (i ol
Jj=11=1 j=11i=1
m n m
=ZZ%®%%®W%®% =Y (z7f 0y} oy)).
Jj=1 =1 j=1

So, since 7 is a C*-norm: y(zc) = v(3_1L, (2, 20y, 27 Oy])) < 370, (@O
yi)v(z] © yi)v(2), V2 € EQF. Therefore the action of multlphcatlon
by ¢ is v-bounded on E () F, and hence it extends to a bounded oper-
ator on EQ, F. In fact, recalling that (z © y,2’ ©®y',2" ©y") = (z ©
y)a' @y, 2" ©y"), where the latter is the inner product that Zettl’s asso-
ciates to the C*-tring E®7 F', we can continue our computations above,
and get:

m m
= (zm2joya) o))=Y 2oy oy
j=1 j=1
m
2(D_( 0 53] 0 9f)-
7j=1
Thus we get an injective homomorphism of x-algebras E" () F" — (E ®'y yr,

given by ¢ = > (2%, @) p © (Y, v ) p = D07 () @ ), 2] @ yY). So we
can define on Ej () F{j the operator norm, namely 7" : Ej () F§ — R such
that

3) 7' (¢) == sup{y(zc) : z € E(D) Foy(z) < 1.

Now observe that, since Fj and F|j are dense ideals in E” and F" respec-
tively, this C*-norm uniquely extends to a C*-norm on E" () F" (because
of [6, Lemma 5.12]) by the same formula (3.
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In conclusion, given two positive C*-trings, we have two maps
U, :N(ETOFT) —>N(E@F) such that o — & given by
D, N(EQF) —>N(ET®FT) such that v — 7" given by (3).

And these correspondences satisfy
4 (EQRQF) =EQF and EQQF =EQF).
& a 7" v

It is easily checked that W, is order preserving and W, ®, is the identity on
N(E (@ F). Moreover, due to the uniqueness of the C*-algebra E", ®, ¥, is
the identity on N (E™ (O F"). Finally, ®, also is order preserving: if v > o
are C*-norms on E () F, then id : (E() F,v1) = (E () F,~2) is continuous,
and therefore it extends by continuity to a homomorphism of C*-trings
T EQ., F = EQ.,,F, which induces a homomorphism of C*-algebras
A i ®WI Fr — E7 ®7§ FT, thus contractive; therefore v{ > ~5. In
conclusion the maps ®,. and ¥, are mutually inverse isomorphisms between

the posets N (E O F) and N(E" () F"). We record this fact:

Theorem 2.7. Let E and F be positive C*-trings. Then the maps ¥, :
NEQF") - NEQF) such that o — &, given by (), and @, :
N(EQF) = N(E"(QF") such that y — ", given by (3), are mutually in-
verse isomorphisms of partially ordered sets. Moreover, if « € N(E" (O F")
and v € N(EQF), then EQ; F' and E Q). F' are full right Hilbert mod-
ules over E" @), F" and E" Q). " respectively, so (EQsF) 2E"Q,F"
and (E ®7 F)T = Er ®'y7' F", where the isomorphisms extend the map
(roy,2"0y) > (x,2) 0 (y,y), Vao,2' € E, y,y € F.

In fact in [6] it is proved that the correspondences above extend to iso-
morphisms between SN (E O F) and SN (E™ (O F") for abitrary C*-trings.

In particular, since ¥, and @, are order preserving maps, and N (E" (O F")
has a maximum and a minimum elements || ||max and || ||min respectively,
we have:

Corollary 2.8. (cf [0, Corollary 5.13]). Let E and F be positive C*-trings.
Then there exist a mazimum C*-norm || - ||max on E Q) F, and a minimum
C*-norm || - ||min on EQ F, and

(EQF) =E QRF, (EQF) =E QF",

max max max max
(EQF) =EQRF  (EQF) =EQF"
min min min min

Recall that the minimum norm on the x-algebras E™ Q) F" and E'(Q) F!
agrees with the so called spatial one.
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Remark 2.9. Let a be a C*-norm on E™ () F". The well-known fact that «
is cross-norm, that is a(a © b) = ||a||g-||b|]|pr Ya € E" and b € F", implies
that & also is cross-norm, for if z € E, y € F:

dzoy)?=a((z0y,z0y) =a((z,2) 0 (y,y))

= [z, 2)llell{y: ») | F = ax)*a(y)*.

To end this part of the section we prove the following two results, which
will be needed later. To prove the first of them, recall first from [3, Proposi-
tion 4.1] that if 7 : E — F is an injective homomorphism of C*-trings, then
the induced homomorphism of C*-algebras " : E” — F" also is injective.
We remark that the converse is easily proved as well: if 7(z) = 0, then
0= (m(x),n(z)) = 7" ({z,x)), so (x,z) = 0 if 7" is injective, and in this case
z = 0.

Proposition 2.10. Let m; : 1 — F} and m : Es — Fy be homomor-
phisms of positive C*-trings. Then m © g : E1 () Ea — F1 () Fa is || || min-
continuous, so it extends to a homomorphism 1 Q) 72 : F1 Qi F2 —
F1 Qi F2- Moreover, if m1 and mo are injective, then so is w1 Q) T2-

Proof. Applying the right Zettl functor we obtain homomorphisms =] :
E{ — F[ and 7y : Ey — Fj, so by [20, T.5.19] we get a homomor-
phism 77 @, in 75 © BT @in £5 = FI @i F5 » which by definition extends
T OQnh: EfOQOFE; - F{OF). Now,if z=% 1" 20y € EQF:
n
(m ©m)z, (m Om)z) = Y (@) © ma(yi), m1(x5) © ma(ys))
ij=1
n
=) (m(@), mi(z))) © (ma(ys), m2(y;))

3,j7=1
= > wi i 2) © 75 ((yi y5) = (] © 75) ({2, 2))-
1,j=1
ilin = |
I(m1Om2) 2700 = (7T OTE) (2, 2D lmin = (7] @min73) ({2, 2)) min < [12 ]| Zuins

which ends the proof of the first statement. As for the second one, it follows
from the last assertion of [20, T.6.9] and the remark preceding the present
Proposition. ]

Therefore, since [|(m1 © m2)z|| [{((m1 ® m2)2, (11 © 72)2)||min, We get

In the same way, but using [20, T.6.9] instead of [20, T.5.19], we obtain

Proposition 2.11. Let 71 : E1 — Fy and 7w : Eo — Fy be homomor-
phisms of positive C*-trings. Then m @ me : B4 () Ey — F1 (O Fa s || || mas-
continuous, so it extends to a homomorphism T @) 2 © F1 Q) ax F2 —

F ®maxF2‘
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It follows from Propositions and that both the minimal and
maximal tensor products are bifunctors Ct x Ct — Ct, where Ct is the
category of C*-trings.

Lemma 2.12. Let E and F be full right Hilbert modules over the C*-
algebras A and B respectively, and S € L(E), T € L(F). If v is a C*norm
on EQF, then the map ST : EQF — EQF is y-continuous, with
ST < [[SIIT, and it extends to an adjointable map SRT' € L(E )., F),
whose adjoint is S* ® T*.

Proof. First recall that the C*-norm ~ induces a C*-norm 4" on A() B,
namely the operator norm

~v"(c) = sup{~y(zc) : z € E@F ty(z) <1}
Let z = > " 2 ©y; € EQF, and consider the matrices X = ((x;,x;)),
Xs = ((Swi, Sz;)), Y = ((yi,y;)) and Yr = ((Ty;, Ty;)). By [15, Lem-
mas 4.1 and 4.2], we see that 0 < Xg < ||S]?X and 0 < Y7 < ||T?|Y.

Then, using the last assertion of Lemma [2.3], we get:

n

(SOT)z(SeT)z) =Y (Sz;© Ty, Sz; © Ty;)

ij=1
= > (Swi, Szj) © (Ty;, Ty;)
ij=1
<O ISP @i 25) © T i y) = ISIPITI (2, 2).

ij=1
Therefore:
(S 0T)2)? =7"((S© D)z (S0 T)z) <A (ISIPITI*2, 2)
= [ISIPITI*y" ({2, 2)) = ISIPIT >y (2)*.
We conclude that S ® T' is bounded, with ||[S ® T|| < [|S||||T]| as claimed.

Thus § ® T extends by continuity to a map S ® T'. It is now easy to verify
that S ® T is adjointable, and that (S ® T)* = S* @ T*. O

Corollary 2.13. Let E and F be Hilbert modules, and v be a C*-norm on
E () F. Then there exists a (unique) C*-norm 5 on L(E) () L(F) such that
L(E) Q~ L(F) is a C*-subalgebra of LIEQ)., F). In case v = || [|min, also
is ¥ = || |l min-

Proof. Tt follows from Lemma that we have a x-homomorphism ¢, :
LIEYOLF) = LIEQ, F). In case v = [ [lmin, in [15, page 37 it is
shown that this homomorphism extends to an isometric homomorphism
Omin  L(E) Qin LIF) — L(E@,, £ (which in particular proves our
last statement). Suppose T' € L(E)( L(F) is such that ¢,(T) = 0.
Since ¢, and @min agree on E (O F, the fact ¢, (T)|[por = 0, implies
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emin(T)|ror = 0 and, since EQ F is dense in EQ,;, F', this entails
¢min(T) = 0. Since @iy is injective, we conclude that T = 0. Conse-
quently ¢, is injective, and therefore, identifying L(E)(© L(F') with the
*-subalgebra ¢ (L(E) () L(F)), it is enough (and necessary) to take 7 as
the restriction of the norm on L(E' Q). F) to L(E) O L(F). O

2.3. Positive x-algebraic bundles and Fell bundles.

Definition 2.14. Let G be a discrete group, and suppose that C = (Ct)ieq
is a family of complex vector spaces. We identify C with the disjoint union
of the spaces C;. We then say that C is a *x-algebraic bundle over G, with
product - : C x C — C and involution * : C — C if, Va,b € C, t,s € G, the
following holds:

1) CsCy C Cg 5) (Cy)* € Cyp
2) The product - is bilinear on Cs x C; — Cy 6) (ab)* = b*a™.
3) The product on C is associative. 7) a** = a.

4) x is conjugate linear from C} into Cy-1.
The vector spaces C; are called the fibers of the bundle. Note that each
Cy is a #-tring with the product (a,b,c) := ab*c, and in particular C, is
a x-algebra (here and in the rest of the paper e will denote the unit of a
group).

Suppose that C = (C}) is a *-algebraic bundle over G, and that Z = (I;)
is a subset of C such that 7 is also a *-algebraic bundle with the operations
inherited from C, which moreover satisfies CZ C Z and ZC C Z. Then we
say that Z is a (two-sided) ideal of C. It is easy to see C/Z := (Cy/I;) is also
a *-algebraic bundle with the obviuos operations naturally induced on the
quotients by the operations on C.

Definition 2.15. Let C = (C})ieq be a x-algebraic bundle, and o a C*-
seminorm on C.. We say that C is an a-positive x-algebraic bundle if for
each ¢ € C the element c*c is positive in the Hausdorff completion (Ce)q
of C.. We say that C is a positive x-algebraic bundle if it is a-positive
Va € SN(Ce).

In other words, C is positive if ¢*c € C.f in the meaning of Cf according
to Definition 2.1l

Definition 2.16. Let C = (C})eq be a x-algebraic bundle. Let ||-]| : C — R
be such that:

8) (Cy ||l - |) is a seminormed space, Vt € G.
9) llereall < lleaflfeall Ver,e2 € C.
10) flc*e] = llell*.
We then say that || || is a C*-seminorm on C, and that it is a C*-norm if
each (Cy, || - ||) is a normed space. We represent respectively by SN'(C) and
N(C) the sets of of C*-seminorms and C*-norms on C.
If, moreover,

11) C is a-positive, where « is the restriction of || || to the unit fiber C,
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we will say that (C, -, *, ||-||) is a semi-pre-Fell bundle over the discrete group
G, and that it is a pre-Fell bundle if || || is a C*-norm. A pre-Fell bundle C
is called a Fell bundle if each (Ct, || - ||) is complete for all t € G.

Note that 9) and 10) imply that ||c*|| = ||¢||, Ve € C, and also that || || is
a C*-norm on the *-tring C;.
The proof of the following result is routine, and it is left to the reader.

Proposition 2.17. Let C° = (C);cq be a pre-Fell bundle over the discrete
group G, with C*-norm || - ||. For t € G, let C; be the completion of CY,
and consider the family of Banach spaces (Ct)ieq with the extended norm.
Then the product and involution on C° extend by continuity to C, and with
the extended operations and norm C is a Fell bundle over G. We say that C
is a completion of the pre-Fell bundle C°.

Given a semi-pre-Fell bundle C = (Cy)ieq, let Z := {z € C : ||z|| = 0}.
Then Z can be identified with the *-algebraic bundle Z = (I;);eq, where
I, :=ZNCy, Vt € G. Note that Z is also an ideal of C, for property 9) above
implies CZ C 7 and ZC C Z. It is easy to check that C/Z := (C;/1I})ieq is
a pre-Fell bundle with the norm induced by the seminorm on C: if ¢ € C%,
then |lc; + ]| := |lc]|. We will say that the Fell bundle ) obtained by
completing this pre-Fell bundle C/Z is the Hausdorff completion of C.

Definition 2.18. Let A = (A¢)ieq and B = (By)teq be *-algebraic bundles
over the discrete group G. A homomorphism ¢ : A — B is a map such that
?(Ay) C By, Vt € G, and, Va,b € A, t € G: 1) qZ)‘At : Ay — By is linear; 2)
¢d(ab) = d(a)p(b); 3) ¢(a*) = ¢(a)*. If A and B are semi-pre-Fell bundles
we also require that ¢ is continuous on each fiber A;.

Note that if A and B are semi-pre-Fell bundles and ¢ : A — B is a
homomorphism of *-algebraic bundles, then ¢ is continuous if and only if
¢ : Ac — B is continuous, because if z € A, then

lo(@)1* = o) o)l = lo(z"2) | < lIg] 5 | "]l = ll¢

In particular every homomorphism of *-algebraic bundles between Fell
bundles over discrete groups is continuous. Observe also that, with the
notion of homomorphism just introduced, any two Hausdorff completions of
a given semi-pre-Fell bundle are necessarily isomorphic, and therefore the
Hausdorff completion of a semi-pre-Fell bundle is essentially unique.

If 8 is a C*-seminorm on the *-algebraic bundle C = (C}), and a := B¢,
it is clear that a € SN (C.). Besides, by properties 9) and 10) we have:

(5) alcte) = Blc*e) = B(e)? = Bec”) = alec*), Veel.

A natural question that arises is whether a C*-seminorm on C, can be
extended to a C*-seminorm on C. It follows that if C is an a-positive *-
algebraic bundle, the necessary condition is also sufficient for this to be
true:

a2l
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Proposition 2.19. Let C = (C})iei be a x-algebraic bundle over the discrete
group G, and o € SN (C¢) such that C is a-positive. Then o can be extended
to a C*-seminorm on C if and only if o satisfies the relation above. In
this case its extension is given by & : C — [0,00) such that &(c) := /a(c*c),
Ve € C. Moreover & € N(C) <— a € N(C.).

Proof. Each fiber C; is a right module over C, and (, ). : Cy x Cp —
C. such that (c,d)t := c*d is a right semi-inner product on C; because
C is a-positive. Then @|c, is a seminorm on C; (see [15, page 3] or [6l
Proposition 3.30]).Therefore we have that a((c,d)%) < a(c)a(d) and a(ca) <
a(c)a(a) Ve, d € Cy, a € Cp (see for instance [6, Proposition 3.30]). Similarly,
Cy is a left module over Ce, and ( , )! : C; x Cy — C. such that (c, d)! := cd*
is a left semi-inner product on Cy, which induces the seminorm & such that
a(c) = alec*) Ve € Ct, and we have a((c,d)t) < a(c)a(d) and alac) <
a(a)é(c) Ve,d € Cy, a € C.. Now suppose that (5] holds for a, that is & = a.
Then, if ¢ € Cs,d € C}, recalling the above inequalities and observing that
c*c € g, we have:

aled)? = ald*c*ed) = a((d, c*ed)t) < a(d)a(c*ed) = ald)a(c ed)
< a(d)a(c*e)a(d) = ale)?a(d)a(d) = alc)?a(d)?.

On the other hand: &(c*c) = v/a(c*cc*c) = y/a(c*c)? = a(c)?. We conclude
that & satisfies properties 8)-10) of Definition so it is a C*-seminorm
on C. The converse has already been observed, and the last statement is
clear. O

Since C} can be considered as both a right and a left C.-module, condition
expresses the fact that the C*-seminorms induced on C; in both cases
by the C*-norms « agree.

As in the case of *-algebras, the sets SN(C) and N(C) of C*-seminorms
and C*-norms on a *x-algebraic bundle C are partially ordered sets. Moreover,
the considerations above lead to consider also the (partially ordered) sets:

SNe(Ce) :={a € SN(C¢) : a(c’c) = alcc™) Ve € C}
Ne(Ce) := SNe(Ce) NN (Ce)
Theorem 2.20. Let C = (Ct)ieq be a positive x-algebraic bundle over the
discrete group G. Then the map ® : SN(C) — SN¢(Ce) given by ®(8) =

Blc, is an isomorphism of partially ordered sets, whose inverse ¥ is given

by ¥(a) = &, where a(c) := \/a(c*c), Ve € C. Besides: ®(N(C)) = Ne(Ce).

Proof. 1t is clear that both ® and ¥ are order preserving, and Proposi-
tion[2.19|shows that oW = Idspr(c.)- The fact that Wo® = Idgc) follows
directly from the definition of & and property 10) in Definition O

Again as in the case of x-algebras, note that if « > 3 are C*-seminorms
on the x-algebraic bundle C, then every a-positive element of C is B-positive
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as well. Moreover, the indentity on C induces a surjective homomorphism
of Fell bundles ag‘ :Co — Cg.

We end the section with the definition of general Fell bundles and related
concepts.

A Fell bundle (or C*-algebraic bundle) B = (By)ieq over the locally com-
pact group G is a Banach bundle B over G, with fiber B; over t € G, and
such that there exist continuous product and involution defined on B and
satisfying conditions 1)-11) of Definition [2.14] Recall that a Banach bun-
dle ([13 II-13.4]) over a Hausdorff space X, called base space, is a pair
(B, p) formed by a Hausdorff space B, called total space, and a continuous
open surjection p : B — X, together with continuous maps || || : B — R,
+: {(b,t)) e Bx B: pb) =pt)} — Band C x B — B such that each
fiber B, := p~!({z}) becomes a complex Banach space with the restrictions
of these maps, and such that it satisfies the additional property: if x € X
and (b;) C B is a net such that p(b;) — x and ||b;|| — 0, then b; — 0, € B,
where 0, is the zero element of B,. A homomorphism of Banach bundles
¢: A— Bover X is a continuous map such that ¢, := ng‘AZ A, = Bpisa
bounded linear operator, Vo € X, and ||¢|| := sup,cx ||¢z|| < oo.

A section of B is a function £ : X — B such that p(¢(z)) = z, Vo € X.
If £, m are continuous sections of B, and a € C, then t — a&(t) + n(t)
is again a continuous section. We will denote by C.(B) the vector space of
continuous sections of compact support of the Banach bundle B. If K C X is
a compact subset, we denote by Cx (B) the subspace of C,(B) whose elements
are those with support contained in K. The map || ||k : Cx(B) — R given
by ||€]lk = maxgex £(z) is a norm and (Ck(B), || ||x) is a Banach space.
We endow C.(B) with the locally convex inductive limit topology induced
by the family {(Ck(B),tx)}x, where K runs over the family of compact
subsets of X, and v : C(B) — C.(B) is the natural inclusion. We refer
the reader to [I3] for further information on Banach bundles.

If X is a topological space, Xy will denote the set X with the discrete
topology and, if B is a Banach bundle over X, we will denote by By the
Banach bundle over X; whose fiber over z € X is the corresponding fiber
of B. That is, By is the disjoint union of the fibers B,, x € X. Since B
is a topological space the notation just introduced is ambiguous. Thus, in
order to avoid any confusion we will use calligraphic letters only to represent
Banach bundles. Note that if A is a Fell bundle over G, then A, is a Fell
bundle over Gy.

Definition 2.21. Let A = (Ay)ieq and B = (By)ieq be Fell bundles over
the locally compact group G. We say that a homomorphism of Banach
bundles ¢ : A — B is a homomorphism of Fell bundles if ¢ : A3 — By is a
homomorphism of Fell bundles over G4 (see Definition .

Along this work we will use repeatedly the following two results. The first
one is Cohen-Hewitt theorem: if B is a Banach algebra with approzimate unit
and if E is a non-degenerate Banach B-module (i.e. spanEB = FE), then
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for each x € E there exist y € E, b € B, such that x = yb. Although the use
of this theorem is not strictly necessary for our purposes, it facilitates the
exposition and allows us to avoid the repetition of similar approximation
arguments. A proof of this theorem may be found in [13] (there is a nice
proof for Hilbert modules in [I§]).

The second of the mentioned results is the theorem of Douady-dal Soglio
Hérault, which is fundamental in the theory of Banach bundles: let X be a
Hausdorff space, and (B,p) a Banach bundle over X; if X is paracompact
or locally compact, then for each b € B there exists a continuous section of
compact support & of B such that §(p(b)) = b. The reader is referred to [13],
Apendix C] for a proof.

3. TENSOR ProbpuctTs orF FELL BUNDLES

Our aim in what follows is to introduce tensor products of Fell bundles.
A tensor product of the Fell bundles A = (A;)icq and B = (Bs)sep over the
groups G and H will be a Fell bundle C = (C,),cgxm over Gx H, and we will
have that C¢ is a tensor product of A, and B, (recall that e denotes the unit
of the group). We will show that there exist, up to isomorphisms, unique
tensor products Crax and Cin of A and B, such that (Cmax)e = Ae @) ax Be
and (Cmin)e = Ae Qi Be-

In the first part of the section we consider the case of bundles over discrete
groups. The treatment of the general case is postponed to the the second
part of the section. Finally, the end of the section is devoted to study the
representations of tensor products.

3.1. Tensor products of Fell bundles over discrete groups. Let A =
(At)tec and B = (Bs)sem be Fell bundles over the groups G and H respec-
tively. Consider, for ¢t € G, s € H, the algebraic tensor product A; (-) Bs.
When we let ¢, s tun in G’ and H, we obtain a family {A; () Bs} s)eaxa
of vector spaces. Let denote by A () B the disjoint union of these vector
spaces. For (t,s),(t',s') € G x H, we have unique linear maps (4; © Bs)
(At/ @ BS/) — A @ B,y such that (at ® bs,ay © bsl) — aiay © bgbyr, and
unique conjugate linear maps A; () Bs — A;—1 () By-1 such that a; © bs —
a; ®b%. Put together, these families of maps define a product - : (AQ B) x
(A®B) = (AQG B) and an involution  : (AQ B) — (A B) such that
the product is associative, bilinear on every (AtQBS) X (At/ @BS/) —
A (O Bsg, * is conjugate linear when restricted to Ay (&) Bs — A;-1 () By—1
and (z-y)* = y*-2*, Vo,y € AQ B. In other words, A B is a *-algebraic
bundle, in the sense of Definition We will say that A () B is the alge-
braic tensor product of A and B.

Proposition 3.1. The algebraic tensor product of Fell bundles is a positive
x-algebraic bundle (Definition .

Proof. Let A and B be Fell bundles over G and H respectively. We have to
show that for any s € G, t € H, and elements ay,...,an,d},...,a, € Ay,
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bi,...,bn, by, ..., bl € By, the element (afa)+---+akal)®(bib)+---+b:bl)
is a positive element of A, () B,. Since As and By are positive C*-trings, and
Hilbert modules over A, and B., this fact follows from Proposition ]

Definition 3.2. Let A = (A4¢)iec and B = (Bs)sem be Fell bundles over
the discrete groups G and H, and consider their algebraic tensor product
AQ@OB. If a is a C*-norm on A () B, we will call the completion A ), B of
(AQ® B, ) a tensor product of A and B.

If AQ), B is a tensor product of A and B, then the unit fiber (A, B), is
a tensor product of A, and B.. In fact, if we know the C*-norm determined
by (AR, B)e on A. () Be, then we know the norm of every z € AR, B,

because it is equal to y/a(z*z). Therefore, two tensor products will be
isomorphic if and only if their fibers on the identity element are the same
tensor product of A, and B,. This raises the question of whether or not
a given tensor product of A, and B, determines a tensor product of the
Fell bundles A and B. According to Proposition if  is a C*-norm
on A, © Be, then « can be extended to a C*-norm on A () B if and only
if a(z*z) = a(zz*), Yo € A B, and in this case the extension is unique.
Writing = Y a;©Ob; € A, ® Bg, this condition is a(zzjzl i QYY) =
a(zzjzl ziz] © y;y7). Although we will not go deeper into this problem,
we will see that this is in fact the case for the maximal and minimal tensor
products (see Proposition below). We begin with a result certainly well-
known; for lack of reference we include a proof of it.

Lemma 3.3. Let I and J be ideals of the C*-algebras A and B respectively.
Then I @),y J is the closure of I J in AQ),,.. B-

max

Proof. Let m : I @),,.«J — B(H) be a faithful and non-degenerate repre-
sentation of 1), .. J. Then there are faithful and non-degenerate repre-
sentations 7y : [ — B(H) and ny : J — B(H), such that 7;(z)m;(y) =
m(z®y) = ny(y)nr(z), Ve € I, y € J (20, T.6.4]). Since m; and my
are non-degenerate they have unique extensions w4 : A — B(H) and
7w : B — B(H) to representations of A and B respectively ([13, VI-19.11]).
Ifae A, v €l,be Bandy € J, then ma(ax)mp(by) = mp(by)ralaz),
because ax € I and by € J. Since 7wy and 7; are non-degenerate, we con-
clude that m4(a)mp(b) = mp(b)wa(a), Ya € A, b € B. Hence there exists
a representation 7 : AQ), .. B — B(H) such that 7(a ® b) = ma(a)rp(b),
Va € A, b € B. Thus 7 is an extension of W‘IQJ. Since 7 is contractive, we

conclude that if z € I (O J, its norm as an element of A
or equal to its norm in I Q)

max D 18 greater
J, and therefore they agree. O

max

Proposition 3.4. Let A = (A¢)iec and B = (Bs)sep be Fell bundles over
the discrete groups G and H. Then the norms ||-||min and |- ||max on Ae () Be
can be extended to C*-norms on A() B.
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Proof. Let A;A; := span{ajfa; : a; € Ay} C A and B} B := span{blbs :
bs € Bs} € Be. Then AfA; and B!B; are ideals in A, and B, respec-
tively, and A; may be seen as a positive C*-tring with A} = AfA; and
Al = A, A7, and similarly Bs. Recall that there exists a maximum C*-
norm p on Ay () B,. By [6, Corollary 5.13], we must have (A; Q). Bs)" =
A A Q,r BiBs and (At @) pax B,)! = AA; &, BsB;, where p" denotes
the maximum norm on AfA; ) BB, and p! denotes the maximum norm
on A Af () BsBE. Now, Lemma implies that p" and u' are restric-
tions of the maximum norm of A, () B.. Since A; Q). Bs is a Hilbert
(AtAz‘ ®u’ BsB:-A; Ay ®MT B;‘BS) -bimodule we have, for x € A; () Bs

22" lmax = llz2* [0 = Il = llz"2l,r = l|2* 2]l max-

Thus || [[max may be extended to all of A B by Proposition [2.19]

On the other hand, it is well-known that if C' and D are C*-subalgebras
of the C*-algebras A and B respectively, then the restriction of the spatial
norm on A B to C (O D is precisely the spatial norm on C'() D (see for
instance [6, Corollary B.14], or simply Proposition. Therefore the same
arguments given above for || ||max also apply to the spatial norm on A, () B,
and hence || ||min can also be extended to A. &) Be. O

3.2. Tensor products of Fell bundles over locally compact groups.
We will extend next the construction done in the previous section to the
case of Fell bundles over arbitrary locally compact groups.

Suppose now that A = (Ay)ieq and B = (Bs)sep are Fell bundles over
the locally compact groups G and H, and let Ag @), Bq be a tensor product
of Ay and By as in the previous section. We will endow A4 &), Bs with a
topology such that Ag @), Bq will be a Fell bundle over G' x H.

For f € Cc(A), g € Ce(B), let f@g:Gx H— Ag@Q, Ba be such that
(fogts) = flt)y®g(s), Vt € G, s € H. Every f @ g is a section of
AqQ,, Ba- We consider the vector space

L= span{f@g : f S CC(A)vg € CC(B)}7

which is a vector subspace of the space of sections of Ay &), Bq. The topol-
ogy we want to define on Ay @), By is determined by the requirement that
every element of L is a continuous section:

Proposition 3.5. With the notation above we have:

(1) For eachl € L, the map G x H — R such that (t,s) — a(l(t,s)) is
continuous.

(2) For each (t,s) € G x H, the set L(t,s) := {l(t,s) : | € L} is dense
m At ®o¢ BS.

(3) There exists a unique topology on Aq@Q, Baq for which AqQ), Ba
is a Banach bundle over (G x H) and such that L is contained in
the space of continuous sections of the bundle Aq @, Ba with this

topology.
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The Banach bundle over G x H thus obtained will be denoted by AQ,, B.

Proof. Since 3) is a consequence of 1) and 2) ([13, II-13.18]) it is enough
to prove the first two assertions. We begin by 2). If x = > ;a, ® b; €
A; Q,, Bs, there exist continuous sections f;, g; of A and B respectively such
that f;(t) = a;, gi(s) =b;, Vi=1...n ([13, C.17]). If L =>"1" | fi @ ¢i, then
leL,and I(t,s) => 1y fi(t) ® gi(s) = > 1", a; ® b; = x. Hence 2) follows,
because A; () B is dense in A; Q),, Bs.

To prove 1), fix [ =31 | fi @ g; € L, and let (t,s) — (to, So). Then:

Zfz ®gz Z fl ®gl( ) gj(s))

3,j=1

Note that ¢ — f;(t)* f;(t) and s — g¢;(s)*g;j(s) are continuous maps, because
the f; and g; are continuous sections, and the involutions of A and B are con-
tinuous as well. Now the “cross-norm” property (i.e.: a(a ® b) = a(a)a(b))
of the C*-norms on tensor products implies that a®b — ag®by when a — ag
and b — by. Therefore,

Z Fi)* £5(8) @ gi(s)" g5 (s Z filto)* fi(to) ® gi(s0)*g(s0)

,j=1 2,7=1
when (t,s) — (to, so). Thus a(I(¢,s)) = a(l(to, s0)) if (¢,s) = (to,s0). O

If G is a group, * is an involution on a set X and [ : G — X is a map,
we define a new map [ : G — X as I(t) = I(t~')*. In particular, if [ is a
continuous section of compact support of a Fell bundle B, then [ also is.

Lemma 3.6. The involution « : AQ, B — AQ, B is continuous.

Proof. We know from [I3| 11-13.18] that a base for the topology defined in
Proposition is given by the sets

W(lU,e) ={w e AQR) B : p(w) € U, and a(l(p(w)) — w) < e},

where p : AQ), B — G x H is the projection, U C G x H is an open subset,
l =5, fi ©g, with f; € C.(A), gi € Cc(B), and € > 0. In other words,
W(,U,€) = Upery B(I(2), €), where B(I(t),e) € (AQ, B): is the open e-ball
with center [(¢). Then we have:

WU, e)* ={w* € A®B: p(w) € U, and a(l(p(w)) —w) < €}
= {w” €A®B p(w*) € U™, and a(I(p(w*)™!)" — w*) < €}
={z e A®B :p(z) € UTL, and oz(lN(p(z)) —z) <€}

= W(Z, U_lje),

Thus * is continuous. O
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Proposition 3.7. The product (AQ), B) x (AQ,B) = AQ, B is contin-

uous.

Proof. We claim that if a — ag in A and b — by in B, then a ® b — ag ® by
in AR, B. Let W C A, B be an open set such that ag ® by € W, and
let f € C.(A), g € Co(B) be such that f(tp) = ag and g(so) = bp. Then
(f @ g)(to,s0) = ap ® by. Since f @ g € C.(AQ, B), and since the norm o
is continuous, there exist ¢ > 0 and open sets U C G and V C H such that
(to,s0) € UxV and WN(AQ, B).s) 2 B((f@g)(t,s),€),V(t,s) e UxV.
Consider now the open subsets W (f, U, €'/2) and W (g,V,e"/?) of A and B
containing ag and by respectively. We have W (f,U,€'/2) @ W (g, V, e'/?) =
{a;@bs € AQ,B: (t,s) € U x V,and || f(t) — ar]| < €2, |lg(s) — bs|| <
€l/?2} C {245 € AR, B: (t,5) € UxV,and a((f 0 g)(t,s) —z(1,s) < €} =
W(f@g,UxVe = U(t7s)eUXvB((f %) g)(t,s),e) C W, so it follows that
a®b— ay® by when a — ag, b — bg.

Note that Vf, f' € C.(A), g,¢' € Co(B), themap p: (GxH)x (GxH) —
AR, Bgivenby ((t,s), (t',s") — (fog)(t,s)@(f'@g)(t, ) is continuous.
Indeed the products on A and B are continuous, f, f’,g,g are continuous
as well, and since u(t, s, t',s") = f(t)f'(t') ® g(s)g'(s’), the continuity of u
follows from the claim at the beginning of the proof.

Now pick elements 2 € (AQ,, B) 1,50) and 7 € (A&, B) 1) and let
m € L, 1 > e > 0 such that zoz({, € W(m, Z, €), where Z is some open subset
of G x H containing (tot, sosg). Let M > e+ 1+ a(zo) +a(zf) and [,I' € L
such that a(l(to, so) — o) < €/2M, a(l'(t(), s(,) —x) < €/2M. Then we have
a(l(to, so)l'(t), so) — xoxy) =: d < e. Let d < € < e. As seen above, the map
W:(GxH)x(GxH)— AQ, B such that ((t,s),(t',s)) — I(t,s)I'(t',s)
is continuous, so there exist open neighborhoods U, V', U’ and V’ of ty, sq,
t, and s{, respectively such that II'((U x V) x (U' x V')) C W(m, Z,¢€).
Let now N > 1+ [[ljoc + [[I'|lc; 0 < 0 < (¢ — €)/AN. We have W(I,U x
V.o )W, U x V',0)) € W(m,Z,e). In fact, if x4, € W(,U x V,9),
Ty EWLU x V', 6)

a(l‘(t,s)x/(t’,s’) — m(tt/7 83/)) S a($(t78)x/(t,75,) — l(t, S)l,(t/’ 5/))
+a(l(t,s)l'(t',s) —m(tt', ss))
S 6/ + 0‘($(t,s) (:L‘,(t/78/) — l/(t/, 8/)))
+ a((x(t,s) - l(t7 8))l/(t,a S/))
/

<+ %(a(az(t’s) 1t ) it 5))) + 1

<€
]

Definition 3.8. Let A and B be Fell bundles over the locally compact
groups G and H, and let a be a C*-norm on A () B. The tensor product
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AQ, B of A and B with respect to « is the Fell bundle obtained by com-
pleting the algebraic tensor product A () B with respect to the C*-norm «,
furnished with the topology provided by Proposition

Proposition 3.9. Let A and B be Fell bundles over the locally compact
groups G and H. If a > [ are C*-norms on A() B, then there exists a
unique homomorphism of Fell bundles o : AQ, B — AQyB such that
Ug(a ®b)=a®b, Va € A, b € B. This homomorphism is onto. Moreover,

ifa > B > are C*-norms on A B, we have 05 = agag.

Proof. Since a > 3 for each (r, s) € G x H the identity map on A, () B; has
a (unique) continuous extension to a map A, Q, Bs = A, Q 3 Bs, which is
surjective because its image is both dense and closed. The collection of all
these maps is clearly a homomorphism of from AqQ,, Ba into AgQ 5 Ba.
It is also continuous from A, B into A, B, because the vector space
L of sections used to define the involved topologies is exactly the same,
and the map of is the identity on the set of such sections. Thus o3 is
continuous by [I3), II-13.16]. The last assertion follows from the uniqueness
of the maps ag. O

Summarizing the constructions and results obtained up to now we have:

Theorem 3.10. Let A = (Ay)iec and B = (Bs)sem be Fell bundles over the
locally compact groups G and H. Then SN o p(Ae O Be) = SN(AQ B)
and Ny (Ae O Be) 2 N(AQ B) as a posets. Moreover N(AQ B) has a
minimum and a mazimum elements, namely the unique extensions of || - || min
and || - [[max on Ae & Be to C*-norms on all of AQ) B.

As a consequence we can extend Propositions and to the context
of Fell bundles:

Proposition 3.11. Let 71 : A1 — By and wo : Ay — By be homomorphisms
of Fell bundles. Then m © m : A1 (D Az = B1 () Bz is || ||min-continuous,
so it extends to a homomorphism 71 @), T2 © A1l Qpin A2 = B1 Qi B2-

Proposition 3.12. Let m : Ay — By and 73 : Ay — By be homomorphisms
of Fell bundles. Then w1 © ma : A1 () As — B1 () B2 is || ||maz-continuous,
so it extends to a homomorphism m1 @), . T2 * A1 Qax A2 = B1 @) ax B2-

Consequently, as in the case of C*-algebras and of C*-trings, we see that
the minimal and maximal tensor products of Fell bundles is a bifunctor
F x F — F, where F is the category of Fell bundles.

max max

3.3. Representations of tensor products. We will study now the repre-
sentations of tensor products of Fell bundles on Hilbert modules. The results
obtained, similar to the case of C*-algebras, will be useful in the next sec-
tion. The first of them tells us how to obtain a representation of AQ), .. B
starting with representations of A and B. The second one shows that there
exists a bijective correspondence between non-degenerate representations of
A& ,.x B and non-degenerate commuting representations of A and B.
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Definition 3.13. Let A be a *-algebraic bundle over the discrete group G,
and H a Hilbert module. A map 7 : A — L(#H) is called a representation of A
on H if w(ab) = 7(a)w(b), 7(a*) = w(a)* and W‘At is linear, Va,b € A,t € G.
The representation 7 is said to be non-degenerate if spanm(A)H = H. This
is equivalent to the restriction 7 _to be non-degenerate.

A

Definition 3.14. Let A be a Fell bundle over the locally compact group G.
A representation of A on the Hilbert module H is a representation ¢ : Ay —
L(H) which is strongly continuous, that is, VA € H the map A — H given
by a +— 7(a)h is continuous.

Note that for G discrete every representation of the Fell bundle A is
automatically continuous, because ||7(a)|| < |la||, Ya € A, as is easy to
check.

If A is a Fell bundle (or just an *-algebraic bundle), and H is a Hilbert
module, we will denote by R(A,H) the family of non-degenerate represen-
tations of A on H. If B is another Fell bundle (or *-algebraic bundle),
we set: R(A,B,H) = {(m1,m) € R(AH) x R(B,H) : mi(a)me(b) =
mo(b)mi(a), Va € A,b € B}. If A and B are *-algebras, we will also use
the notations R(A,H), R(A, B,H), with the same meaning.

In what follows, given right Hilbert modules H and K, over the C*-
algebras C and D respectively, we will consider their exterior tensor product
H Q,1in K, which is a right Hilbert module over C'@),;, D. The reader is
referred to Subsection as well as [15] or [6].

min

Proposition 3.15. Let A and B be Fell bundles over the locally compact
groups G and H respectively, and let m4 € R(A,HA), 75 € R(B,Hp). Then
there exists a unique representation T4 @ 73 € R(A Q) in B, HA @ nin HB)
such that (m4 ® m8)(a ® b) = m4(a) ® 75(b), Va € A and Vb € B. IfTrA‘A6

and 7TB|B are faithful, then (m 4 ® WB)}(A® B also is faithful.

Proof. According to [I5 pages 36 and 37] (see also Corollary [2.13), we have
an isometric embedding £(H 4) @i L(HB) — L(HA Qi HB), such that,
VT € L(HA),S € L(HB), ha € Ha, hg € Hp: (T @ S)(hg ® hg) =
T(h4) ® S(hg). Thus we may consider, for each (t,s) € G x H, the map
Ay x Bs = L(HA Qi HB) such that (ay, bs) — ma(ar) @ m5(bs). This map
is bilinear, so there exists a unique linear map (74 ® 75)(1,s) : At O Bs —
L(H A Q@ min Hp) such that (T4@75) ¢, (arObs) = ma(ar) @mp(bs), Var € Ay,
bs € Bs. The collection of these linear maps is a representation m4 ® g
of the pre-Fell bundle A() B. Restricted to A. () B, this map coincides
with TFA‘AE ® WB{BE tAc O Be = L(HA) @, L(Hp) which is contractive
with respect to || ||min on Ae O Be ([20, T.5.19]). It follows that 74 ® 7
extends to a representation of the Fell bundle Ay )., Bi. Moreover this
representation is continuous in the topology of A, . B (recall Definition
and Proposition . Indeed, for hy € H4 and hy € Hp consider
the Banach bundle G x H X (H @), HB) over G x H (with the product
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topology and the natural projection), and the map ® : AQ),;, B — G x H x
(MA@ i His) given by Blcrs) = (£ 5, (4 @ 78)(c1.) (bt & hg)) , ey €
At @ ,in Bs- Let L be as in Proposition To see that ® is a continuous
homomorphism of Banach bundles it is enough to show, according to [13],
I1-13.16], that for all [ € L the map @[ is a continuous section of the bundle
G x H x (HaQ@in Hp). Clearly it is sufficient to check this for sections
of the form f @ g, with f € C.(A), g € Co(B). Thus assume that (¢,s) —
(to,s0) in G x H. We have to show that ® (f(t) ® g(s)) — @ (f(to) ® g(s0)),
which is equivalent to showing that m4(f(t))ha ® m5(g(s))hg converges to
TA(f(to))ha @ w5(g(s0))hs. Now, if e(t,s) = [[ma(f(t))ha @ 75(g(s))hs —
ma(F(to) ha @ ms(g(s0) s |, we have:
e(t,s) < [ma(f(t)ha @ mp(g(s))hp — ma(f () ha @ 75(g(s0))hsll

+ [Ima(f(£)ha @ 75(9(s0))hs — Ta(f(t0))ha @ 75(g(s0)) sl

< Nmwalf @I hall lrs(g(s)hs — m8(g(s0)) k||
+ [|ma(f () ha — ma(f (to)) hall lm5(g(s0)) Rl
< [flle 1hall Iws(g(s))hs — w5(g(s0)) hsll

+ [[ma(f () ha — ma(f (t0)) all lglloo 1251,

which converges to zero because 74 and 7w are continuous representations.
The fact that ® is continuous implies that Vhy € H4, hg € Hpg, the

map A, i, B = HaQi, 1B such that ¢ — (14 @ 75)(c)(ha ® hp) is
continuous. Since [[(m4 ® 7g)(c)|| < |||, Ve € A, B, we also have
that ¢ — (74 ® 73)(c)(h) is continuous, Vh € HA ), .. Hp. It follows that

T A QTR is a representation.

If w4, mp are non-degenerate, then so are WA‘Ae and WB‘Be. By Cohen-
Hewitt, given hy € H 4, hp € Hp, thereexist a € Ac, b € Be, by € Ha, hiz €
Hp such that 74(a)h/y = ha and 7a(b)hyz = hp. Therefore (14 ® m3)(a ®
b)(Wy @ hig) = ha® hp. Consequently (74 @ T8(A Q)i B))(Ha Qmin HB)
is dense in H 4 Q),;, H5-

Finally, (74 ® ﬂ'B)‘(A®min B, = TI'A‘AE ® 71'3‘367 and this one is injective

min

if and only if WA‘A and TFB‘B are injective ([20, T.5.19]). O

Suppose that A = (A4¢)ieq is a Fell bundle and L, R : A — A are continu-
ous maps such that there exists ¢t € G for which L(Ag) C A, R(Bs) C B,
Vs € G, L‘A Ay — Ay, R}A : Ay — Ag are linear and bounded, and
|L|| := sup, HL‘ASH < 00, ||R]| := sup, ||R}AS|| < 0o. Then (L, R) is called a
multiplier of order ¢ of A ([13)]) if Va1, a2 € A the following holds:

alL(ag) = R(al)ag L(alag) = L(al)ag R(alag) = alR(ag)

The set of multipliers of A of order ¢ is denoted by M;(A), and M(A) =
Uiec Mi(A) denotes the set of all multipliers of A (the notation differs from
the one used in [13]). Every M;(A) is a Banach space with the obvious
operations and the norm: |[(L,R)|o = max{||L|,||R]|}. In fact we have
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|IL|| = ||R||. Moreover we have a product and an involution on M (A):
(L1, R1)(L2, R2) = (L1Lg, RoR1) (L, R)* = (R, L")

where L*(a) = L(a*)* and R*(a) = R(a*)*. With these operations and norm
M(A) is a Fell bundle over G4. In addition M (.A) has a topology, in which
u; = (Li, R;) converges to u = (L, R) if Ya € A we have that L;(a) — L(a)
and R;j(a) — R(a). By analogy to the case of C*-algebras, we call this
topology strict (in [13, VIII-15.2] this topology is called strong). If u =
(L,R) € M(A), we write ua and au instead of L(a) and R(a) respectively.

There is an isometric and continuous inclusion A — M (A), given by a —
(Lq, Ry), where L, is multiplication by a on the left, and R, is multiplication
by a on the right. In particular, the topology of A is stronger than the
topology inherited from the strict topology of M(A). If A, is unital, these
topologies agree. There is also an isomorphism M (A.) & M.(A): since A;
is a Hilbert A.-bimodule, then it is also a Hilbert M (A.)-bimodule, and it
can be shown that the actions of left and right multiplications by elements
of M(A.) on A define multipliers of order e (see [13, VIII-3.8]). If 7 : A —
L(H) is a non-degenerate representation of A, then there exists a unique
extension ([I3 VIII-15.3]) of 7 to a representation 7’ : M (A) — L(H) such
that Vh € H, the map u — 7 (u)h is strictly continuous on cylinders of A
(the cylinder of radius r of Ais Cr :={a € A: |a| <r}).

Lemma 3.16. The maps M;(A) x A — A: (u,a) — ua and (u,a) — au
are continuous, Vt € G.

Proof. Recall that for any multiplier u € M;(.A), the maps A — A: a +— ua
a — au are continuous. Suppose that (u;,a;) — (u,a) in M(A) x A,
with a; € As,,a € As. Since the norm || - || : A — R is continuous, there
exist M > 0 and i such that Vi > ip we have ||a;|| < M. Hence if i > ip:
max{||uia; —ua;||, [|aiu; —aiul|} < M ||u;—u| — 0, so we have (u;a; —ua;) —
Ots and (a;u; — a;u) — Og when ¢ — co. On the other hand, we have that
ua; — ua and a;u — au. Thus u;a; — ua and a;u; — au if i — oo. O

The next result is analogous to [20, Lemma T.6.1.].

Lemma 3.17. Let A = (Ai)iec and B = (Bs)seg be Fell bundles and
AQ B a tensor product of A and B. Then there exist unique inclusions i :
M(A) = M(AQ B) and 1g: M(B) = M(AQ B) such that ta(u)g(v) =
a(v)ea(u), Yu € M(A),v € M(B), and such that t4(a)g(b) = a ® b,
Va € A, b € B. These inclusions are isometric and continuous in the strict
topologies when restricted to cylinders.

Proof. Let u € My(A). Forr € G, s € H, the map A, x B — Ay Q) B such
that (a,, bs) — (ua,, bs) is bilinear, and therefore there exists a unique linear
map L, : Ay (&) Bs — Ay @ Bs such that a, ®bs — ua, ®bs. Similarly, there
exists Ry, : Ay () Bs — A Q) Bs such that Ry(a, ® bs) = a,u ® bs. The
collection of such maps define two applications L,, R, : AOB — AR B
such that Yo,y € AQOB C AQ B satisfy: Ly(xy) = Lyu(z)y, Ru(zy) =
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xRy (y), vLy(y) = Ry(x)y. If we prove that L,, R, are bounded, then
they extend by continuity on each fiber to continuous operators, which still
satisfy the above algebraic relations. In other words, the pair formed by
these extensions will be a multiplier of order (¢,e) of (A B)g4.

Let z = Z? 10; @b; € A, @ Bs. Then: HLua}”2 = Z?:l ua; & bi”2 =
1225 =1 awua; @ bibj . Let u = (ui;) € Mp(M(Ac)), a = (ai;) € Mn(Ay),
Vuru o if i =,
0 otherwise 0 0therw1se
a right Hilbert M (A.)-module, then M,,(A,) is a right Hilbert M,, (M (A.))-
module. Then we have (ua,ua) < wu(a,a) < |ul*(a,a). Thus ¢ :=
|ul|*(a, a), — (ua,ua), > 0. An easy computation shows that if ¢ = (c;;),
then ¢;; = aj(||lul|> — u*u)a;. On the other hand, M, (Bs) is a Hilbert
M, (M(B.))-module. In particular if b = (b;;) € My(B;) is given by

b ifi=1

bij = ., the element b*b = (bJb;) is positive in M, (M (B.)).
0  otherwise

a; ifi=1

given by: u;; = and a;; = Since A, is

Now, Lemma implies that ¢ ® b*b = (af(||Jul|* — u*u)a; ® bjb;) is a
positive element in any C*-completion of M, (M (A¢)) () M, (M (B.)), and
> o=l G a; (||ul|® — u*u)a; ®bib; is a positive element in any C*-completion of

M(A.) O M(B.) (alternatlvely, the positivity of c®b*b can be deduced from
the proof of [15, Lemma 4.3], Which does not really use that the norm in-
volved i | lun). Thus | S0_, afu*ua; @bib; | < [ul2]| X7y ata; @b,
for any C*-norm on A, () Be. This shows that ||L,z|? < ||u||2 lz||?, so
L, is bounded. Similarly we see that ||R,x||*> < |lu/|?|z||?, and therefore
(Ly, Ry,) extends to a multiplier ¢ 4(u) on (AQ B)g4, and |[ea(uw)| < ||ul.

In fact [[ea(u)|| = |lul|: if @ € A, b € B are such that ||al,[|b]| < 1, then
lea(@)]] = [lea(u)(a @ b)|| = [lual [[b]] = [luall, and therefore [lea(u)]| = [|u]-
Then ||ta(u)|| = |Jul|, so t4 is an isometry.

To see that ¢ 4(u) € M(AQ) B), it remains to prove that it is continuous.
To this end consider f € C.(A), g € Cc(B). Then the maps GXxH — AQ B
such that (¢,s) — uf(t) ® g(s) and (t,s) — f(t)u ® g(s) are continu-
ous. Suppose that z; — = in AQ B, and let | = >, f; @ g; be such that
|l(t,s) — z|| < €, where x € A @ Bs, x; € A, @ Bs,. Since z; — z and
I(ti, si) — U(t, s), there exists ig such that Vi > ig we have ||I(t;, s;) —xi]| < e.
Now || Lyl(ti,si) — Lyzi|| < €||lu]|, and || L,l(t,s) — Lyz|| < €||ul|, and since
L,l(ti, s;) = Ly(t, s), we conclude that L,z; — Lyx.

Let see now that ¢4 is strictly continuous on cylinders. If a € A, b € B,
and (u;) C A is a net strictly convergent to u € A, with ||u;|, [|u|| < C, then:
tA(ui)(a®b) = u;a®@b — ua®b = 14(u)(a®b) and (a®@b)i4(u;) = au; b —
au®b = (a®Db)ta(u). Then ta(u;)xr — ta(u)r and zeg(u;) = xea(u), Vo €
A B. Since ||ea(w)], |ea(u)]] < C, we conclude that t4(u;)z — ta(u)x
and zig(u;) — xea(u), Vo € AQB. Thus t4(u;) converges strictly to
ta(u).
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Similarly we construct 1z : M(B) — M(AQ B): if v € M(B) and a €
A, b € B, then 15(v)(a ® b) = a ® vb, and (a ® b)ig(v) = a ® bv. It is
clear that t4(u)ip(v) = tg(v)ia(u), Yu € M(A), v € M(B), and also that
tala)ip(b) =a®@b,Va e A, beB.

This way we obtain a map M (A)x M (B) — M(A@Q B), given by (u,v) —
ta(u)eg(v), which is bilinear on each M;(A) x M4(B), and therefore we get
a map M(A)OM(B) — M(AQ B), which is linear on each M;(A) ®
M;(B), and which is a homomorphism of Fell bundles because ¢ 4(u) and
tg(v) commute, Yu € M(A), v e M(B). O

Proposition 3.18. Let A and B be Fell bundles over the locally compact
groups G and H respectively, and let H be a Hilbert module. Then for each
(m1,m2) € R(A,B,H), there exists a unique 1 € R(A Q). B:H) such that
m(a®b) = m(a)m2(b), Va € A, b € B, and the map (71, m2) — m thus defined
is a bijection between R(A,B,H) and R(AQ), .. B, H)-

Proof. Let (my,m2) € R(A,B,H). The map A x B — L(H) such that
(at, bs) — m1(ay)ma(bs) is bilinear on each A; x By, and therefore there exists
a unique 7™ : AOB — L(H) such that 7(a; ® bs) = 71 (a¢)m2(bs). Since
m1(a) and m(b) commute, Va € A, b € B, we have that 7 : A B — L(H)
is a representation of the pre-Fell bundle A() B. Note that x — ||z’ :=
max{||Z|lmax, |7(x)||} is a C*-norm on A; () Bs, so || - [I' = || - |lmax, and
then ||7(z)| < ||||max, V& € A+ (O Bs. Thus m has a unique extension to
a representation 7 : (A Q). B)a = L(H). It is easy to see that this rep-
resentation is non-degenerate: since 7 is non-degenerate, for every h € H
there exist b’ € H and a € A, such that me(a)h’ = h. Since ms is non de-
generate, there exist h” € H and b € B, such that m1(b)h” = h'. Therefore
m(a ® b)h" = 71(a)me(b)h” = w1 (a)h' = h.

To see that 7 is continuous is sufficient, by [13, II-13.16], to prove that
Ve CA), g € Co(B), and h € H, the map F : G x H — H such that
F(t,s) =7 ((f @g)(t,s))h is continuous. Now

[1E(t,s) = F(to, so)l| = [l (f(£)) w2 (9(s)) b — 1 (f (o)) w2 (9(s0)) b
< I (£ (t)) (m2(g(s)) — ma(g(s0))) Al
+ (@ (f () = m1(f(t0))) m2(g(s0)) 2|
< [ flloo [[(m2(g(s))h — m2(g(s0)) Rl
+ [l (f () m2(g(s0)) b — m1(f (t0))m2((50)) 2|
Then F(t,s) — F(to, so) if (t,s) — (to, s0). Therefore 7 € R(AQ),,... B:H).

Conversely suppose that 7 € R(AQ),,..B:H). By [13, VIII-15.3], =
can be uniquely extended to a representation 7’ of M(AQ),,.. B) such that
x — 7'(z)h is strictly continuous on cylinders, Vh € H. Let m = 7't A‘ e
A— L(H),and mp =7 LB‘B B — E(H) where ¢4 and (g are the inclusions
provided by Lemma [3.17] m Since 7/, 14 and (5 are continuous on cylinders,

immediately follows that Vh € ’H the maps A — H and B — H given
by a — mi(a)h and b — ma(b)h respectively are continuous, from where it
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follows that 71 and 79 are continuous representations. Since ¢ 4(a) and ¢5(b)
commute, Ya € A and b € B, then 71 (a) and m2(b) commute as well. Finally,
the representations 71 and 7o are non-degenerate. To see this is enough to
show that 7(a ® b)h is in the image of 71 and the image of mo, Va € A,
b€ B and h € H. By Cohen-Hewitt a and b can be factorized as a = ajas,
b = b1by, and therefore 71 (aj)m(az ® b)h = w(ajaz ® b)h = w(a ® b)h and
ma(b1)m(a ® ba)h = w(a ® bibe)h = 7(a ® b)h.

In conclusion we constructed two correspondences (71, m2) — m and 7 —
(me A‘ A0 WLB‘B), which clearly are mutually inverse. O

4. C*-ALGEBRAS OF TENSOR ProODUCTS OF FELL BUNDLES

The first goal of this section is to compare tensor products of the cross-
sectional algebras of the Fell bundles A and B with the cross-sectional alge-
bras of tensor products of A and B. This is accomplished in Propositions
and and in Theorem [4.7] The second objective is to give some applica-
tions.

Let B be a Fell bundle over a locally compact group G. Then there are
two important cross-sectional C*-algebras associated with B: the full cross-
sectional algebra C*(B), and the reduced cross-sectional algebra C}(B). We
recall next their definitions.

Suppose that G is a locally compact group with Haar measure A and
modular function A. Let B be a Fell bundle over G and let L'(B) := {f :
G— A: f(t) € B,Vt € G, and (t — ||f(t)||) € L*(G,\)}. Then C.(B)
and L'(B) are *-algebras with the operations: f * g(t) = [ f(r)g(r—'t),
() = A@#)~Lf(t1)*. Moreover, L'(B) is a Banach *-algebra with the
norm: || f|l1 = [ If(¥)]|. The enveloping C*-algebra of L*(B) is called the
cross-sectional algebra of B, and it is denoted by C*(B).

Suppose that ¢ : A — B is a homomorphism of Fell bundles. If f € L!(A)
we have that ¢'(f) : G — B, given by ¢'(f)(t) = ¢(f(t)), belongs to L' (B),
and ||¢'(f)|l1 < |If|l1. Moreover ¢! is a homomorphism of *-algebras, so
it uniquely extends to a homomorphism C*(¢) : C*(A) — C*(B). This
way we obtain a functor from the category of Fell bundles over G to the
category of C*-algebras. In fact this functor is the compostion of the functor
A+ C*(A) from the category of Banach *-algebras with approximate unit
and contractive homomorphisms to the category of C*-algebras, with the

1
functor: A — L' (A), (A5 B) = (L'(A) & L1(B)).

There is a bijection between non-degenerate representations of the Fell
bundle B and non-degenerate representations of the C*-algebra C*(B). In
one direction this correspondence consists of passing from a representation
7 : B — L(H) to its integrated form [, 7 : C*(B) — L(H), characterized by
o m(F)Em) = [ (m(F(£)E,m)dt, VF € Cu(B), €1 € H (see [T, VIIE13.2]).

Among the representations of B there is one of particular importance: the
(left) regular representation, which we describe below. Note that C.(B) is a
right Be-module with the action given by pointwise multiplication. Moreover
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the map (-,-) : Ce(B) x Ce(B) — B, such that (£,7) = [, &(s)*n(s)ds is a
pre-inner product. Completing C.(B) with respect to the norm deﬁned by
(-,-) we obtain a full right Hilbert B.-module, which is denoted by L?(B).
Again, it is not dificult to check that B ~ L?(B) is a functor. There exists
a unique representation AB : B — L£(L?(B)) such that AbBtf(s) = b&(t1s)
Vs, t € G, by € By and £ € C.(B) (if no confusion can arise we write just
A instead of A®). This is called the regular representation of B on L%(B).
Its integrated form is also called the regular representation, and it satisfies
Ap(§) = f*& Vf e Ce(B) C C*(B) and Ve € C’( ) C L%*(B), where the
convolution f x & is defined as: f * £(t) fG s~ )ds. The reduced
cross-sectional algebra is then defined as: C}(B) := AB(C’*(B)) C L(L?(B)).

When we look at the regular representation as a homomorphism A
C*(B) — C#(B), then it is clear that AP is onto. In the case that A” is also
injective, thus an isomorphism, we say that the Fell bundle B is amenable.
The reader is referred to [12], [9] and [3] for further information on the
reduced cross-sectional algebra.

It can be shown that B — C(B) also is a functor, and in fact A is a
natural transformation from C* to C} ([5, page 277]).

4.1. Cross-sectional algebras.

Lemma 4.1. Let A = (Ap)ieq and B = (Bs)sen be Fell bundles and suppose
that AQ) B is a tensor product of A and B. Then there exists a unique
homomorphism of algebras j. : Ce(A) O Ce(B) — C(AQ B), such that
Je(f©g) = f@g, thatis: jo(fOg)(t, s) = f(t)®g(s), Vf € Cc(A), g € Ce(B),
t € G, and s € H. Moreover j. is injective and j.(C.(A) () C.(B)) is dense
in Co(AQ B) in the inductive limit topology.

Proof. The existence and uniqueness of the linear map j. follows from the
universal property of tensor products. It is clear that j. is a homomorphism
of *-algebras. To see that it is injective suppose that I = > fi® g €

ker je. Then 0 = (j.(1), = Jaxn 2= Jil)* f5(t) @ gi(s)*g;(s)d(t, s).
On the other hand we have foqu Lfi@) £ () @ gi(s)*g;(s)d(t,s) =
(Jo 2ot jmn fiD) )dt) @ ( [y i i=1 9i(s)*gj(s)ds). Therefore, if we think

of [ as an element of L2( ) L?(B) we have that (j.(1), j.(1)) = (I,1), where
the latter is the pre-inner product of L?(.A) ) L?(B) computed in [. Since
(1,1) =0, it follows that [ = 0.

Let see that j.(C.(A) O Ce(B)) is dense in C.(AQ B) in the induc-
tive limit topology. It is clear that j.(C.(A) () C:(B)))(t,s) is dense in
(AQ B),s), ¥(t,5) € G x H. On the other hand, if © = C.(G) O C.(H),
let 0 € © and I € Cc(A) O Ce(B), say 0 =3, ¢; © ¢y and I = 3, f; © gj,
then: 0j.(1)(t,s) = (Z ¢i(t)i(s ))(ZJ fj(t) ®9j(5)) = Z@ Z](¢zfj)(t) ®
(¥ig;)(s) = Je(l')(t,s), where I' = 37,5, ¢ifj © thigj € Ce(A) O Ce(B),
Thus j.(C.(A) () C.(B)) is dense in C.(AQ B) by [3, Lemma 5.1]. O
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Proposition 4.2. Let A = (At)ieq and B = (Bs)sem be Fell bundles. Then
there exists a unique isomorphism j : C*(A) @ pax C*(B) = C* (A Qax B)
such that j(f ® g)(t,s) = f(t) ® g(s), Vf € Cc(A), g € Ce(B), and (t,s) €
G x H.

Proof. Recall that if H is a Hilbert space and C = (C})ieq is a Fell bundle,
then there is a bijection between R(C,H) and R(C*(C),H) such that to
each T € R(C,H) corresponds the integrated representation [, m of C*(C),
which is determined by its values on elements of C.(C): if f € C.(C) and
h € M, then ([, m)f|, = [om(f(t))hdt. Note as well that if C' = (Cl)sep is
another Fell bundle then the map R(C,C', 1) — R(C*(C),C*(C"),H) such
that ( = (o, [ ') is also a bijection, because the corresponding
mtegrands commute. On the other hand, by Proposition we have a
bijection between R(C,C’,H) and R(C Q). C', H), given by (w1, m2) — m X
w2, where (m1 X m2)(a ® b) = mi(a)ma(b).

Let je : Co(A) O Ce(B) = Ce(AQ),ax B) be the map provided by Lemma
The comments above imply that C*(A) ), .. C*(B) and C*(AQ),,.. B)
are respectively the completions of C.(A) () Ce(B) and j.(C.(A) O Ce(B))
with respect to the norms:

I foal=snll S [ m(f) [ mi@l: (mm) € RABH),

max

Hjc(Zfi ® gi)|| = sup{|| /Gxgﬁ X 7T2)(Z fi®gi)ll : (m1,m2) € R(A, B, H)}.

Now, if h € H:
</GH (rxm) (2 e gi)) b= [ g ) (as) hae.)
= Z/G/Hﬁl(fi(t))772(gi(8))hd3dt
:zi:/Gwl(fi(w)/HWQ(gi(S))hdsdt

= zi:/gﬂl(fz‘(t)) (/H 7T2(gi)) hdt
_Z </ m1(fi) / Wz(gi)> h.

Thus je : Ce(A) O Ce(B) = jo(Ce(A) (O Ce(B)) is an isometry with these
norms so it extends uniquely to an isomorphism between C*(A) Q... C*(B)

and the C*-algebra ji.(Co(A) (O Ce(B). Since by Lemmalt.1]jo(Ce(A) © Ce(B)
is dense in C.(A Q). B) in the inductive limit topology, then it is also dense

in C*(AQ) O

max )
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Proposition 4.3. Let A = (At)icq and B = (Bs)sen be Fell bundles, and
suppose that o > B are C*-norms on A()B. Then there exist a unique
homomorphism of : C*(AQ, B) — C*(AQyB) such that oc§(f © g) =
f@g,VfeC(A), g€ CcB). Moreover of is surjective.

Proof. By Proposition [3.9] there exists a surjective homomorphism of Fell
bundles 0§ : AQ), B — AQgB. Then there is an induced homomorphism
of : C*(AQ, B) — C*(AQg B), which we still denote by of. If f € Cc(A),
g€ Cu(B), 3(/ 29)(1,5) = 05 (/) 29(s)) = F(1)®g(s) = f Dg(t, ), from
where it follows that o (f © g) = f © g. Since span{f @ g: f € Cc(A), g €
Ce(B)} is dense in C*(AQ), B), we conclude that of is surjective. O

Consider two Fell bundles A = (A;)icq and B = (Bs)sey. Then L2(A)
and L?(B) are full right Hilbert modules over A, and B, respectively. If « is
a C*-norm on AQ B, then a|4, o p,) € N(Ac© Be). Since L*(A)" = A,
and L?(B)" = B, a4, O B.) defines a C*-norm & on L?*(A) © L?(B), given
by (2)), that is a(p) = a({u,p), Yu € L*(A) O L*(B). The comple-
tion L?(A) Q5 L*(B) of L*(A) ® L*(B) with respect to & is a full right
Hilbert module over Ae®,, ., Be, so we have (L2(A) Q5 L*(B))" =
A, ®a|Ae®Be Be, whose its corresponding inner product is determined by

(G @m, & @mn) = (&1,8) ® (n,m2), V&, & € L2(A), mi,n2 € L*(B) (see
Theorem .

Lemma 4.4. Let A = (Ai)iec and B = (Bs)sen be Fell bundles, and let
a be a C*-norm on AQ)B. If & is as above, then there exists a unique
isomorphism jo : L*(A) @5 L*(B) — L*(AQ, B), such that ja(é @ n) =
Eomn, V& € C(A) C L*(A), n € Ce(B) C L*(B). In particular we have
L2(A) @yin L(B) = LA(A® iy B) and L2 (A) @ o L*(B) = LA(A@ o B).

Proof. Let j. be the map defined in Lemma If £&,& € C.(A), ni,m2 €
C.(B), then j.(& ® m), je(&2 @ m2) € Ce(AQ, B) C L} (AR, B) and we
have

(Je(61@m), je(2 @ m2)) = / (&1 @m)(t,8)" (E2 @m2)(t, 5)d(t,s)

GxH

max

:/G/Hfl(t)*&(t)®771(s)*772(8)d8dt:<§1,§2>®<n1’772>

On the other hand, if a € A, b € Be, £ € C.(A), and n € C.(B), we have
(Je(€@n)) (a@b)(t,s) = (§(t) @n(s))(a@b) = E(t)a@n(s)b = jc((@n)(a®
b))(t, s). Thus j. is a homomorphism of pre-Hilbert modules over A. @, Be
which is injective by Lemma and has dense image in L?(AQ, B): by
Lemmal[d.1] the image of j. is dense in the C.(A®,, B) in the inductive limit
topology, and therefore is dense in L*(A®), B). Thus j. extends uniquely
to an isomorphism jo : L?(A) Q5 L*(B) — L*(AQ,B). The last two
statements follow from the fact that if & = || ||min, then also & = || ||min and,
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similarly, if & = || ||max, then also & = || ||max (because a — a4, o, = @
are isomorphisms of posets). O

With the notation as above, we have inclusions C;f(A) C £(L*(A)) and
Cr(B) € L(L*(B)), so C;(A) O C;(B) is included in L(L*(A)) © L(L*(B)),
which in turn is included in £(L?(A) @ L*(B))according to Corollary
Therefore we have an inclusion Cf(A) O C;(B) < L(L*(A) Q4 L*(B)).

Definition 4.5. If a is a C*-norm on A () B, we define C;(A) Q4 C;(B) to
be the closure of Cj (A) O C;(B) in L(L*(A) ® L*(B)) (that is: we call @
the norm on C(A) () C(B) inherited by the inclusion above). Recall that,

in particular, if & = || ||min, then we also have @ = || ||min-

Suppose that w : Hy — Ho is a unitary operator between the Hilbert
modules H; and Hg. Then u induces an isomorphism Ad,, : L(H1) — L(H2),
given by Ad,(T) = uTu*, VT € L(H1).

Proposition 4.6. Let A and B be Fell bundles over the locally compact
groups G and H respectively, jo : L?(A) @5 L*(B) — L* (AR, B) the iso-
morphism given by Lemma@ and @ the C*-norm given by Definition @
Then Adj, (C}(A) @+ Cr(B)) = CHAQ, B), and there is a unique iso-
morphism j, : C}(A) Qg Cr(B) = Cr(AQ, B) such that j, (A}4 ® AI;) =
N8B v e CoA), g € CulB).

In particular C (A Q)i B) = Cr(A) Qpin Cr (B).

Proof. As usual, by the universal property of tensor products we see that
there exists a unique map A4 ® AP : AQB — L(L*(A) ®, L*(B)) such
that (A ©AB)(a®b) = AL ®AB Va € A, b€ B. Writing just A instead of
AA®a B we have

Aasany) (72(€ @ ) (to, s0) = (ar © bs)(€ @ n)((t,5) ™" (to, 50))

= a;&(t ) @ bsn (s~ s0)

= (A7) (to) ® (A.n) (s0)

= (A7 € ® A ) (to, s0)

= jQ (Aéf X Aﬁn) (to, 80)

= ja((A* © AP)(ar © bs) (€ @) (to, s0),
It follows that A, = jo(AA @ AB)(2)j3, Vo € AQ B, so A @ AP extends
uniquely to a representation A ® AB @ A®, B — L(L}(A) K, L*(B))
such that A4 @ AB(x) = j3A,jo, Vo € A, B. Taking the corresponding
integrated representations, we have that A(;gq) = J2o(AA & AB)(f ® g)7s,
Vi € C(A), g € C(B). If j. is the map given by Lemma then

Je(Ce(A) O Ce(B)) is dense in C}(AQ, B). Therefore we conclude that
CHAR,B) = j2(Ci(A) Q4 Cr(B)) 3, as we wanted to prove.
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In particular, j, : C}(A) @5 Cr(B) = Cr(AQ, B) given by = — jaxj;
is an isomorphism satisfying 7, (A}4 ®A§) = A(fag), Vf € Cc(A), g € Ce(B).
The uniqueness of such an isomorphism is clear. As for the last statement
just recall that @ = || || if @ = || [lmin (Corollary [2.13). O

In functorial language, Proposition and the last statement of Propo-
sition can be stated as follows. Let B — C*(B) and B — C}(B) be the
functors sending a Fell bundle B to its cross-sectional and reduced croseed
sectional algebras respectively, and let ®upax and Qupin be the bifunctors of
taking maximal and minimal tensor products respectively (of Fell bundles
or of C*-algebras). Then we have:

C* 0 @max = Omax © (C* x C*) : F x F — C*
C:O®min:®mino(c:XC:)ZFXF%C*,

where F is the category of Fell bundles and C* the category of C*-algebras.
That is: taking full (reduced) cross-sectional algebras commute with taking
maximal (respectively: minimal) tensor products.

Theorem 4.7. Let A and B be Fell bundles over the locally compact groups
G and H respectively. Then for every C*-norm a on A B we have the
following commutative diagram D.,:

gmax A

C(AQmax B) —— C(AQ, B) Cr(AQ, B)

= J=.

cr (A) ®max O (B/QAKAQ: ("4) ®max C: (B) @?? C;’k (A) ®E C: (B)

where A = AA®aB | the map o® 4s provided by Proposition J 1s given
by Pmposition@ Jr by Proposition@ and A @max AB is the tensor prod-
uct of the reqular representations of C*(A) and C*(B) respectively. Finally,

the existence and the surjectivity of o5 is obvious.

Proof. Let f € C.(A), g € Ce(B). Then, by Proposition and Lemma
we have Aoy ™ j(f ® g) = Aog™(f @ g) = A(sog)- On the other hand
Lemma and Proposition imply that 7,62 (A4 @pax AB)(f @ g) =
Jromax (A ®Algg) = Jr (Af@A) = A(foq)- Since Ce(A) O Ce(B) is dense in
C*(A) @ pax C*(B), we conclude that Ay g poa™ij(z) = G (AA @y

AB)(z), Vo € C*(A) @, C*(B), and therefore the diagram commutes. [

Corollary 4.8. The Fell bundle AQ),,.. B is amenable if and only if A and
B are amenable and C*(A) Q). C*(B) = C*(A) Qe C* (B).
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Proof. For @ = max, the diagram D,,,x becomes:

O (A @ B) A O (A®ynar B)
| &
C*(A) @y C* (B) O (A) Qe O (B)

-
U%O(A'A(@max/\s)

max

If A is an isomorphism, then so is 522X o (A4 ® AP), and therefore also GaX,
because A @ AB is surjective. Moreover the injectivity A implies that of
AA® AB, and therefore that of A and AB, and also that | - ||max = || - ||max-
In other words, the amenability of A, .. B implies the amenability of A

and of B, and also that || - ||max = || - ||max- The converse is clear. O

4.2. Some applications. Suppose that B = (B;)eq is a Fell bundle over
the locally compact group G, and for ¢,y € C. (G, M(Be)) and b € By let
¢-b-1p = [ hi(s)*bi(t~ s)ds. Since every z € M(B,) defines a multiplier
of B of order e, then we have that ¢-b-1y € B, Vb € B;. So we have a map
&4 B — B defined by b — ¢ -b-1. For by € By we have

b= B(5)*byap(t™1s)ds, so if m is Haar measure:
(supp ¢)N(tsupp 1)

16 - be - | < m((supp ¢) N (tsupp 1)) [|loo |9l oo |2 -

Besides, if f € C.(B), we have ¢- f-1 € C.(B), with supp(¢- f-1) C supp(f)
and [|¢ - f - llec < m((supp @) N supp(f)(supp ) [|¢]lolltllooll flloo- By
Lemma the map (s,t) — ¢(s)*f(t)y(t~1s) is continuous. Then [I3]
I1-15.19] implies that ¢ - f - ¢ € C.(B). It follows that the map B — B
such that b — ¢ - b - is a continuous map on the bundle B, and that
Dy Ce(B) = Co(B) given by f +— ¢ - f -1 is continuous in the inductive
limit topology. In fact, in [9, Lemma 3.2] is shown that

(6) 1@, (0 < NSl 1[Il

where ||¢|| and ||¢|| are the norms of ¢ and v as elements of L?(G, M(B.)).

Hence we also have [[@4,4(f)lloo < l9]l 111l fllco and [[ @4 (F)][1 < NSl 11I]].f 111
Vf € Co(B), and therefore @, extends to a bounded map on L!(B).

Definition 4.9. (cf. [9, Definition 3.6]) Let B be a Fell bundle over the
locally compact group G, and M > 0.

(1) We say that B has the pointwise M-approximation property if there
exist nets (¢;)ier, (Vi)ier C C’C(G, M(Be)) such that:
(i) supyer (1] 3]} < M (as clements of L3(G) ® M(B)), and
(i) ¢; - b - ; converges to b, Vb € B.
If I = N we say that B has the countable M-pointwise approximation
property. We say that B has the (countable) pointwise approxima-
tion property if B has the (countable) M-pointwise approximation
property for some M > 0.
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(2) B is said to have the M-approximation property if there are nets
(¢i), (1;) as in (1) such that ¢; - f - ¢; converges uniformly to f,
Vf € Cu(B). Tt is said to have the approzimation property if it has
the M-approximation property for some M > 0.

(3) We say that B has the L!-approximation property if there are nets
(#i), (i) as in (1) such that ¢; - f - 1; converges to f in L'(B),
Vfe CuB).

In all the cases above we say that B has the positive corresponding approx-
imation property if we can choose ¢; = ¥;, Vi.

The fact that we allow the approximating nets (¢;);er and (v;);er to take
values on the multiplier algebra M (B.) rather than in B, is not an essential
change in relation to the original definition of approximation property, but
it allows some more flexibility (it is enough to multiply the approroximating
nets by an approximate unit of B, to obtain nets as in [9, Definition 3.6]).

It was proved in [9] that if G is an amenable group then the Fell bundle
has the positive 1-approximation property.

For a Fell bundle B over a discrete group it is currently customary to
say that B has the approximation property when it has the positive 1-
approximation property. The corresponding net is called a Cesaro net for B
by Exel in [8, Definition 20.4].

Since L?(G) is a Hilbert space, it is a nuclear C*-tring, so there is a unique
tensor product L?(G) @ M(B.). On the other hand L*(G)® M (B.) is
naturally identified with L?(G, M (B.)), the completion of C.(G,M(Be))
with respect to the inner product: (f,g) = [, f(t)*g(t)dt. Thus we also
have that L?(G, M (B.)) = L*(G x M(B.)), where G x M(B.) is the Fell
bundle over G with the product topology and pointwise defined operations.

Proposition 4.10. Let B be a Fell bundle over the locally compact group
G. We have:

(1) If G is discrete, the three next statements are equivalent to each
other: B has the M -pointwise approximation property; B has the M -
approzimation property; B has the M- L'-approzimation property.

(2) If B has the approzimation property then it also has the L'-appro-
Timation property.

(8) If B has the countable pointwise approzimation property, then B has
the L' -approzimation property.

Proof. The first statement easily follows by observing that, if G is discrete
and f € C.(B), then supp(f) is finite. Suppose now that (¢;), (¢;) C
C.(G,M(B,)) are nets such that ¢; - f - 1; converges uniformly to f, Vf €
C.(B), with sup; ||¢:|| [|¢i]] < M < co. Thus ¢; - f - ¢; converges to f in the
inductive limit topology, because supp(¢ - f - 1) C supp(f). Therefore the

net ¢; - f - 1; converges to f in L'(B).



34 F. ABADIE

Suppose now that B has the countable pointwise approximation property:
there exist sequences (¢p,), (¥n) € Ce(G, M (B,)) with sup,,en{l|@nll |10l } =
M < oo and ¢y b-1py, — b, Vb € B. Let @, := @y, 4, : Ce(B) = Ce(B) be the
corresponding induced map. Then, since [Py (f) — flloo < (M + 1)||f]l00s

we have that [[(@a(f) = F)lli = Joup(r) 12a(F)(E) = F(B)l|dt — 0 by the

dominated convergence theorem. O

The following theorem is a direct generalization of the corresponding re-
sult [12, Theorem 4.6] for discrete groups, so we omit the proof here, al-
though for the convenience of the reader we have provided its details in
Appendix [5

Theorem 4.11. If B is a Fell bundle with the L'-approximation property,
then B is amenable. In particular if B has the approximation property, then
B is amenable.

Let A = (A¢)ieq and B = (Bs)sen be Fell bundles, and o a C*-norm
on AGB. Let @ be the C*-norm on M(A.) (O M(B.) as a subalgebra
of M(Ae @, Be) (see [20, T.6.3], or alternatively use Corollary and
[15, Theorem 2.4] for the right Hilbert modules A, and B, over them-
selves), and M (A.) @5 M (B.) the corresponding tensor product. If ¢ €
Ce(G,M(A.)) and ¢’ € C.(H, M(Be)), we have a section ¢ ® ¢' € C.(G x
H,M(A;) @5 M(B.)) C L*(G x H,M (A Q®,, Be)) such that ¢ ® ¢/(t,s) =
P(t)@¢'(s), V(t,s) € G x H. Moreover: |¢®@¢'|| = |¢[| ||¢'|| by Remark 2.9]

Proposition 4.12. Let A = (At)ieq and B = (Bs)seg be Fell bundles,
and o a C*-norm on A B. Suppose that (¢i)icr, (Vi)ier € Ce(G, M(Ae))
and (¢})jet, (V;)jes © Ce(H, M(Be)). Consider (¢i ® &) jerxt, (Vi ®
V) gyerxs S Ce(G x H,M(Ac @, Be)). Then:

(1) If ¢i-a-; — a, Va € A and ¢ - b — b and sup;c {[|#4]] |9} <
M < oo, supjc /{[[¢}[ [[¥jlI} < N < oo, then (i@ ¢)) -z (¢i @ ;) —
z, Vo € AQ, B, and sup(; jerx{l|¢: @ @) li @[} < MN < oo.

(2) If A and B have the (positive, countable) pointwise approximation
property, then AQ),, B also has the (respectively: positive, countable)
pointwise approximation property.

(3) If A and B have the L'-approxzimation property then A, B also
has the L'-approzimation property, and therefore it is amenable.

Proof. Note first that 2) follows from 1). To prove 1), let ®; : A — A
and @, : B — B be the maps induced by the pairs (¢;,v;) and (¢7,97),
V(i,j) € IxJ. Let ay, € Aand bs, € B. Since ®; and (I>9 converge pointwise
to the identity maps respectively on A and B, there exist ig € I, jo € J such
that Vi > ig, j > jo we have ||®;(ay,) — as, || < €/N(1+ [Jat, || + ||bs,|]) and
195 (bsy) — bsoll < €/(1+ llaty || + ||bs, [[)- Consider ®;;: AQ, B — AR, B
such that

(pi7j($(t,s)) = /GXH(gbZ X (Z)})(t” gl)x(t’s) (’(ﬁz X @D})(t*lt/’ 3*15/)(:[(15/’ 5/).
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Then for (i,5) > (ig,jo) we have:

H(I)i,j(ato ® bso) - (ato ® bSo)H = H(I)i(ato) ® (I);'(bso) - (ato ® bSo)H

< H((I)i(ato) - ato) @ q);'(bSO)H + Hato ® (q);'(bSO) - bSO)H
< 1@ilaey) — ato | 125 (bsy) | + [l || 1|5 (bsg) — bso
€ €
< Nbso | +
N+ flag | +11bso ) 7" (L llagg |l + [1oso 1)

By (6) we have ||®;;(z)[] < MNl|z|, V2 € AQ, B, and consequently
®; i(x) =z, Vo € AQ, B. This proves 1) and therefore also 2).

To see that 3) holds, suppose now that for the maps ®; and <I>;~ above
and every f € C.(A), g € C.(B) we have that ||®;(f) — f|l1 — 0 and
|9%(g9) —glli — 0. Note that if f € Cc(A) and g € Cc(B), then @; j(f@g) =
®;(f) @ ®/(g), and therefore

19:;(f @ 9) = f@glh = 12:(f) © ®i(9) — f 29l
< [|®i(f) @ (®5(9) — 9) Il + [[(®i(f) = f) @ glhh

< M| flle195(g) — gl + 12:(f) — fll1 lgll
—0 when ¢, j — 0o

It follows that ®; (1) — [ in LY(AQ,B), VIl € L = {3, fx @ gr}. Since L
is dense in C.(AQ), B) in the inductive limit topology, it is also dense in
LYAQ, B). Since ||®; | < MN, Vi€ I,j € J, then ||®; ;(h) — hl1 — 0,
Vhe LY (AR, B). O

The last statement of the next result was first proved by the author in
the case of discrete groups in the previous preprint version of the present
paper mentioned at the end of the introduction, and was later proved for
arbitrary locally compact groups in [2] and in [9].

Corollary 4.13. If A = (Ai)iec and B = (Bs)scm are Fell bundles with
the L'-approzimation property, then Ae ) B admits exactly one C*-norm
if and only if C*(A) O C*(B) admits exactly one C*-norm. In particular, if
A is a Fell bundle with the L'-approzimation property (this is automatically
true if G is amenable) and nuclear unit fiber Ae, then C*(A) is also nuclear.

llago || < e

Proof. Since A and B are Fell bundles with the L'-approximation property,
then AQ), ., B also has the L'-approximation property by Proposition m
so the diagram D,;, becomes:

max

Ccr ('A ®rnax B) % Cr ('A ®min B)

! fer

C*(A) @ e O (B) = C*(A) @ O (B)

If Ac () B, admits just one C*-norm, then A Q)

implies o 5X = id, and therefore o5~

max B = A1, B which

e = id, from where it follows that
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C*(A) @ pax CF(B) = C*(A) @i, C*(B). Conversely, suppose now that
C*(A) O C*(B) admits just one C*-norm. Then 6°2¢ = id, and therefore
opndX = id. Thus AQ) 0 B= AR 1in B 50 Ae Qox Be = Ae Qi Be-

As for the last assertion, notice that every C*-algebra B may be con-
sidered as a Fell bundle over the trivial group, and it is clear that this
Fell bundle has the (positive, countable) L'-approximation property: it is
enough to take ¢ : G — M (B) such that ¢(t) = 1, Vt € G. Consequently,
by the first part of this Corollary we have C*(A) @), .x B = C*(A) @ ,in B

O

that is, C*(.A) is a nuclear C*-algebra.

Corollary 4.14. If A = (Ay)ieq is a Fell bundle with the L'-approzimation
property and nuclear unit fiber, and if B = (Bs)sem is an amenable Fell
bundle, then AQ B also is amenable.

Proof. By Corollary our assumptions on A imply that C*(.A) is nuclear.
Therefore we have C*(A) Q). C*(B) = C*(A) Qumx C*(B), and then the
result follows from Corollary O

Corollary 4.15. Any twisted partial crossed product of a nuclear C*-algebra
by an amenable group is nuclear. In particular, the partial C*-algebra C;(G)
of an amenable discrete group G is nuclear.

Definition 4.16. Let A, B and C be Fell bundles over the locally compact

group G. We say that a sequence 0 A ¢ B v C 0 is exact if

¢ is injective, 1 is surjective, and kerty = Im¢, where kervy := {b € B :
¥ (b) is a zero element}.

Proposition 4.17. The functors A — L*(A) and A — C*(A) are ezact.

That is, if 0 A ¢ B v C 0 is an exact sequence of Fell bundles

over the locally compact group G, then:
¢! P!

max

(1) 0——=L'(A)——=L!(B)

c*(B)

Proof. Since every non-degenerate representation of L!(A) has a unique ex-
tension to a representation of L(B), we have that C*(A) is the closure of
LY(A) in C*(B), so it is enough to prove 1), because then 2) follows from
[21, 2.29] and the fact that L'(F) has an approximate unit, for every Fell
bundle F.

Since ||¢(a)|| = ||al|, Va € A, it follows that ¢! is an isometry.

Let see that kery! = Im¢'. The inclusion Im¢!' C kerv! is clear. In
order to see the converse inclusion let g € kerv!. Then ||¢!(g)|1 = 0, so
w(g(t)) = 0 almost everywhere in G. Without loss of generality we may
suppose that w(g(t)) =0, Vt in G. Thus, g(t) € kery) = Img, Vt € G, and
therefore there exists a unique f(t) € Ay such that ¢(f(t)) = g(¢), Vt € G.
Since ¢ is a continuous and isometric isomorphism between A and ¢(.A) (by
[13, 11-13.17]), and we have f = (¢')~!(g), then f € L'(A). Thus g € Im¢'.

LY(C) 0 s ezxact, and

C*(¢) C*(¥)

(2) 0—=C*(A)

C*(C)——=0 also is exact.
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Finally, we show that ¢! is surjective. We will suppose, as we can, that
A C B. Note that L!(A) is a closed *-ideal of L'(B). Thus there exists an
isomorphism of *-algebras 5 ((i)) % Pl (Ll(B)) C L'(C). The image of ¥
contains ¢! (C(B)), which is dense in C,(C) in the inductive limit topology:
since v is surjective then we may apply [3, 5.1] to 1! (CC(B)), thus concluding
that Im is dense in L'(C). Then it is sufficient to prove that 1 is an

isometry, where fll((ﬁ)) is endowed with the quotient norm. Let f € C.(B)

and f its projection into the quotient space. Then ||¢}|| = ||¢!||, and therefore
N12(HI < 1A < IfIl. To prove the converse inequality consider an
arbitrary € > 0, and let M be the measure of a compact neighborhood V' of
supp(f). For each s € V, there exists gs € C.(\A) such that || f(s) —gs(s)]| <
| f(s)|| + €/M, and we may suppose that supp(gs) C V. Since f, gs, and
t = ||[f(®)] = |[1(f(t))|| are continuous, for every s € supp(f) must exist
an open neighborhood Vs of s, which we may suppose to be contained in V,
such that |[f(t) — gs(t)l| < [[f()| +€/M, Vt € V. Now, {V; : s € sup(f)}
is an open covering of the compact set supp(f). Let Vs,,..., Vs, be a finite
subcovering. Let G4 be the one point compactification of G, and define
Spy1 = *, Vo, = Gi \supp(f) and gs,,., = 0, where x represents the

adjoined point at infinity. Then {V;Z}?jll is an open covering of G4. Let
(gf)z)"+1 be a partition of the unit of G, subordinated to {V, ?jll, and define
g(t) = X ¢i(t)gs, (1), Yt € G. Then g € Co(A), supp(g) € V, and

n+1
m</w nﬁ/WZ@ 61(t) g, (1))

n+1 n+1

<3 [, sns0) %ZW</Z@ (IF + e/a)de

/w Dlde + ¢ = [ ()l +c.

Since € was arbitrary, we conclude that [|f| < [[v'(f)|l1, and therefore
Ifl = l(f)]l.. Moreover 9 has dense image in L'(C), so Im(¢)) = L'(C)
and, since Im (') = Im(z)), we conclude that ! is surjective. O

For our next result, recall from [6, 5.3] that the definition of exact C*-
algebra extends to C*-trings, and that a C*-tring E is exact if and only if
E" is exact. In particular, if A = (A4)icq is a Fell bundle, its unit fiber is
an exact C*-algebra if and only if each fiber A; is an exact C*-tring.

Theorem 4.18. Let A = (A¢)iec be a Fell bundle with exact unit fiber and
the L'-approzimation property. Then C*(A) is an exact C*-algebra.

Proof. Let B be a C*-algebra and I <@ B. Since A; is exact Vi € G, the
sequence of Fell bundles 0 AR I AQ B—AQ (B/I)—=0is

exact, and each one of the bundles in the sequence has the L'-approximation
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property by Proposition (here @ = @) Since C* is an exact
functor from the category of Banach *-algebras with approximate unit to
the category of C*-algebras, and in this case we have C* = C¥, the sequence
of C*-algebras

0—=CrARI) —=C; (AR B) —= C}(AQ (B/I)) —=0

also is exact.

Now Propositionprovides a natural isomorphism between C (.A RC )
and C(A)Q C, for every C*-algebra C. Thus we obtain the following
commutative diagram:

0 —CrAQI) — CHAQ B) — CH(AQ (B/I)) —=0

|

0—CHA)QRI——C}(ARB—C;(AQ (B/I)—=0

Since the first row is exact and the diagram is commutative, then the second
row also is exact. Hence it follows that C*(A), which is equal to C)(A), is
an exact C*-algebra. O

Since any Fell bundle over an amenable locally compact group has the
approximation property, from Theorem we obtain the following gener-
alization of [14] Proposition 7.1] (see also [7, Proposition 7.5]):

Corollary 4.19. Any twisted partial crossed product of an exact C*-algebra
by an amenable group G is also exact.
5. APPENDIX

Proof of Theorem[{.11. Let m: B — B(H) be a non-degenerate representa-
tion such that 7|, is faithful. We also call 7 the integrated representation

Be
of 7, and to its unique extension to M (B) as well. Since 7r’ p. is faithful,

then so is W}M(Be). Given ¢ € Ce(G, M(B)) € L*(G) @ M (Be.), consider
the operator Vy; : H — L*(G) @ H such that V¢h|t = 7(4(t))h. We have:
IVel* = sup / (m(o(t))h, w((t)) h)dt = sup / (m(6(t)"d(t)) h, h)dt
G G

[IR][=1 lk]|=1
= sup ([ w(6(0)"6(0)dth, ) = sup (m((6.6))h. )
hl=1 /G |hll=1

= [[x({, oIl = ll(¢, D)

where we used that 7({¢, ¢)) is positive and W}M(B ) is faithful to obtain the

last two equalities. We compute V: if h € H, { € L?(@G), then

(Voh,€) = /G (m($(6)) . £(8)) dt = / (hm (B(1)")€ () dt = (b, /G w(6(1))E(t)de),

G
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so V5 (€) = Jom(o(t)*)E(t)dt. Note that if 1) € Co(G, M(Be)), then

V5V¢h:/Gw(qﬁ(t)*)vwh‘tdt:/Gﬂ(gﬁ(t)*)ﬂ(w(t))hdt:7r(<¢,w>)h.
Moreover, if ¢1, ¢2, ¢3 € C. (G M(B )) h € H, we have:

Vi (om,0a) |, = m(01(t)(d2, d3))h = (1 (£))m (P2, d3))h = Vi, V3, Vs b,

Therefore, since ¢ — Vj is an isometry on the dense subspace C,. (G, M (Be))
of the C*-tring L?(G, M (B.)), it extends to a homomorphism of positive C*-
trings mo : L*(G) Q M(B.) — m2(L*(G) Q@ M(B.)) € B(H,L*(G)R® H),
which is consequently an isomorphism of C*-trings.

Consider now the representation 7, : B — B(L*(G)@ H), such that
mA(br) = A\ ® w(be) and its integrated representation, which we continue to
call my : C*(B) — B(L*(G) @ H) (here ) is the left regular representation
of G). Define, for ¢, v € L*(G) @ M(B.), the completely bounded map ¥ :
™ (C*(B)) — B(H), given by ¥(z) = ViaVy, Vo € 7 (C*(B)). We have
1@ < 16190 ], so ]| < gl ]l Consider also, for f € C.(B),
the function ®(f) : G — B such that <I>(f)}t = [ o(s)* f(t)v(t " s)ds. Let
F(t,s) = ¢(s)*f(t)y(t~1s). By F : G x G — B is continuous and of
compact support, and such that F'(¢,s) € By, Vt € G. Then by [13], I1I-15.19],
the function ¢ — fG F(t,s)ds is a compactly supported continuous section
of B. In other words, ®(f) € Cc(B). In fact, it is clear that supp (®(f)) C
supp(f). Besides, we have w(®(f)) = U(ma(f)), for if h,k € H:

@)k = ([ (@] / [ oo ot sas]nx)

/ / )Y(t1s))h, k)dsdt

// (F()) 7 (vt ) h, k)dsdt
~ [ wlolsr) / m(F(0)Vuhl, 2, dt, k)ds
G G
:/<7r(¢(8)*)[/()\t®77)(f(t))(v¢h)dt] 5
G G

- / (r(8(5)")ma(£) (V) (s)ds, ) = ( / 7(8(5)") (mA(F)Viph(s)) ds, k)
G G

= ((Vgma(f)Vip)h, k) = (U (ma(f)) b K),
whence 7(®(f)) = U(ma(f)). In particular we have ¥ (7 (C.(B))) C
7(Co(B)) € w(C*(B)), which is closed, and therefore ¥ (m\(C*(B))) C
7(C*(B)). Then we have ¥ : m,(C*(B)) — n(C*(B)). Suppose now
that (¢i), (¢;) are approximating nets as in (3) of Definition with
lloill l|vil| < M, Vi, so we have ®; : C.(B) — C.(B) and ®;(f) converges
to f in LY(B), for all f € C.(B). Let ¥; : m\(C*(B)) — =(C*(B)) be

k)ds
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the correspondending completely bounded maps, that is: ¥;(z) = Vq;:wV%,
Va € 75 (C*(B)). Since ®;(f) — f in L*(B), then ®;(f) — f also in C*(B),
thus 7(®;(f)) — «(f) in 7(C*(B)). Consequently, ||7(®;(f))| — [=(f)I|.
On the other hand, 7(®;(f)) = ¥;(ma(f)), whence

[l (A = Timm [l (@3 (£)) [} = Tim 1@ (mr (£)) I
< Hlimsup ||| {|ma(F)] < Mllma(F)]-

7

Since C.(B) is dense in L'(B), it follows that ||7(y)|| < M|m\(v)], Vy €
C*(B). In particular, if 7 is a faithful representation of C*(B), we conclude
that 7 is also faithful. On the other hand, it is proved in [I0, Proposi-
tion 2.3] that the representation A ® id : B — B(L*(B) ®p, H), given by
(A ®id)p(§ ® h) := Ap€ ® h, is equivalent to a subrepresentation of 7y, so
it is faithful as well. This implies that A is faithful, which is to say that
C*(B) = Cx(B). O
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