
TENSOR PRODUCTS OF FELL BUNDLES OVER GROUPS

FERNANDO ABADIE

Abstract. We extend the theory of tensor products of C*-algebras to
the larger category of Fell bundles over locally compact groups. We
prove that, like in the case of C*-algebras, there exist maximal and
minimal tensor products. Given two Fell bundles, we compare the ten-
sor products of their cross-sectional algebras with the cross-sectional
algebras of their tensor products. As applications we prove that, un-
der certain conditions, the cross-sectional C*-algebra of a Fell bundle
is nuclear or exact whenever so is its fiber over the unit element of the
group.
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1. Introduction

The original motivation for the present work was to study nuclearity and
exactness of crossed products by partial actions, both important properties
of C∗-algebras related with tensor products.

The best way to define and study crossed products by partial actions is
through the theory of C∗-algebraic bundles, today also called Fell bundles
(for a comprehensive treatment of such theory see [13]). According to [11],
given a partial action α of the locally compact group G on the C∗-algebra
A, or even a twisted partial action, a Fell bundle Bα over G is associated
to α. The cross-sectional algebra of Bα is called the crossed-product of A
by the partial action α, and it is denoted by AoαG. Similarly, the reduced
cross-sectional algebra of Bα is called the reduced crossed-product of A by
the partial action α, and it is denoted by A oα,r G (in Section 4 we recall
the definition of the reduced cross-sectional algebra of a Fell bundle; for
additional information the reader is referred to [9] and [3]). On the other
hand, Fell bundles are closely related to partial actions, since not only many
of them can be described as associated to twisted partial actions ([11]), but
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any Fell bundle carries a natural partial action of its underlying group on
the spectrum of its unit fiber ([1]) and, in a sense, it is equivalent to the Fell
bundle associated to a partial action (see [5], [19] and [4]).

A point exploited in this paper is that some properties of the cross-
sectional algebras of a Fell bundle are in part just consequences of properties
of the fibers of the bundle itself, which in turn are many times directly re-
lated to those of the unit fiber. Moreover, some constructions with these
algebras are better understood when they are made directly on the bundle.
In particular this viewpoint applies to tensor products. Thus we were led to
define and study tensor products of Fell bundles. So posed in terms of Fell
bundles, what we are interested in studying are the tensor products of cross-
sectional algebras of Fell bundles, and the strategy we follow is to permute
the order in which we consider such constructions, i.e., first define the ten-
sor products of Fell bundles and then consider the cross-sectional algebras of
the resulting bundles. In fact, what we will show is that these constructions
“commute”, in the sense that, starting from two Fell bundles, the result is
independent of the order in which we take the tensor product and the cross-
sectional algebras. Furthermore, we will see that there is a perfect harmony
in relation to the type of construction we choose in each case, i.e., maximal
tensor products and full cross-sectional algebras, or spatial tensor products
and reduced cross-sectional algebras (see below).

Let us describe briefly the contents and structure of the paper.
Since the fibers of a Fell bundle are C*-ternary rings (C∗-trings for short),

the study carried out in [6] (in particular Section 5.2) can be considered as a
preliminary step in the direction of studying tensor products of Fell bundles.
In the present work we will make considerable use of the results of [6], so,
for the reader’s convenience, in the next section we will recall and expand
on some of the aspects that interest us most. Also briefly discussed in this
section will be the possibility of extending a C*-norm on the unit fiber of
a *-algebraic bundle to a C*-norm on the entire bundle, which will lead to
consideration of the notion of positive *-algebraic bundle.

In the third section we deal with tensor products of Fell bundles. If
A = (At)t∈G and B = (Bs)s∈H are Fell bundles over the locally compact
groups G and H respectively, then a tensor product A

⊗
α B will be a Fell

bundle over G × H, with fibers At
⊗

αBs. As in the case of C∗-algebras
and C∗-trings there are a maximal and a minimal tensor products, which
correspond respectively to the maximal and minimal tensor products of the
corresponding unit fibers of the bundles. First we consider bundles over
discrete groups, and show that the algebraic tensor product A

⊙
B is a

positive *-algebraic bundle. Then we define the tensor product A
⊗

α B for
any C*-norm on A

⊙
B. Finally, we topologize A

⊗
α B for the case the

base groups of A and B are general locally compact groups. We end the
section by generalizing some results on representations of tensor products of
C∗-algebras to the case of Fell bundles.
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The fourth section is devoted to comparing the cross-sectional algebras
of tensor products. Let C∗(B) and C∗r (B) be the full and the reduced cross-
sectional algebras of the Fell bundle B respectively. On one hand we prove
that C∗(A

⊗
max B) ∼= C∗(A)

⊗
maxC

∗(B), and in the other hand we show
that also C∗r (A

⊗
min B) ∼= C∗r (A)

⊗
minC

∗
r (B), which reflects the harmony

between universal constructions on one hand and between spatial ones on
the other hand. Perhaps it is appropriate to comment here that, in reality,
the most useful results we obtain refer to these two norms. However, we have
tried to develop the theory in general, which could be useful for example if
a theory of “exotic tensor products”, in the style of exotic crossed products,
were to be developed in the future.

In the final section we consider some applications. We consider Fell bun-
dles with certain approximation properties and we prove that these approx-
imation properties are preserved by taking tensor products. We show how
to apply our results to prove the nuclearity or exactness of cross-sectional
C*-algebras of Fell bundles under suitable conditions.

This paper corresponds to the first part of [2], and is an expanded version
of the previous work “Tensor products of Fell bundles over discrete groups”
(http://xxx.if.usp.br/abs/funct-an/9712006), which circulated as a
preprint, and where only Fell bundles over discrete groups were considered.
It should also be mentioned that in his 2017 book [8], Exel developed a min-
imal theory of tensor products between C*-algebras and Fell bundles over
discrete groups.

2. C*-trings and Fell bundles

In the first two parts of this section we will recall from [22], [3] and [6]
some aspects of the theory of C*-ternary rings and their tensor products
that will be needed later. Since in [6] the context is more general than that
of tensor products, we have tried to outline the proofs concerning to our
setting, mainly those leading to Theorem 2.7. The occasion will also serve
to prove some new results and to introduce some of the notation to be used
later. In the third part of the section we will begin the preparation for
defining tensor products of Fell bundles in the next section.

2.1. C*-trings and the functors of Zettl. A ∗-ternary ring, or ∗-tring
for short, is a complex vector space E with a map (called ∗-ternary product)
µ : E×E×E → E, which is linear in the odd variables and conjugate linear
in the second one, and satisfies: µ

(
µ(x, y, z), u, v

)
= µ

(
x, µ(u, z, y), v

)
=

µ
(
x, y, µ(z, u, v)

)
, ∀x, y, z, u, v ∈ E. A C*-seminorm on E is a seminorm

that satisfies ‖µ(x, y, z)‖ ≤ ‖x‖‖y‖‖z‖, and ‖µ(x, x, x)‖ = ‖x‖3 ∀x, y, z ∈ E.
A ∗-tring E with a C*-norm making it a Banach space is called a C*-ternary
ring, or just a C*-tring. In general we write just (x, y, z) instead of µ(x, y, z).
Note that if (E,µ) is a C*-tring, its opposite Eop := (E,−µ) also is a C*-
tring.
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In [22] Zettl proved that if E is a C*-tring, then there exist a C*-algebra
Er (unique up to isomorphism) and an Er-valued sesquilinear map 〈 , 〉r :
E × E → Er such that E is a right Er-module and 〈 , 〉r satisfies all the
properties of a right inner product except possibly that of positivity, with
(x, y, z) = x〈y, z〉r, and ‖x‖2 = ‖〈x, x〉r‖ ∀x, y, z ∈ E, and in addition
span{〈y, z〉r : y, z ∈ E} is dense in Er. Moreover, he showed that, if E+ :=
{x ∈ E : 〈x, x〉r ∈ Er,+} and E− := {x ∈ E : −〈x, x〉r ∈ Er,+} (here
Er,+ is the positive cone of the C*-algebra Er), then E+ and E− are sub-
C*-trings of E such that 〈E+, E−〉 = 0 and E = E+ ⊕ E− as C*-trings.
When E = E+ we say that E is a positive C*-tring (so in this case the
sesquilinear map 〈 , 〉r is an inner product). When E = E−, so E is the
opposite of a positive C*-tring, we say that E is a negative C*-tring. Besides,
(E+, 〈 , 〉r) and (E−,−〈 , 〉r) are full right Hilbert modules over (E+)r and
(E−)r respectively, and Er = (E+)r ⊕ (E−)r as C*-algebras. Note that,
conversely, Hilbert modules provide examples of C*-trings: if (F, 〈 , 〉) is a
right Hilbert module, and we define µ(x, y, z) := x〈y, z〉, then both (F, µ)
and (F,−µ) are C*-trings, the former positive.

Actually, C*-trings are the objects of a category, which we denote Ct, in
which the morphisms are linear maps π : E → F that preserve the ternary
product, that is π(x, y, z) = (πx, πy, πz), ∀x, y, z ∈ E. As shown in [3], in
this case there exists a unique homomorphism πr : Er → F r such that

(1) πr(〈x, y〉r) = 〈πx, πy〉 ∀x, y ∈ E,

so the the correspondence E 7→ Er is in fact the object part of a functor from
the category Ct of C*-trings to the category C of C*-algebras. In particular,
if E is a full right Hilbert module over the C*-algebra A, and we define
on E the ternary product (x, y, z) := x〈y, z〉A as above, then we have an
isomorphism Er ∼= A, such that 〈x, y〉r 7→ 〈x, y〉A, ∀x, y ∈ E. It is easily seen
that, as is the case with homomorphisms of C*-algebras, morphisms of C*-
trings are automatically contractive and have closed range, and are isometric
exactly when they are injective. In passing, we note that a C*-algebra is
also a C*-tring with the ∗-ternary product given by (x, y, z) := xy∗z. Then
any homomorphism of C*-algebras is also a morphism or ∗-ternary rings, so
the category of C*-algebras embedds into the category of C*-trings.

Finally, let us mention that, just as we have a Zettl functor
(
E

π→ F
)
7→(

Er
πr→ F r

)
on the right, we also have one on the left:

(
E

π→ F
)
7→
(
El

πl→
F l
)
. Of course, here El is a C*-algebra and we have an El-sesquilinear map

〈 , 〉l : E × E → El such that E is a left El-module and 〈 , 〉l satisfies
all the properties of a left inner product, except possibly that of positivity,
with (x, y, z) = 〈x, y〉lz, ∀x, y, z ∈ E, and also El = span{〈y, z〉r : y, z ∈ E}.
Combining both Zettl functors we conclude that a positive C*-tring E is an
El−Er Morita-Rieffel equivalence bimodule. In fact, if E = E+⊕E− is the
Zettl’s decomposition of E, then Ep := E+ ⊕ (E−)op is a positive C*-tring,
and we have Er = (Ep)r and El = (Ep)l, so an arbitrary C*-tring E is close
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to being an equivalence bimodule, and in any case its associated C*-algebras
El and Er are Morita-Rieffel equivalent. For this reason, many properties
of these C*-algebras can be considered as inherited from the C*-tring. This
is the case of nuclearity and exactness for example, as shown in [6].

2.2. Tensor products of C*-ternary rings and of Hilbert modules.
Suppose that E and F are right Hilbert modules over the C*-algebras A and
B respectively. Then one can form its exterior tensor product E

⊗
F , which

is a right Hilbert module over the C*-algebra A
⊗

B, where the latter is the
spatial tensor product of A and B (see [15]). However, as shown below, it is
possible to make the same construction using other tensor products between
A and B and without major modifications..

In what follows we denote by SN (E) and by N (E) the sets of C*-
seminorms and C*-norms respectively on the ∗-tring or ∗-algebra E. Note
that SN (E) is a partially ordered set with the pointwise order: γ1 ≤ γ2 ⇐⇒
γ1(x) ≤ γ2(x) ∀x ∈ E.

Recall that if (G, ‖ ‖) is a seminormed space, and N := {x ∈ G : ‖x‖ = 0},
the Hausdorff completion of G is the completion of the quotient space G/N
with respect to the quotient norm ‖x+N‖ := ‖x‖.

Suppose that A is a ∗-algebra and that α is a C*-seminorm on A. Then
the Hausdorff completion of A is a C*-algebra, which we denote by Aα. Let
pα : A → Aα be the canonical map. If A+

α is the set of positive elements
of the C*-algebra Aα, the set p−1

α (A+
α ) is a cone in A, whose elements will

be called α-positive elements of A. Note that if α ≥ β are C*-seminorms,
then the identity id : (A,α)→ (A, β) is continuous, so it defines a surjective
homomorphism of C*-algebras σαβ : Aα → Aβ such that pβ = σαβpα. Thus
any α-positive element is also a β-positive element.

Definition 2.1. Let A be a ∗-algebra. We define the set of positive elements
of A to be the set A+ := ∩α∈SN (A)p

−1
α (Aα), where Aα is the Hausdorff

completion of A with respect to the C*-seminorm α.

Note that elements of the set CA := {
∑n

i=1 a
∗
i ai : n ∈ N, a1, . . . , an ∈ A}

are α-positive, ∀α ∈ SN (A).

Remark 2.2. If N (A) 6= ∅, then A+ := ∩α∈N (A)p
−1
α (Aα), that is, we only

need C*-norms rather than C*-seminorms to determine the positive ele-
ments. To see this, let β be any C*-seminorm on A, and α a C*-norm
that it is supposed to exist on A. Then γ := max{α, β} ∈ N (A) and
γ ≥ β. Therefore, as observed before the definition, p−1

γ (Aγ) ⊆ p−1
β (Aβ).

Then ∩α∈N (A)p
−1
α (Aα) ⊆ ∩β∈SN (A)p

−1
β (Aβ) ⊆ ∩α∈N (A)p

−1
α (Aα), so they are

equal.

We will need the following result, which is exactly [15, Lemma 4.3], except
that the C*-norm considered here is arbitrary, while Lance’s version is only
stated for the minimal norm. Since the proof is also the same, we omited it.
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Lemma 2.3. Let A and B be C∗-algebras, and suppose that a =
(
aij
)
,

c =
(
cij
)
∈ Mn(A), b =

(
bij
)
, d =

(
dij
)
∈ Mn(B). Let A

⊗
αB be a

C∗-tensor product of A and B. Then:

(1) If 0 ≤ a ≤ c and 0 ≤ b ≤ d, we have 0 ≤
(
aij ⊗ bij

)
≤
(
cij ⊗ dij

)
in

Mn(A
⊗

αB).
(2) If a, b ≥ 0, then

∑n
i,j=1 aij ⊗ bij ≥ 0 in A

⊗
αB.

Let E and F be right Hilbert modules over the C*-algebras A and B, and
let E�F and A�B their corresponding algebraic tensor products. Using the
universal property of the algebraic tensor product, we easily see that E

⊙
F

is a right module over A
⊙
B and that we have an A

⊙
B-valued sesquilinear

form on E
⊙
F . On elementary tensors the action and the form are given

by (x�y)(a�b) = xa�yb and 〈x� y, x′ � y′〉 = 〈x, x′〉E�〈y, y′〉F . We want
to see that this sesquilinear form is positive, that is, that 〈z, z〉 ∈ (A�B)+

according to Definition 2.1.

Proposition 2.4. The sesquilinear map 〈 , 〉 : (E
⊙
F )×(E

⊙
F )→ A

⊙
B,

given by 〈z, z′〉 =
∑n

i=1

∑m
j=1〈xi, x′j〉E � 〈yi, y′j〉F for z =

∑n
i=1 xi � yi,

z′ =
∑m

j=1 x
′
j � y′j is positive, that is 〈z, z〉 ∈ (A�B)+ ∀z ∈ E

⊙
F .

Proof. Since N (A
⊙
B) 6= ∅, by Remark 2.2 it is enough to show that

〈z, z〉 ∈ (A⊗α B)+ for every α ∈ N (A
⊙
B) (in fact it would be enough to

do so just for ‖ ‖max, but the proof is the same).
So let α be any C*-norm on A

⊙
B, and z =

∑n
i=1 xi � yi ∈ E

⊙
F . By

[15, Lemma 4.2] the Gramian matrices X = (〈xi, xj〉E) and Y = (〈yi, yj〉F )
are positive elements of Mn(A) and Mn(B) respectively. Therefore 〈z, z〉 =∑n

i,j=1〈xi, xj〉E�〈yi, yj〉F is a positive element ofA
⊗

αB by (2) of Lemma 2.3,
which ends the proof. �

Let α be a C*-norm on A
⊙
B. Since the sesquilinear map just defined

〈 , 〉 : (E
⊙
F )× (E

⊙
F ) → A

⊙
B is positive, we can perform the double

completion process described in [15, top of page 5] to obtain a Hilbert module
E
⊗

α̃ F , which is the completion of E
⊙
F with respect to the norm α̃ :

E
⊙
F → R given by

(2) α̃(z) :=
√
α(〈z, z〉), ∀z ∈ E

⊙
F.

Remark 2.5. Lance proves along [15] that for z as in Proposition 2.4 we have
z = 0 in E

⊙
F if and only if 〈z, z〉 = 0 in A

⊙
B. This shows that the

sesquilinear maps above are actually inner products.

Definition 2.6. We call the right Hilbert A
⊗

αB-module E
⊗

α̃ F the α-
exterior product corresponding to the C*-norm α ∈ N (E

⊙
F ).

Note that E
⊗

α̃ F is full whenever E and F are full Hilbert modules.

We turn again to the C*-trings perspective. Suppose that E and F are
positive C*-trings, so they are full right Hilbert modules over the C*-algebras



TENSOR PRODUCTS OF FELL BUNDLES OVER GROUPS 7

Er and F r respectively. Note that E
⊙
F has a structure of ∗-tring with

the ternary product given by (x � y, x′ � y′, z � z′) := (x, y, z) � (x′, y′, z′)
on elementary tensors, which in terms of our just defined sesquilinear form
can be written as (x � y, x′ � y′, z � z′) = (x � y)〈x′ � y′, x′′ � y′′〉. So
we have just seen that every C*-norm α on Er

⊙
F r defines a C*-norm

α̃ on the ∗-tring E
⊙
F (given by (2)), whose completion is the positive

C*-tring E
⊗

α̃ F , and (E
⊗

α̃ F )r turns out to be Er
⊗

α F
r (recall (1) and

subsequent comments).
Suppose conversely that γ is a C*-norm on the ∗-tring E

⊙
F , and let

E
⊗

γ F be the corresponding completion, which is a C*-tring. Let Er0 :=

span{〈x, x′〉E : x, x′ ∈ E} and F r0 := span{〈y, y′〉F : y, y′ ∈ F}. Then
Er0 and F r0 are dense two-sided ideals of Er and F r respectively. Let z =∑n

i=1 xi � yi ∈ E
⊙
F and c :=

∑m
j=1〈x′j , x′′j 〉E � 〈y′j , y′′j 〉F ∈ Er

⊙
F r. We

have

zc =
m∑
j=1

n∑
i=1

xi〈x′j , x′′j 〉E � yi〈y′j , y′′j 〉F =
m∑
j=1

n∑
i=1

(xi, x
′
j , x
′′
j )E � (yi, y

′
j , y
′′
j )F

=
m∑
j=1

(
n∑
i=1

(xi � yi, x′j � y′j , x′′j � y′′j ) =
m∑
j=1

(z, x′j � y′j , x′′j � y′′j ).

So, since γ is a C*-norm: γ(zc) = γ(
∑m

j=1(z, x′j�y′j , x′′j�y′′j )) ≤
∑m

j=1 γ(x′j�
y′j)γ(x′′j � y′′j )γ(z), ∀z ∈ E

⊙
F . Therefore the action of multiplication

by c is γ-bounded on E
⊙
F , and hence it extends to a bounded oper-

ator on E
⊗

γ F . In fact, recalling that (x � y, x′ � y′, x′′ � y′′) = (x �
y)〈x′ � y′, x′′ � y′′〉, where the latter is the inner product that Zettl’s asso-
ciates to the C*-tring E

⊗
γ F , we can continue our computations above,

and get:

zc =
m∑
j=1

(z, x′j � y′j , x′′j � y′′j ) =
m∑
j=1

z〈x′j � y′j , x′′j � y′′j 〉

= z
( m∑
j=1

〈x′j � y′j , x′′j � y′′j 〉
)
.

Thus we get an injective homomorphism of ∗-algebras Er
⊙
F r → (E

⊗
γ F )r,

given by c =
∑m

j=1〈x′j , x′′j 〉E � 〈y′j , y′′j 〉F 7→
∑m

j=1〈x′j ⊗ y′j , x′′j ⊗ y′′j 〉. So we

can define on Er0
⊙
F r0 the operator norm, namely γr : Er0

⊙
F r0 → R such

that

(3) γr(c) := sup{γ(zc) : z ∈ E
⊙

F, γ(z) ≤ 1}.

Now observe that, since Er0 and F r0 are dense ideals in Er and F r respec-
tively, this C*-norm uniquely extends to a C*-norm on Er

⊙
F r (because

of [6, Lemma 5.12]) by the same formula (3).
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In conclusion, given two positive C*-trings, we have two maps

Ψr : N (Er
⊙

F r)→ N (E
⊙

F ) such that α 7→ α̃ given by (2)

Φr : N (E
⊙

F )→ N (Er
⊙

F r) such that γ 7→ γr given by (3).

And these correspondences satisfy

(4) (E
⊗
α̃

F )r = Er
⊗
α

F r and Er
⊗
γr

F r = (E
⊗
γ

F )r.

It is easily checked that Ψr is order preserving and ΨrΦr is the identity on
N (E

⊙
F ). Moreover, due to the uniqueness of the C*-algebra Er, ΦrΨr is

the identity on N (Er
⊙
F r). Finally, Φr also is order preserving: if γ1 ≥ γ2

are C*-norms on E
⊙
F , then id : (E

⊙
F, γ1)→ (E

⊙
F, γ2) is continuous,

and therefore it extends by continuity to a homomorphism of C*-trings
π : E

⊗
γ1
F → E

⊗
γ2
F , which induces a homomorphism of C*-algebras

πr : Er
⊗

γr1
F r → Er

⊗
γr2
F r, thus contractive; therefore γr1 ≥ γr2 . In

conclusion the maps Φr and Ψr are mutually inverse isomorphisms between
the posets N (E

⊙
F ) and N (Er

⊙
F r). We record this fact:

Theorem 2.7. Let E and F be positive C*-trings. Then the maps Ψr :
N (Er

⊙
F r) → N (E

⊙
F ) such that α 7→ α̃, given by (2), and Φr :

N (E
⊙
F )→ N (Er

⊙
F r) such that γ 7→ γr, given by (3), are mutually in-

verse isomorphisms of partially ordered sets. Moreover, if α ∈ N (Er
⊙
F r)

and γ ∈ N (E
⊙
F ), then E

⊗
α̃ F and E

⊗
γ F are full right Hilbert mod-

ules over Er
⊗

α F
r and Er

⊗
γr F

r respectively, so
(
E
⊗

α̃ F
)r ∼= Er

⊗
α F

r

and
(
E
⊗

γ F
)r ∼= Er

⊗
γr F

r, where the isomorphisms extend the map

〈x� y, x′ � y′〉 7→ 〈x, x′〉 � 〈y, y′〉, ∀x, x′ ∈ E, y, y′ ∈ F .

In fact in [6] it is proved that the correspondences above extend to iso-
morphisms between SN (E

⊙
F ) and SN (Er

⊙
F r) for abitrary C*-trings.

In particular, since Ψr and Φr are order preserving maps, andN (Er
⊙
F r)

has a maximum and a minimum elements ‖ ‖max and ‖ ‖min respectively,
we have:

Corollary 2.8. (cf [6, Corollary 5.13]). Let E and F be positive C∗-trings.
Then there exist a maximum C∗-norm ‖ · ‖max on E

⊙
F , and a minimum

C∗-norm ‖ · ‖min on E
⊙
F , and(

E
⊗
max

F
)l

= El
⊗
max

F l,
(
E
⊗
max

F
)r

= Er
⊗
max

F r,

(
E
⊗
min

F
)l

= El
⊗
min

F l
(
E
⊗
min

F
)r

= Er
⊗
min

F r.

Recall that the minimum norm on the ∗-algebras Er
⊙
F r and El

⊙
F l

agrees with the so called spatial one.
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Remark 2.9. Let α be a C*-norm on Er
⊙
F r. The well-known fact that α

is cross-norm, that is α(a � b) = ‖a‖Er‖b‖F r ∀a ∈ Er and b ∈ F r, implies
that α̃ also is cross-norm, for if x ∈ E, y ∈ F :

α̃(x� y)2 = α(〈x� y, x� y〉) = α(〈x, x〉 � 〈y, y〉)
= ‖〈x, x〉‖E‖〈y, y〉‖F = α̃(x)2α̃(y)2.

To end this part of the section we prove the following two results, which
will be needed later. To prove the first of them, recall first from [3, Proposi-
tion 4.1] that if π : E → F is an injective homomorphism of C*-trings, then
the induced homomorphism of C*-algebras πr : Er → F r also is injective.
We remark that the converse is easily proved as well: if π(x) = 0, then
0 = 〈π(x), π(x)〉 = πr(〈x, x〉), so 〈x, x〉 = 0 if πr is injective, and in this case
x = 0.

Proposition 2.10. Let π1 : E1 → F1 and π2 : E2 → F2 be homomor-
phisms of positive C*-trings. Then π1� π2 : E1

⊙
E2 → F1

⊙
F2 is ‖ ‖min-

continuous, so it extends to a homomorphism π1
⊗

min π2 : E1
⊗

minE2 →
F1
⊗

min F2. Moreover, if π1 and π2 are injective, then so is π1
⊗

min π2.

Proof. Applying the right Zettl functor we obtain homomorphisms πr1 :
Er1 → F r1 and πr2 : E2 → F r2 , so by [20, T.5.19] we get a homomor-
phism πr1

⊗
min π

r
2 : Er1

⊗
minE

r
2 → F r1

⊗
min F

r
2 , which by definition extends

πr1
⊙
πr2 : Er1

⊙
Er2 → F r1

⊙
F r2 . Now, if z =

∑n
i=1 xi � yi ∈ E

⊙
F :

〈(π1 � π2)z, (π1 � π2)z〉 =

n∑
i,j=1

〈π1(xi)� π2(yi), π1(xj)� π2(yj)〉

=

n∑
i,j=1

〈π1(xi), π1(xj)〉 � 〈π2(yi), π2(yj)〉

=

n∑
i,j=1

πr1(〈xi, xj〉)� πr2(〈yi, yj〉) = (πr1 � πr2)(〈z, z〉).

Therefore, since ‖(π1 � π2)z‖2min = ‖〈(π1 � π2)z, (π1 � π2)z〉‖min, we get

‖(π1�π2)z‖2min = ‖(πr1�πr2)(〈z, z〉)‖min = ‖(πr1⊗minπ
r
2)(〈z, z〉)‖min ≤ ‖z‖2min,

which ends the proof of the first statement. As for the second one, it follows
from the last assertion of [20, T.6.9] and the remark preceding the present
Proposition. �

In the same way, but using [20, T.6.9] instead of [20, T.5.19], we obtain

Proposition 2.11. Let π1 : E1 → F1 and π2 : E2 → F2 be homomor-
phisms of positive C*-trings. Then π1�π2 : E1

⊙
E2 → F1

⊙
F2 is ‖ ‖max-

continuous, so it extends to a homomorphism π1
⊗

max π2 : E1
⊗

maxE2 →
F1
⊗

max F2.
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It follows from Propositions 2.10 and 2.11 that both the minimal and
maximal tensor products are bifunctors Ct × Ct → Ct, where Ct is the
category of C*-trings.

Lemma 2.12. Let E and F be full right Hilbert modules over the C*-
algebras A and B respectively, and S ∈ L(E), T ∈ L(F ). If γ is a C*-norm
on E

⊙
F , then the map S � T : E

⊙
F → E

⊙
F is γ-continuous, with

‖S�T‖ ≤ ‖S‖‖T‖, and it extends to an adjointable map S⊗T ∈ L(E
⊗

γ F ),
whose adjoint is S∗ ⊗ T ∗.

Proof. First recall that the C*-norm γ induces a C*-norm γr on A
⊙
B,

namely the operator norm

γr(c) = sup{γ(zc) : z ∈ E
⊙

F : γ(z) ≤ 1}.

Let z =
∑n

i=1 xi � yi ∈ E
⊙
F , and consider the matrices X = (〈xi, xj〉),

XS = (〈Sxi, Sxj〉), Y = (〈yi, yj〉) and YT = (〈Tyi, T yj〉). By [15, Lem-
mas 4.1 and 4.2], we see that 0 ≤ XS ≤ ‖S‖2X and 0 ≤ YT ≤ ‖T 2‖Y .
Then, using the last assertion of Lemma 2.3, we get:

〈(S � T )z, (S � T )z〉 =

n∑
i,j=1

〈Sxi � Tyi, Sxj � Tyj〉

=
n∑

i,j=1

〈Sxi, Sxj〉 � 〈Tyi, T yj〉

≤
n∑

i,j=1

‖S‖2〈xi, xj〉 � ‖T‖2〈yi, yj〉 = ‖S‖2‖T‖2〈z, z〉.

Therefore:

γ((S � T )z)2 = γr(〈(S � T )z, (S � T )z〉) ≤ γr(‖S‖2‖T‖2〈z, z〉)
= ‖S‖2‖T‖2γr(〈z, z〉) = ‖S‖2‖T‖2γ(z)2.

We conclude that S � T is bounded, with ‖S � T‖ ≤ ‖S‖‖T‖ as claimed.
Thus S � T extends by continuity to a map S ⊗ T . It is now easy to verify
that S ⊗ T is adjointable, and that (S ⊗ T )∗ = S∗ ⊗ T ∗. �

Corollary 2.13. Let E and F be Hilbert modules, and γ be a C*-norm on
E
⊙
F . Then there exists a (unique) C*-norm γ on L(E)

⊙
L(F ) such that

L(E)
⊗

γ L(F ) is a C*-subalgebra of L(E
⊗

γ F ). In case γ = ‖ ‖min, also

is γ = ‖ ‖min.

Proof. It follows from Lemma 2.12 that we have a ∗-homomorphism ϕγ :
L(E)

⊙
L(F ) → L(E

⊗
γ F ). In case γ = ‖ ‖min, in [15, page 37] it is

shown that this homomorphism extends to an isometric homomorphism
ϕmin : L(E)

⊗
min L(F ) → L(E

⊗
min F (which in particular proves our

last statement). Suppose T ∈ L(E)
⊙
L(F ) is such that ϕγ(T ) = 0.

Since ϕγ and ϕmin agree on E
⊙
F , the fact ϕγ(T )|E⊙

F = 0, implies
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ϕmin(T )|E⊙
F = 0 and, since E

⊙
F is dense in E

⊗
min F , this entails

ϕmin(T ) = 0. Since ϕmin is injective, we conclude that T = 0. Conse-
quently ϕγ is injective, and therefore, identifying L(E)

⊙
L(F ) with the

*-subalgebra ϕγ(L(E)
⊙
L(F )), it is enough (and necessary) to take γ as

the restriction of the norm on L(E
⊗

γ F ) to L(E)
⊙
L(F ). �

2.3. Positive ∗-algebraic bundles and Fell bundles.

Definition 2.14. Let G be a discrete group, and suppose that C = (Ct)t∈G
is a family of complex vector spaces. We identify C with the disjoint union
of the spaces Ct. We then say that C is a ∗-algebraic bundle over G, with
product · : C × C → C and involution ∗ : C → C if, ∀a, b ∈ C, t, s ∈ G, the
following holds:

1) CsCt ⊆ Cst 5) (Ct)
∗ ⊆ Ct−1

2) The product · is bilinear on Cs × Ct → Cst 6) (ab)∗ = b∗a∗.
3) The product on C is associative. 7) a∗∗ = a.
4) ∗ is conjugate linear from Ct into Ct−1 .

The vector spaces Ct are called the fibers of the bundle. Note that each
Ct is a ∗-tring with the product (a, b, c) := ab∗c, and in particular Ce is
a ∗-algebra (here and in the rest of the paper e will denote the unit of a
group).

Suppose that C = (Ct) is a ∗-algebraic bundle over G, and that I = (It)
is a subset of C such that I is also a ∗-algebraic bundle with the operations
inherited from C, which moreover satisfies CI ⊆ I and IC ⊆ I. Then we
say that I is a (two-sided) ideal of C. It is easy to see C/I := (Ct/It) is also
a ∗-algebraic bundle with the obviuos operations naturally induced on the
quotients by the operations on C.

Definition 2.15. Let C = (Ct)t∈G be a ∗-algebraic bundle, and α a C∗-
seminorm on Ce. We say that C is an α-positive ∗-algebraic bundle if for
each c ∈ C the element c∗c is positive in the Hausdorff completion (Ce)α
of Ce. We say that C is a positive ∗-algebraic bundle if it is α-positive
∀α ∈ SN (Ce).

In other words, C is positive if c∗c ∈ C+
e in the meaning of C+

e according
to Definition 2.1.

Definition 2.16. Let C = (Ct)t∈G be a ∗-algebraic bundle. Let ‖·‖ : C → R
be such that:

8) (Ct, ‖ · ‖) is a seminormed space, ∀t ∈ G.
9) ‖c1c2‖ ≤ ‖c1‖ ‖c2‖ ∀c1, c2 ∈ C.

10) ‖c∗c‖ = ‖c‖2.

We then say that ‖ ‖ is a C∗-seminorm on C, and that it is a C∗-norm if
each (Ct, ‖ · ‖) is a normed space. We represent respectively by SN (C) and
N (C) the sets of of C∗-seminorms and C∗-norms on C.

If, moreover,

11) C is α-positive, where α is the restriction of ‖ ‖ to the unit fiber Ce,
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we will say that (C, ·, ∗, ‖·‖) is a semi-pre-Fell bundle over the discrete group
G, and that it is a pre-Fell bundle if ‖ ‖ is a C∗-norm. A pre-Fell bundle C
is called a Fell bundle if each (Ct, ‖ · ‖) is complete for all t ∈ G.

Note that 9) and 10) imply that ‖c∗‖ = ‖c‖, ∀c ∈ C, and also that ‖ ‖ is
a C*-norm on the ∗-tring Ct.

The proof of the following result is routine, and it is left to the reader.

Proposition 2.17. Let C0 = (C0
t )t∈G be a pre-Fell bundle over the discrete

group G, with C∗-norm ‖ · ‖. For t ∈ G, let Ct be the completion of C0
t ,

and consider the family of Banach spaces (Ct)t∈G with the extended norm.
Then the product and involution on C0 extend by continuity to C, and with
the extended operations and norm C is a Fell bundle over G. We say that C
is a completion of the pre-Fell bundle C0.

Given a semi-pre-Fell bundle C = (Ct)t∈G, let I := {x ∈ C : ‖x‖ = 0}.
Then I can be identified with the ∗-algebraic bundle I = (It)t∈G, where
It := I ∩Ct, ∀t ∈ G. Note that I is also an ideal of C, for property 9) above
implies CI ⊆ I and IC ⊆ I. It is easy to check that C/I := (Ct/It)t∈G is
a pre-Fell bundle with the norm induced by the seminorm on C: if c ∈ Ct,
then ‖ct + It‖ := ‖ct‖. We will say that the Fell bundle C‖ ‖ obtained by
completing this pre-Fell bundle C/I is the Hausdorff completion of C.

Definition 2.18. Let A = (At)t∈G and B = (Bt)t∈G be *-algebraic bundles
over the discrete group G. A homomorphism φ : A → B is a map such that
φ(At) ⊆ Bt, ∀t ∈ G, and, ∀a, b ∈ A, t ∈ G: 1) φ

∣∣
At

: At → Bt is linear; 2)

φ(ab) = φ(a)φ(b); 3) φ(a∗) = φ(a)∗. If A and B are semi-pre-Fell bundles
we also require that φ is continuous on each fiber At.

Note that if A and B are semi-pre-Fell bundles and φ : A → B is a
homomorphism of *-algebraic bundles, then φ is continuous if and only if
φ : Ae → Be is continuous, because if x ∈ A, then

‖φ(x)‖2 = ‖φ(x)∗φ(x)‖ = ‖φ(x∗x)‖ ≤ ‖φ
∣∣
Ae
‖ ‖x∗x‖ = ‖φ

∣∣
Ae
‖ ‖x‖2.

In particular every homomorphism of *-algebraic bundles between Fell
bundles over discrete groups is continuous. Observe also that, with the
notion of homomorphism just introduced, any two Hausdorff completions of
a given semi-pre-Fell bundle are necessarily isomorphic, and therefore the
Hausdorff completion of a semi-pre-Fell bundle is essentially unique.

If β is a C∗-seminorm on the ∗-algebraic bundle C = (Ct), and α := β|Ce ,
it is clear that α ∈ SN (Ce). Besides, by properties 9) and 10) we have:

α(c∗c) = β(c∗c) = β(c)2 = β(cc∗) = α(cc∗), ∀c ∈ C.(5)

A natural question that arises is whether a C∗-seminorm on Ce can be
extended to a C∗-seminorm on C. It follows that if C is an α-positive ∗-
algebraic bundle, the necessary condition (5) is also sufficient for this to be
true:
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Proposition 2.19. Let C = (Ct)t∈G be a ∗-algebraic bundle over the discrete
group G, and α ∈ SN (Ce) such that C is α-positive. Then α can be extended
to a C*-seminorm on C if and only if α satisfies the relation (5) above. In

this case its extension is given by α̃ : C → [0,∞) such that α̃(c) :=
√
α(c∗c),

∀c ∈ C. Moreover α̃ ∈ N (C) ⇐⇒ α ∈ N (Ce).

Proof. Each fiber Ct is a right module over Ce, and 〈 , 〉tr : Ct × Ct →
Ce such that 〈c, d〉tr := c∗d is a right semi-inner product on Ct because
C is α-positive. Then α̃|Ct is a seminorm on Ct (see [15, page 3] or [6,
Proposition 3.30]).Therefore we have that α(〈c, d〉tr) ≤ α̃(c)α̃(d) and α̃(ca) ≤
α̃(c)α(a) ∀c, d ∈ Ct, a ∈ Ce (see for instance [6, Proposition 3.30]). Similarly,
Ct is a left module over Ce, and 〈 , 〉tl : Ct×Ct → Ce such that 〈c, d〉tl := cd∗

is a left semi-inner product on Ct, which induces the seminorm ˜̃α such that
˜̃α(c) := α(cc∗) ∀c ∈ Ct, and we have α(〈c, d〉tl) ≤ ˜̃α(c) ˜̃α(d) and ˜̃α(ac) ≤
α(a) ˜̃α(c) ∀c, d ∈ Ct, a ∈ Ce. Now suppose that (5) holds for α, that is α̃ = ˜̃α.
Then, if c ∈ Cs, d ∈ Ct, recalling the above inequalities and observing that
c∗c ∈ Ce, we have:

α̃(cd)2 = α(d∗c∗cd) = α(〈d, c∗cd〉tr) ≤ α̃(d)α̃(c∗cd) = α̃(d) ˜̃α(c∗cd)

≤ α̃(d)α(c∗c) ˜̃α(d) = α̃(c)2α̃(d) ˜̃α(d) = α̃(c)2α̃(d)2.

On the other hand: α̃(c∗c) =
√
α(c∗cc∗c) =

√
α(c∗c)2 = α̃(c)2. We conclude

that α̃ satisfies properties 8)–10) of Definition 2.16, so it is a C∗-seminorm
on C. The converse has already been observed, and the last statement is
clear. �

Since Ct can be considered as both a right and a left Ce-module, condition
(5) expresses the fact that the C*-seminorms induced on Ct in both cases
by the C*-norms α agree.

As in the case of ∗-algebras, the sets SN (C) and N (C) of C∗-seminorms
and C∗-norms on a ∗-algebraic bundle C are partially ordered sets. Moreover,
the considerations above lead to consider also the (partially ordered) sets:

SNC(Ce) := {α ∈ SN (Ce) : α(c∗c) = α(cc∗) ∀c ∈ C}
NC(Ce) := SNC(Ce) ∩N (Ce)

Theorem 2.20. Let C = (Ct)t∈G be a positive ∗-algebraic bundle over the
discrete group G. Then the map Φ : SN (C) → SNC(Ce) given by Φ(β) :=
β|Ce is an isomorphism of partially ordered sets, whose inverse Ψ is given

by Ψ(α) = α̃, where α̃(c) :=
√
α(c∗c), ∀c ∈ C. Besides: Φ(N (C)) = NC(Ce).

Proof. It is clear that both Φ and Ψ are order preserving, and Proposi-
tion 2.19 shows that Φ◦Ψ = IdSN (Ce). The fact that Ψ◦Φ = IdSN (C) follows
directly from the definition of α̃ and property 10) in Definition 2.16. �

Again as in the case of ∗-algebras, note that if α ≥ β are C*-seminorms
on the ∗-algebraic bundle C, then every α-positive element of C is β-positive
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as well. Moreover, the indentity on C induces a surjective homomorphism
of Fell bundles σαβ : Cα → Cβ.

We end the section with the definition of general Fell bundles and related
concepts.

A Fell bundle (or C∗-algebraic bundle) B = (Bt)t∈G over the locally com-
pact group G is a Banach bundle B over G, with fiber Bt over t ∈ G, and
such that there exist continuous product and involution defined on B and
satisfying conditions 1)–11) of Definition 2.14. Recall that a Banach bun-
dle ([13, II-13.4]) over a Hausdorff space X, called base space, is a pair
(B, p) formed by a Hausdorff space B, called total space, and a continuous
open surjection p : B → X, together with continuous maps ‖ ‖ : B → R,
+ : {(b, b′) ∈ B × B : p(b) = p(b′)} → B and C × B → B such that each
fiber Bx := p−1({x}) becomes a complex Banach space with the restrictions
of these maps, and such that it satisfies the additional property: if x ∈ X
and (bi) ⊆ B is a net such that p(bi) → x and ‖bi‖ → 0, then bi → 0x ∈ B,
where 0x is the zero element of Bx. A homomorphism of Banach bundles
φ : A → B over X is a continuous map such that φx := φ

∣∣
Ax

: Ax → Bx is a

bounded linear operator, ∀x ∈ X, and ‖φ‖ := supx∈X ‖φx‖ <∞.
A section of B is a function ξ : X → B such that p(ξ(x)) = x, ∀x ∈ X.

If ξ, η are continuous sections of B, and α ∈ C, then t 7→ αξ(t) + η(t)
is again a continuous section. We will denote by Cc(B) the vector space of
continuous sections of compact support of the Banach bundle B. If K ⊆ X is
a compact subset, we denote by CK(B) the subspace of Cc(B) whose elements
are those with support contained in K. The map ‖ ‖K : CK(B)→ R given
by ‖ξ‖K = maxx∈X ξ(x) is a norm and (CK(B), ‖ ‖K) is a Banach space.
We endow Cc(B) with the locally convex inductive limit topology induced
by the family {(CK(B), ιK)}K , where K runs over the family of compact
subsets of X, and ιK : CK(B) ↪→ Cc(B) is the natural inclusion. We refer
the reader to [13] for further information on Banach bundles.

If X is a topological space, Xd will denote the set X with the discrete
topology and, if B is a Banach bundle over X, we will denote by Bd the
Banach bundle over Xd whose fiber over x ∈ X is the corresponding fiber
of B. That is, Bd is the disjoint union of the fibers Bx, x ∈ X. Since B
is a topological space the notation just introduced is ambiguous. Thus, in
order to avoid any confusion we will use calligraphic letters only to represent
Banach bundles. Note that if A is a Fell bundle over G, then Ad is a Fell
bundle over Gd.

Definition 2.21. Let A = (At)t∈G and B = (Bt)t∈G be Fell bundles over
the locally compact group G. We say that a homomorphism of Banach
bundles φ : A → B is a homomorphism of Fell bundles if φ : Ad → Bd is a
homomorphism of Fell bundles over Gd (see Definition 2.18).

Along this work we will use repeatedly the following two results. The first
one is Cohen-Hewitt theorem: if B is a Banach algebra with approximate unit
and if E is a non-degenerate Banach B-module (i.e. spanEB = E), then
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for each x ∈ E there exist y ∈ E, b ∈ B, such that x = yb. Although the use
of this theorem is not strictly necessary for our purposes, it facilitates the
exposition and allows us to avoid the repetition of similar approximation
arguments. A proof of this theorem may be found in [13] (there is a nice
proof for Hilbert modules in [18]).

The second of the mentioned results is the theorem of Douady-dal Soglio
Hérault, which is fundamental in the theory of Banach bundles: let X be a
Hausdorff space, and (B, p) a Banach bundle over X; if X is paracompact
or locally compact, then for each b ∈ B there exists a continuous section of
compact support ξ of B such that ξ

(
p(b)

)
= b. The reader is referred to [13,

Apendix C] for a proof.

3. Tensor Products of Fell Bundles

Our aim in what follows is to introduce tensor products of Fell bundles.
A tensor product of the Fell bundles A = (At)t∈G and B = (Bs)s∈H over the
groups G and H will be a Fell bundle C = (Cr)r∈G×H over G×H, and we will
have that Ce is a tensor product of Ae and Be (recall that e denotes the unit
of the group). We will show that there exist, up to isomorphisms, unique
tensor products Cmax and Cmin of A and B, such that (Cmax)e = Ae

⊗
maxBe

and (Cmin)e = Ae
⊗

minBe.
In the first part of the section we consider the case of bundles over discrete

groups. The treatment of the general case is postponed to the the second
part of the section. Finally, the end of the section is devoted to study the
representations of tensor products.

3.1. Tensor products of Fell bundles over discrete groups. Let A =
(At)t∈G and B = (Bs)s∈H be Fell bundles over the groups G and H respec-
tively. Consider, for t ∈ G, s ∈ H, the algebraic tensor product At

⊙
Bs.

When we let t, s run in G and H, we obtain a family {At
⊙
Bs}(t,s)∈G×H

of vector spaces. Let denote by A
⊙
B the disjoint union of these vector

spaces. For (t, s), (t′, s′) ∈ G×H, we have unique linear maps
(
At
⊙
Bs
)
×(

At′
⊙
Bs′
)
→ Att′

⊙
Bss′ such that (at � bs, at′ � bs′) 7→ atat′ � bsbs′ , and

unique conjugate linear maps At
⊙
Bs → At−1

⊙
Bs−1 such that at � bs 7→

a∗t � b∗s. Put together, these families of maps define a product · :
(
A
⊙
B
)
×(

A
⊙
B
)
→
(
A
⊙
B
)

and an involution ∗ :
(
A
⊙
B
)
→
(
A
⊙
B
)

such that

the product is associative, bilinear on every
(
At
⊙
Bs
)
×
(
At′
⊙
Bs′
)
→

Att′
⊙
Bss′ , * is conjugate linear when restricted to At

⊙
Bs → At−1

⊙
Bs−1

and (x · y)∗ = y∗ ·x∗, ∀x, y ∈ A
⊙
B. In other words, A

⊙
B is a *-algebraic

bundle, in the sense of Definition 2.14. We will say that A
⊙
B is the alge-

braic tensor product of A and B.

Proposition 3.1. The algebraic tensor product of Fell bundles is a positive
∗-algebraic bundle (Definition 2.15).

Proof. Let A and B be Fell bundles over G and H respectively. We have to
show that for any s ∈ G, t ∈ H, and elements a1, . . . , an, a

′
1, . . . , a

′
n ∈ At,
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b1, . . . , bn, b
′
1, . . . , b

′
n ∈ Bt, the element (a∗1a

′
1 +· · ·+a∗na′n)�(b∗1b

′
1 +· · ·+b∗nb′n)

is a positive element of Ae
⊙
Be. Since As and Bt are positive C∗-trings, and

Hilbert modules over Ae and Be, this fact follows from Proposition 2.4. �

Definition 3.2. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles over
the discrete groups G and H, and consider their algebraic tensor product
A
⊙
B. If α is a C∗-norm on A

⊙
B, we will call the completion A

⊗
α B of

(A
⊙
B, α) a tensor product of A and B.

If A
⊗

α B is a tensor product of A and B, then the unit fiber
(
A
⊗

α B
)
e

is
a tensor product of Ae and Be. In fact, if we know the C∗-norm determined
by
(
A
⊗

α B
)
e

on Ae
⊙
Be, then we know the norm of every x ∈ A

⊗
α B,

because it is equal to
√
α(x∗x). Therefore, two tensor products will be

isomorphic if and only if their fibers on the identity element are the same
tensor product of Ae and Be. This raises the question of whether or not
a given tensor product of Ae and Be determines a tensor product of the
Fell bundles A and B. According to Proposition 2.19, if α is a C∗-norm
on Ae

⊙
Be, then α can be extended to a C∗-norm on A

⊙
B if and only

if α(x∗x) = α(xx∗), ∀x ∈ A
⊙
B, and in this case the extension is unique.

Writing x =
∑n

i=1 ai�bi ∈ Ar�Bs, this condition is α(
∑n

i,j=1 x
∗
ixi�y∗i yi) =

α(
∑n

i,j=1 xix
∗
i � yiy∗i ). Although we will not go deeper into this problem,

we will see that this is in fact the case for the maximal and minimal tensor
products (see Proposition 3.4 below). We begin with a result certainly well-
known; for lack of reference we include a proof of it.

Lemma 3.3. Let I and J be ideals of the C∗-algebras A and B respectively.
Then I

⊗
max J is the closure of I

⊙
J in A

⊗
maxB.

Proof. Let π : I
⊗

max J → B(H) be a faithful and non-degenerate repre-
sentation of I

⊗
max J . Then there are faithful and non-degenerate repre-

sentations πI : I → B(H) and πJ : J → B(H), such that πI(x)πJ(y) =
π(x ⊗ y) = πJ(y)πI(x), ∀x ∈ I, y ∈ J ([20, T.6.4]). Since πI and πJ
are non-degenerate they have unique extensions πA : A → B(H) and
πB : B → B(H) to representations of A and B respectively ([13, VI-19.11]).
If a ∈ A, x ∈ I, b ∈ B and y ∈ J , then πA(ax)πB(by) = πB(by)πA(ax),
because ax ∈ I and by ∈ J . Since πI and πJ are non-degenerate, we con-
clude that πA(a)πB(b) = πB(b)πA(a), ∀a ∈ A, b ∈ B. Hence there exists
a representation π̃ : A

⊗
maxB → B(H) such that π̃(a ⊗ b) = πA(a)πB(b),

∀a ∈ A, b ∈ B. Thus π̃ is an extension of π
∣∣
I
⊙
J
. Since π̃ is contractive, we

conclude that if x ∈ I
⊙
J , its norm as an element of A

⊗
maxB is greater

or equal to its norm in I
⊗

max J , and therefore they agree. �

Proposition 3.4. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles over
the discrete groups G and H. Then the norms ‖·‖min and ‖·‖max on Ae

⊙
Be

can be extended to C∗-norms on A
⊙
B.
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Proof. Let A∗tAt := span{a∗tat : at ∈ At} ⊆ Ae and B∗sBs := span{b∗sbs :
bs ∈ Bs} ⊆ Be. Then A∗tAt and B∗sBs are ideals in Ae and Be respec-
tively, and At may be seen as a positive C∗-tring with Art = A∗tAt and
Alt = AtA

∗
t , and similarly Bs. Recall that there exists a maximum C∗-

norm µ on At
⊙
Bs. By [6, Corollary 5.13], we must have (At

⊗
maxBs)

r =

A∗tAt
⊗

µr B
∗
sBs and (At

⊗
maxBs)

l = AtA
∗
t

⊗
µl BsB

∗
s , where µr denotes

the maximum norm on A∗tAt
⊙
B∗sBs and µl denotes the maximum norm

on AtA
∗
t

⊙
BsB

∗
s . Now, Lemma 3.3 implies that µr and µl are restric-

tions of the maximum norm of Ae
⊙
Be. Since At

⊗
maxBs is a Hilbert(

AtA
∗
t

⊗
µl BsB

∗
s -A∗tAt

⊗
µr B

∗
sBs

)
-bimodule we have, for x ∈ At

⊙
Bs

‖xx∗‖max = ‖xx∗‖µl = ‖x‖2µ = ‖x∗x‖µr = ‖x∗x‖max.

Thus ‖ ‖max may be extended to all of A
⊙
B by Proposition 2.19.

On the other hand, it is well-known that if C and D are C∗-subalgebras
of the C∗-algebras A and B respectively, then the restriction of the spatial
norm on A

⊙
B to C

⊙
D is precisely the spatial norm on C

⊙
D (see for

instance [6, Corollary B.14], or simply Proposition 2.10). Therefore the same
arguments given above for ‖ ‖max also apply to the spatial norm on Ae

⊙
Be

and hence ‖ ‖min can also be extended to Ae
⊙
Be. �

3.2. Tensor products of Fell bundles over locally compact groups.
We will extend next the construction done in the previous section to the
case of Fell bundles over arbitrary locally compact groups.

Suppose now that A = (At)t∈G and B = (Bs)s∈H are Fell bundles over
the locally compact groups G and H, and let Ad

⊗
α Bd be a tensor product

of Ad and Bd as in the previous section. We will endow Ad
⊗

α Bd with a
topology such that Ad

⊗
α Bd will be a Fell bundle over G×H.

For f ∈ Cc(A), g ∈ Cc(B), let f � g : G ×H → Ad
⊗

α Bd be such that
(f � g)(t, s) = f(t) ⊗ g(s), ∀t ∈ G, s ∈ H. Every f � g is a section of
Ad
⊗

α Bd. We consider the vector space

L := span{f � g : f ∈ Cc(A), g ∈ Cc(B)},

which is a vector subspace of the space of sections of Ad
⊗

α Bd. The topol-
ogy we want to define on Ad

⊗
α Bd is determined by the requirement that

every element of L is a continuous section:

Proposition 3.5. With the notation above we have:

(1) For each l ∈ L, the map G×H → R such that (t, s) 7→ α
(
l(t, s)

)
is

continuous.
(2) For each (t, s) ∈ G ×H, the set L(t, s) := {l(t, s) : l ∈ L} is dense

in At
⊗

αBs.
(3) There exists a unique topology on Ad

⊗
α Bd for which Ad

⊗
α Bd

is a Banach bundle over (G × H) and such that L is contained in
the space of continuous sections of the bundle Ad

⊗
α Bd with this

topology.



18 F. ABADIE

The Banach bundle over G×H thus obtained will be denoted by A
⊗

α B.

Proof. Since 3) is a consequence of 1) and 2) ([13, II-13.18]) it is enough
to prove the first two assertions. We begin by 2). If x =

∑n
i=1 ai ⊗ bi ∈

At
⊗

αBs, there exist continuous sections fi, gi of A and B respectively such
that fi(t) = ai, gi(s) = bi, ∀i = 1 . . . n ([13, C.17]). If l =

∑n
i=1 fi � gi, then

l ∈ L, and l(t, s) =
∑n

i=1 fi(t)⊗ gi(s) =
∑n

i=1 ai ⊗ bi = x. Hence 2) follows,
because At

⊙
Bs is dense in At

⊗
αBs.

To prove 1), fix l =
∑n

i=1 fi � gi ∈ L, and let (t, s)→ (t0, s0). Then:

α
(
l(t, s)

)2
= α

( n∑
i=1

fi(t)⊗ gi(s)
)2

= α
( n∑
i,j=1

fi(t)
∗fj(t)⊗ gi(s)∗gj(s)

)
Note that t 7→ fi(t)

∗fj(t) and s 7→ gi(s)
∗gj(s) are continuous maps, because

the fi and gi are continuous sections, and the involutions of A and B are con-
tinuous as well. Now the “cross-norm” property (i.e.: α(a⊗ b) = α(a)α(b))
of the C∗-norms on tensor products implies that a⊗b→ a0⊗b0 when a→ a0

and b→ b0. Therefore,
n∑

i,j=1

fi(t)
∗fj(t)⊗ gi(s)∗gj(s)→

n∑
i,j=1

fi(t0)∗fj(t0)⊗ gi(s0)∗gj(s0)

when (t, s)→ (t0, s0). Thus α
(
l(t, s)

)
→ α

(
l(t0, s0)

)
if (t, s)→ (t0, s0). �

If G is a group, * is an involution on a set X and l : G → X is a map,
we define a new map l̃ : G → X as l̃(t) = l(t−1)∗. In particular, if l is a

continuous section of compact support of a Fell bundle B, then l̃ also is.

Lemma 3.6. The involution ∗ : A
⊗

α B → A
⊗

α B is continuous.

Proof. We know from [13, II-13.18] that a base for the topology defined in
Proposition 3.5 is given by the sets

W(l, U, ε) = {w ∈ A
⊗
α

B : p(w) ∈ U, and α
(
l
(
p(w)

)
− w

)
< ε},

where p : A
⊗

α B → G×H is the projection, U ⊆ G×H is an open subset,
l =

∑
i fi � gi, with fi ∈ Cc(A), gi ∈ Cc(B), and ε > 0. In other words,

W(l, U, ε) =
⋃
t∈U B(l(t), ε), where B(l(t), ε) ⊆ (A

⊗
α B)t is the open ε-ball

with center l(t). Then we have:

W(l, U, ε)∗ = {w∗ ∈ A
⊗
α

B : p(w) ∈ U, and α
(
l
(
p(w)

)
− w

)
< ε}

= {w∗ ∈ A
⊗
α

B : p(w∗) ∈ U−1, and α
(
l
(
p(w∗)−1

)∗ − w∗) < ε}

= {z ∈ A
⊗
α

B : p(z) ∈ U−1, and α
(
l̃
(
p(z)

)
− z
)
< ε}

=W(l̃, U−1, ε),

Thus ∗ is continuous. �
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Proposition 3.7. The product (A
⊗

α B)× (A
⊗

α B)→ A
⊗

α B is contin-
uous.

Proof. We claim that if a→ a0 in A and b→ b0 in B, then a⊗ b→ a0 ⊗ b0
in A

⊗
α B. Let W ⊆ A

⊗
α B be an open set such that a0 ⊗ b0 ∈ W , and

let f ∈ Cc(A), g ∈ Cc(B) be such that f(t0) = a0 and g(s0) = b0. Then
(f � g)(t0, s0) = a0 ⊗ b0. Since f � g ∈ Cc(A

⊗
α B), and since the norm α

is continuous, there exist ε > 0 and open sets U ⊆ G and V ⊆ H such that
(t0, s0) ∈ U×V and W ∩ (A

⊗
α B)(t,s) ⊇ B

(
(f�g)(t, s), ε

)
, ∀(t, s) ∈ U×V .

Consider now the open subsets W (f, U, ε1/2) and W (g, V, ε1/2) of A and B
containing a0 and b0 respectively. We have W (f, U, ε1/2) ⊗W (g, V, ε1/2) =

{at ⊗ bs ∈ A
⊗

α B : (t, s) ∈ U × V, and ‖f(t) − at‖ < ε1/2, ‖g(s) − bs‖ <
ε1/2} ⊆ {x(t,s) ∈ A

⊗
α B : (t, s) ∈ U ×V, and α

(
(f �g)(t, s)−x(t,s)

)
< ε} =

W (f � g, U × V, ε) =
⋃

(t,s)∈U×V B
(
(f � g)(t, s), ε

)
⊆ W, so it follows that

a⊗ b→ a0 ⊗ b0 when a→ a0, b→ b0.
Note that ∀f, f ′ ∈ Cc(A), g, g′ ∈ Cc(B), the map µ : (G×H)×(G×H)→

A
⊗

α B given by
(
(t, s), (t′, s′)

)
7→ (f�g)(t, s)⊗(f ′�g′)(t′, s′) is continuous.

Indeed the products on A and B are continuous, f, f ′, g, g′ are continuous
as well, and since µ(t, s, t′, s′) = f(t)f ′(t′) ⊗ g(s)g′(s′), the continuity of µ
follows from the claim at the beginning of the proof.

Now pick elements x0 ∈ (A
⊗

α B)(t0,s0) and x′0 ∈ (A
⊗

α B)(t′0,s
′
0), and let

m ∈ L, 1 > ε > 0 such that x0x
′
0 ∈W (m,Z, ε), where Z is some open subset

of G×H containing (t0t
′
0, s0s

′
0). Let M > ε+ 1 +α(x0) +α(x′0) and l, l′ ∈ L

such that α(l(t0, s0)−x0) < ε/2M , α(l′(t′0, s
′
0)−x′0) < ε/2M . Then we have

α(l(t0, s0)l′(t′0, s
′
0)−x0x

′
0) =: d < ε. Let d < ε′ < ε. As seen above, the map

ll′ : (G×H)× (G×H)→ A
⊗

α B such that
(
(t, s), (t′, s′)

)
7→ l(t, s)l′(t′, s′)

is continuous, so there exist open neighborhoods U , V , U ′ and V ′ of t0, s0,
t′0 and s′0 respectively such that ll′

(
(U × V ) × (U ′ × V ′)

)
⊆ W (m,Z, ε′).

Let now N > 1 + ‖l‖∞ + ‖l′‖∞, 0 < δ < (ε − ε′)/4N . We have W (l, U ×
V, δ)W (l′, U ′ × V ′, δ)) ⊆ W (m,Z, ε). In fact, if x(t,s) ∈ W (l, U × V, δ),
x′(t′,s′) ∈W (l, U ′ × V ′, δ)

α(x(t,s)x
′
(t′,s′) −m(tt′, ss′)) ≤ α(x(t,s)x

′
(t′,s′) − l(t, s)l

′(t′, s′))

+ α(l(t, s)l′(t′, s′)−m(tt′, ss′))

≤ ε′ + α(x(t,s)

(
x′(t′,s′) − l

′(t′, s′)
)
)

+ α(
(
x(t,s) − l(t, s)

)
l′(t′, s′))

< ε′ +
ε− ε′

4

[
1

N
(α(x(t,s) − l(t, s))α(l(t, s))) + 1

]
< ε

�

Definition 3.8. Let A and B be Fell bundles over the locally compact
groups G and H, and let α be a C∗-norm on A

⊙
B. The tensor product
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A
⊗

α B of A and B with respect to α is the Fell bundle obtained by com-
pleting the algebraic tensor product A

⊙
B with respect to the C∗-norm α,

furnished with the topology provided by Proposition 3.5.

Proposition 3.9. Let A and B be Fell bundles over the locally compact
groups G and H. If α ≥ β are C∗-norms on A

⊙
B, then there exists a

unique homomorphism of Fell bundles σαβ : A
⊗

α B → A
⊗

β B such that

σαβ (a⊗ b) = a⊗ b, ∀a ∈ A, b ∈ B. This homomorphism is onto. Moreover,

if α ≥ β ≥ γ are C∗-norms on A
⊙
B, we have σαγ = σαβσ

β
γ .

Proof. Since α ≥ β for each (r, s) ∈ G×H the identity map on Ar
⊙
Bs has

a (unique) continuous extension to a map Ar
⊗

αBs → Ar
⊗

β Bs, which is
surjective because its image is both dense and closed. The collection of all
these maps is clearly a homomorphism σαβ from Ad

⊗
α Bd into Ad

⊗
β Bd.

It is also continuous from A
⊗

α B into A
⊗

β B, because the vector space
L of sections used to define the involved topologies is exactly the same,
and the map σαβ is the identity on the set of such sections. Thus σαβ is

continuous by [13, II-13.16]. The last assertion follows from the uniqueness
of the maps σαβ . �

Summarizing the constructions and results obtained up to now we have:

Theorem 3.10. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles over the
locally compact groups G and H. Then SNA⊙

B(Ae
⊙
Be) ∼= SN (A

⊙
B)

and NA⊙
B(Ae

⊙
Be) ∼= N (A

⊙
B) as a posets. Moreover N (A

⊙
B) has a

minimum and a maximum elements, namely the unique extensions of ‖·‖min

and ‖ · ‖max on Ae
⊙
Be to C*-norms on all of A

⊙
B.

As a consequence we can extend Propositions 2.10 and 2.11 to the context
of Fell bundles:

Proposition 3.11. Let π1 : A1 → B1 and π2 : A2 → B2 be homomorphisms
of Fell bundles. Then π1 � π2 : A1

⊙
A2 → B1

⊙
B2 is ‖ ‖min-continuous,

so it extends to a homomorphism π1
⊗

min π2 : A1
⊗

minA2 → B1
⊗

min B2.

Proposition 3.12. Let π1 : A1 → B1 and π2 : A2 → B2 be homomorphisms
of Fell bundles. Then π1 � π2 : A1

⊙
A2 → B1

⊙
B2 is ‖ ‖max-continuous,

so it extends to a homomorphism π1
⊗

max π2 : A1
⊗

maxA2 → B1
⊗

max B2.

Consequently, as in the case of C*-algebras and of C*-trings, we see that
the minimal and maximal tensor products of Fell bundles is a bifunctor
F× F→ F, where F is the category of Fell bundles.

3.3. Representations of tensor products. We will study now the repre-
sentations of tensor products of Fell bundles on Hilbert modules. The results
obtained, similar to the case of C∗-algebras, will be useful in the next sec-
tion. The first of them tells us how to obtain a representation of A

⊗
min B

starting with representations of A and B. The second one shows that there
exists a bijective correspondence between non-degenerate representations of
A
⊗

max B and non-degenerate commuting representations of A and B.
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Definition 3.13. Let A be a *-algebraic bundle over the discrete group G,
andH a Hilbert module. A map π : A → L(H) is called a representation ofA
on H if π(ab) = π(a)π(b), π(a∗) = π(a)∗ and π

∣∣
At

is linear, ∀a, b ∈ A, t ∈ G.

The representation π is said to be non-degenerate if spanπ(A)H = H. This
is equivalent to the restriction π

∣∣
Ae

to be non-degenerate.

Definition 3.14. Let A be a Fell bundle over the locally compact group G.
A representation of A on the Hilbert module H is a representation φ : Ad →
L(H) which is strongly continuous, that is, ∀h ∈ H the map A → H given
by a 7→ π(a)h is continuous.

Note that for G discrete every representation of the Fell bundle A is
automatically continuous, because ‖π(a)‖ ≤ ‖a‖, ∀a ∈ A, as is easy to
check.

If A is a Fell bundle (or just an *-algebraic bundle), and H is a Hilbert
module, we will denote by R(A,H) the family of non-degenerate represen-
tations of A on H. If B is another Fell bundle (or *-algebraic bundle),
we set: R(A,B,H) := {(π1, π2) ∈ R(A,H) × R(B,H) : π1(a)π2(b) =
π2(b)π1(a), ∀a ∈ A, b ∈ B}. If A and B are *-algebras, we will also use
the notations R(A,H), R(A,B,H), with the same meaning.

In what follows, given right Hilbert modules H and K, over the C*-
algebras C and D respectively, we will consider their exterior tensor product
H
⊗

minK, which is a right Hilbert module over C
⊗

minD. The reader is
referred to Subsection 2.2, as well as [15] or [6].

Proposition 3.15. Let A and B be Fell bundles over the locally compact
groups G and H respectively, and let πA ∈ R(A,HA), πB ∈ R(B,HB). Then
there exists a unique representation πA ⊗ πB ∈ R(A

⊗
min B,HA

⊗
minHB)

such that (πA ⊗ πB)(a ⊗ b) = πA(a) ⊗ πB(b), ∀a ∈ A and ∀b ∈ B. If πA
∣∣
Ae

and πB
∣∣
Be

are faithful, then (πA ⊗ πB)
∣∣
(A

⊗
min B)e

also is faithful.

Proof. According to [15, pages 36 and 37] (see also Corollary 2.13), we have
an isometric embedding L(HA)

⊗
min L(HB) ↪→ L(HA

⊗
minHB), such that,

∀T ∈ L(HA), S ∈ L(HB), hA ∈ HA, hB ∈ HB: (T ⊗ S)(hA ⊗ hB) =
T (hA) ⊗ S(hB). Thus we may consider, for each (t, s) ∈ G × H, the map
At×Bs → L(HA

⊗
minHB) such that (at, bs) 7→ πA(at)⊗ πB(bs). This map

is bilinear, so there exists a unique linear map (πA ⊗ πB)(t,s) : At
⊙
Bs →

L(HA
⊗

minHB) such that (πA⊗πB)(t,s)(at�bs) = πA(at)⊗πB(bs), ∀at ∈ At,
bs ∈ Bs. The collection of these linear maps is a representation πA ⊗ πB
of the pre-Fell bundle A

⊙
B. Restricted to Ae

⊙
Be this map coincides

with πA
∣∣
Ae
⊗ πB

∣∣
Be

: Ae
⊙
Be → L(HA)

⊗
min L(HB) which is contractive

with respect to ‖ ‖min on Ae
⊙
Be ([20, T.5.19]). It follows that πA ⊗ πB

extends to a representation of the Fell bundle Ad
⊗

min Bd. Moreover this
representation is continuous in the topology of A

⊗
min B (recall Definition

3.8 and Proposition 3.5). Indeed, for hA ∈ HA and hB ∈ HB consider
the Banach bundle G×H × (HA

⊗
minHB) over G×H (with the product
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topology and the natural projection), and the map Φ : A
⊗

min B → G×H×
(HA

⊗
minHB) given by Φ(ct,s) = (t, s, (πA ⊗ πB)(ct,s)(hA ⊗ hB)) , ∀ct,s ∈

At
⊗

minBs. Let L be as in Proposition 3.5. To see that Φ is a continuous
homomorphism of Banach bundles it is enough to show, according to [13,
II-13.16], that for all l ∈ L the map Φl is a continuous section of the bundle
G × H × (HA

⊗
minHB). Clearly it is sufficient to check this for sections

of the form f � g, with f ∈ Cc(A), g ∈ Cc(B). Thus assume that (t, s) →
(t0, s0) in G×H. We have to show that Φ (f(t)⊗ g(s))→ Φ (f(t0)⊗ g(s0)),
which is equivalent to showing that πA(f(t))hA ⊗ πB(g(s))hB converges to
πA(f(t0))hA ⊗ πB(g(s0))hB. Now, if ε(t, s) = ‖πA(f(t))hA ⊗ πB(g(s))hB −
πA(f(t0))hA ⊗ πB(g(s0))hB‖, we have:

ε(t, s) ≤ ‖πA(f(t))hA ⊗ πB(g(s))hB − πA(f(t))hA ⊗ πB(g(s0))hB‖
+ ‖πA(f(t))hA ⊗ πB(g(s0))hB − πA(f(t0))hA ⊗ πB(g(s0))hB‖

≤ ‖πA(f(t))‖ ‖hA‖ ‖πB(g(s))hB − πB(g(s0))hB‖
+ ‖πA(f(t))hA − πA(f(t0))hA‖ ‖πB(g(s0))hB‖

≤ ‖f‖∞ ‖hA‖ ‖πB(g(s))hB − πB(g(s0))hB‖
+ ‖πA(f(t))hA − πA(f(t0))hA‖ ‖g‖∞ ‖hB‖,

which converges to zero because πA and πB are continuous representations.
The fact that Φ is continuous implies that ∀hA ∈ HA, hB ∈ HB, the

map A
⊗

min B → HA
⊗

minHB such that c 7→ (πA ⊗ πB)(c)(hA ⊗ hB) is
continuous. Since ‖(πA ⊗ πB)(c)‖ ≤ ‖c‖, ∀c ∈ A

⊗
min B, we also have

that c 7→ (πA ⊗ πB)(c)(h) is continuous, ∀h ∈ HA
⊗

minHB. It follows that
πA ⊗ πB is a representation.

If πA, πB are non-degenerate, then so are πA
∣∣
Ae

and πB
∣∣
Be

. By Cohen-

Hewitt, given hA ∈ HA, hB ∈ HB, there exist a ∈ Ae, b ∈ Be, h′A ∈ HA, h′B ∈
HB such that πA(a)h′A = hA and πB(b)h′B = hB. Therefore (πA ⊗ πB)(a ⊗
b)(h′A ⊗ h′B) = hA ⊗ hB. Consequently (πA ⊗ πB(A

⊗
min B))(HA

⊗
minHB)

is dense in HA
⊗

minHB.
Finally, (πA ⊗ πB)

∣∣
(A

⊗
min B)e

= πA
∣∣
Ae
⊗ πB

∣∣
Be

, and this one is injective

if and only if πA
∣∣
Ae

and πB
∣∣
Be

are injective ([20, T.5.19]). �

Suppose that A = (At)t∈G is a Fell bundle and L,R : A → A are continu-
ous maps such that there exists t ∈ G for which L(As) ⊆ Ats, R(Bs) ⊆ Bst,
∀s ∈ G, L

∣∣
As

: As → Ats, R
∣∣
As

: As → Ast are linear and bounded, and

‖L‖ := sups ‖L
∣∣
As
‖ <∞, ‖R‖ := sups ‖R

∣∣
As
‖ <∞. Then (L,R) is called a

multiplier of order t of A ([13]) if ∀a1, a2 ∈ A the following holds:

a1L(a2) = R(a1)a2 L(a1a2) = L(a1)a2 R(a1a2) = a1R(a2)

The set of multipliers of A of order t is denoted by Mt(A), and M(A) =⋃
t∈GMt(A) denotes the set of all multipliers of A (the notation differs from

the one used in [13]). Every Mt(A) is a Banach space with the obvious
operations and the norm: ‖(L,R)‖0 = max{‖L‖, ‖R‖}. In fact we have
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‖L‖ = ‖R‖. Moreover we have a product and an involution on M(A):

(L1, R1)(L2, R2) = (L1L2, R2R1) (L,R)∗ = (R∗, L∗)

where L∗(a) = L(a∗)∗ and R∗(a) = R(a∗)∗. With these operations and norm
M(A) is a Fell bundle over Gd. In addition M(A) has a topology, in which
ui = (Li, Ri) converges to u = (L,R) if ∀a ∈ A we have that Li(a)→ L(a)
and Ri(a) → R(a). By analogy to the case of C∗-algebras, we call this
topology strict (in [13, VIII-15.2] this topology is called strong). If u =
(L,R) ∈M(A), we write ua and au instead of L(a) and R(a) respectively.

There is an isometric and continuous inclusion A ↪→M(A), given by a 7→
(La, Ra), where La is multiplication by a on the left, and Ra is multiplication
by a on the right. In particular, the topology of A is stronger than the
topology inherited from the strict topology of M(A). If Ae is unital, these
topologies agree. There is also an isomorphism M(Ae) ∼= Me(A): since At
is a Hilbert Ae-bimodule, then it is also a Hilbert M(Ae)-bimodule, and it
can be shown that the actions of left and right multiplications by elements
of M(Ae) on A define multipliers of order e (see [13, VIII-3.8]). If π : A →
L(H) is a non-degenerate representation of A, then there exists a unique
extension ([13, VIII-15.3]) of π to a representation π′ : M(A)→ L(H) such
that ∀h ∈ H, the map u 7→ π′(u)h is strictly continuous on cylinders of A
(the cylinder of radius r of A is Cr := {a ∈ A : ‖a‖ ≤ r}).

Lemma 3.16. The maps Mt(A) × A → A: (u, a) 7→ ua and (u, a) 7→ au
are continuous, ∀t ∈ G.

Proof. Recall that for any multiplier u ∈Mt(A), the maps A → A: a 7→ ua
a 7→ au are continuous. Suppose that (ui, ai) → (u, a) in Mt(A) × A,
with ai ∈ Asi , a ∈ As. Since the norm ‖ · ‖ : A → R is continuous, there
exist M ≥ 0 and i0 such that ∀i ≥ i0 we have ‖ai‖ ≤ M . Hence if i ≥ i0:
max{‖uiai−uai‖, ‖aiui−aiu‖} ≤M ‖ui−u‖ → 0, so we have (uiai−uai)→
0ts and (aiui − aiu) → 0st when i → ∞. On the other hand, we have that
uai → ua and aiu→ au. Thus uiai → ua and aiui → au if i→∞. �

The next result is analogous to [20, Lemma T.6.1.].

Lemma 3.17. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles and
A
⊗
B a tensor product of A and B. Then there exist unique inclusions ιA :

M(A) → M(A
⊗
B) and ιB : M(B) → M(A

⊗
B) such that ιA(u)ιB(v) =

ιB(v)ιA(u), ∀u ∈ M(A), v ∈ M(B), and such that ιA(a)ιB(b) = a ⊗ b,
∀a ∈ A, b ∈ B. These inclusions are isometric and continuous in the strict
topologies when restricted to cylinders.

Proof. Let u ∈Mt(A). For r ∈ G, s ∈ H, the map Ar×Bs → Atr
⊗

Bs such
that (ar, bs) 7→ (uar, bs) is bilinear, and therefore there exists a unique linear
map Lu : At

⊙
Bs → Atr

⊗
Bs such that ar⊗bs 7→ uar⊗bs. Similarly, there

exists Ru : At
⊙
Bs → Art

⊗
Bs such that Ru(ar ⊗ bs) = aru ⊗ bs. The

collection of such maps define two applications Lu, Ru : A
⊙
B → A

⊗
B

such that ∀x, y ∈ A
⊙
B ⊆ A

⊗
B satisfy: Lu(xy) = Lu(x)y, Ru(xy) =
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xRu(y), xLu(y) = Ru(x)y. If we prove that Lu, Ru are bounded, then
they extend by continuity on each fiber to continuous operators, which still
satisfy the above algebraic relations. In other words, the pair formed by
these extensions will be a multiplier of order (t, e) of (A

⊗
B)d.

Let x =
∑n

i=1 ai ⊗ bi ∈ Ar
⊗

Bs. Then: ‖Lux‖2 = ‖
∑n

i=1 uai ⊗ bi‖2 =
‖
∑n

i,j=1 a
∗
iu
∗uaj ⊗ b∗i bj‖. Let u = (uij) ∈Mn(M(Ae)), a = (aij) ∈Mn(Ar),

given by: uij =

{√
u∗u if i = j,

0 otherwise
and aij =

{
aj if i = 1,

0 otherwise
. Since Ar is

a right Hilbert M(Ae)-module, then Mn(Ar) is a right Hilbert Mn(M(Ae))-
module. Then we have 〈ua, ua〉 ≤ u∗u〈a, a〉 ≤ ‖u‖2〈a, a〉. Thus c :=
‖u‖2〈a, a〉r − 〈ua, ua〉r ≥ 0. An easy computation shows that if c = (cij),
then cij = a∗i (‖u‖2 − u∗u)aj . On the other hand, Mn(Bs) is a Hilbert
Mn(M(Be))-module. In particular if b = (bij) ∈ Mn(Bs) is given by

bij =

{
bj if i = 1

0 otherwise
, the element b∗b = (b∗i bj) is positive in Mn(M(Be)).

Now, Lemma 2.3 implies that c ⊗ b∗b =
(
a∗i (‖u‖2 − u∗u)aj ⊗ b∗i bj

)
is a

positive element in any C∗-completion of Mn(M(Ae))
⊙
Mn(M(Be)), and∑n

i,j=1 a
∗
i (‖u‖2−u∗u)aj⊗ b∗i bj is a positive element in any C∗-completion of

M(Ae)
⊙
M(Be) (alternatively, the positivity of c⊗b∗b can be deduced from

the proof of [15, Lemma 4.3], which does not really use that the norm in-
volved is ‖ ‖min). Thus ‖

∑n
i,j=1 a

∗
iu
∗uaj⊗b∗i bj‖ ≤ ‖u‖2 ‖

∑n
i,j=1 a

∗
i aj⊗b∗i bj‖,

for any C∗-norm on Ae
⊙
Be. This shows that ‖Lux‖2 ≤ ‖u‖2 ‖x‖2, so

Lu is bounded. Similarly we see that ‖Rux‖2 ≤ ‖u‖2 ‖x‖2, and therefore
(Lu, Ru) extends to a multiplier ιA(u) on (A

⊗
B)d, and ‖ιA(u)‖ ≤ ‖u‖.

In fact ‖ιA(u)‖ = ‖u‖: if a ∈ A, b ∈ B are such that ‖a‖, ‖b‖ ≤ 1, then
‖ιA(u)‖ ≥ ‖ιA(u)(a⊗ b)‖ = ‖ua‖ ‖b‖ = ‖ua‖, and therefore ‖ιA(u)‖ ≥ ‖u‖.
Then ‖ιA(u)‖ = ‖u‖, so ιA is an isometry.

To see that ιA(u) ∈M(A
⊗
B), it remains to prove that it is continuous.

To this end consider f ∈ Cc(A), g ∈ Cc(B). Then the maps G×H → A
⊗
B

such that (t, s) 7→ uf(t) ⊗ g(s) and (t, s) 7→ f(t)u ⊗ g(s) are continu-
ous. Suppose that xi → x in A

⊗
B, and let l =

∑
i fi � gi be such that

‖l(t, s) − x‖ < ε, where x ∈ At
⊗

Bs, xi ∈ Ati
⊗

Bsi . Since xi → x and
l(ti, si)→ l(t, s), there exists i0 such that ∀i ≥ i0 we have ‖l(ti, si)−xi‖ < ε.
Now ‖Lul(ti, si) − Luxi‖ ≤ ε‖u‖, and ‖Lul(t, s) − Lux‖ ≤ ε‖u‖, and since
Lul(ti, si)→ Lu(t, s), we conclude that Luxi → Lux.

Let see now that ιA is strictly continuous on cylinders. If a ∈ A, b ∈ B,
and (ui) ⊆ A is a net strictly convergent to u ∈ A, with ‖ui‖, ‖u‖ ≤ C, then:
ιA(ui)(a⊗b) = uia⊗b→ ua⊗b = ιA(u)(a⊗b) and (a⊗b)ιA(ui) = aui⊗b→
au⊗ b = (a⊗ b)ιA(u). Then ιA(ui)x→ ιA(u)x and xιA(ui)→ xιA(u), ∀x ∈
A
⊙
B. Since ‖ιA(ui)‖, ‖ιA(u)‖ ≤ C, we conclude that ιA(ui)x → ιA(u)x

and xιA(ui) → xιA(u), ∀x ∈ A
⊗
B. Thus ιA(ui) converges strictly to

ιA(u).
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Similarly we construct ιB : M(B) → M(A
⊗
B): if v ∈ M(B) and a ∈

A, b ∈ B, then ιB(v)(a ⊗ b) = a ⊗ vb, and (a ⊗ b)ιB(v) = a ⊗ bv. It is
clear that ιA(u)ιB(v) = ιB(v)ιA(u), ∀u ∈ M(A), v ∈ M(B), and also that
ιA(a)ιB(b) = a⊗ b, ∀a ∈ A, b ∈ B.

This way we obtain a map M(A)×M(B)→M(A
⊗
B), given by (u, v) 7→

ιA(u)ιB(v), which is bilinear on each Mt(A)×Ms(B), and therefore we get
a map M(A)

⊙
M(B) → M(A

⊗
B), which is linear on each Mt(A) ⊗

Ms(B), and which is a homomorphism of Fell bundles because ιA(u) and
ιB(v) commute, ∀u ∈M(A), v ∈M(B). �

Proposition 3.18. Let A and B be Fell bundles over the locally compact
groups G and H respectively, and let H be a Hilbert module. Then for each
(π1, π2) ∈ R(A,B,H), there exists a unique π ∈ R(A

⊗
max B,H) such that

π(a⊗b) = π1(a)π2(b), ∀a ∈ A, b ∈ B, and the map (π1, π2) 7→ π thus defined
is a bijection between R(A,B,H) and R(A

⊗
max B,H).

Proof. Let (π1, π2) ∈ R(A,B,H). The map A × B → L(H) such that
(at, bs) 7→ π1(at)π2(bs) is bilinear on each At×Bs, and therefore there exists
a unique π : A

⊙
B → L(H) such that π(at ⊗ bs) = π1(at)π2(bs). Since

π1(a) and π2(b) commute, ∀a ∈ A, b ∈ B, we have that π : A
⊙
B → L(H)

is a representation of the pre-Fell bundle A
⊙
B. Note that x 7→ ‖x‖′ :=

max{‖x‖max, ‖π(x)‖} is a C∗-norm on At
⊙
Bs, so ‖ · ‖′ = ‖ · ‖max, and

then ‖π(x)‖ ≤ ‖x‖max, ∀x ∈ At
⊙
Bs. Thus π has a unique extension to

a representation π : (A
⊗

max B)d → L(H). It is easy to see that this rep-
resentation is non-degenerate: since π1 is non-degenerate, for every h ∈ H
there exist h′ ∈ H and a ∈ Ae such that π2(a)h′ = h. Since π2 is non de-
generate, there exist h′′ ∈ H and b ∈ Be such that π1(b)h′′ = h′. Therefore
π(a⊗ b)h′′ = π1(a)π2(b)h′′ = π1(a)h′ = h.

To see that π is continuous is sufficient, by [13, II-13.16], to prove that
∀f ∈ Cc(A), g ∈ Cc(B), and h ∈ H, the map F : G × H → H such that
F (t, s) = π ((f � g)(t, s))h is continuous. Now

‖F (t, s)− F (t0, s0)‖ = ‖π1 (f(t))π2 (g(s))h− π1 (f(t0))π2 (g(s0))h‖
≤ ‖π1(f(t)) (π2(g(s))− π2(g(s0)))h‖

+ ‖ (π1(f(t))− π1(f(t0)))π2(g(s0))h‖
≤ ‖f‖∞ ‖(π2(g(s))h− π2(g(s0))h‖

+ ‖π1(f(t))π2(g(s0))h− π1(f(t0))π2((s0))h‖
Then F (t, s)→ F (t0, s0) if (t, s)→ (t0, s0). Therefore π ∈ R(A

⊗
max B,H).

Conversely suppose that π ∈ R(A
⊗

max B,H). By [13, VIII-15.3], π
can be uniquely extended to a representation π′ of M(A

⊗
max B) such that

x 7→ π′(x)h is strictly continuous on cylinders, ∀h ∈ H. Let π1 = π′ιA
∣∣
A :

A → L(H), and π2 = π′ιB
∣∣
B : B → L(H), where ιA and ιB are the inclusions

provided by Lemma 3.17. Since π′, ιA and ιB are continuous on cylinders,
immediately follows that ∀h ∈ H the maps A → H and B → H given
by a 7→ π1(a)h and b 7→ π2(b)h respectively are continuous, from where it
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follows that π1 and π2 are continuous representations. Since ιA(a) and ιB(b)
commute, ∀a ∈ A and b ∈ B, then π1(a) and π2(b) commute as well. Finally,
the representations π1 and π2 are non-degenerate. To see this is enough to
show that π(a ⊗ b)h is in the image of π1 and the image of π2, ∀a ∈ A,
b ∈ B and h ∈ H. By Cohen-Hewitt a and b can be factorized as a = a1a2,
b = b1b2, and therefore π1(a1)π(a2 ⊗ b)h = π(a1a2 ⊗ b)h = π(a ⊗ b)h and
π2(b1)π(a⊗ b2)h = π(a⊗ b1b2)h = π(a⊗ b)h.

In conclusion we constructed two correspondences (π1, π2) 7→ π and π 7→
(πιA

∣∣
A, πιB

∣∣
B), which clearly are mutually inverse. �

4. C*-algebras of Tensor Products of Fell Bundles

The first goal of this section is to compare tensor products of the cross-
sectional algebras of the Fell bundles A and B with the cross-sectional alge-
bras of tensor products of A and B. This is accomplished in Propositions 4.2
and 4.3, and in Theorem 4.7. The second objective is to give some applica-
tions.

Let B be a Fell bundle over a locally compact group G. Then there are
two important cross-sectional C∗-algebras associated with B: the full cross-
sectional algebra C∗(B), and the reduced cross-sectional algebra C∗r (B). We
recall next their definitions.

Suppose that G is a locally compact group with Haar measure λ and
modular function ∆. Let B be a Fell bundle over G and let L1(B) := {f :
G → A : f(t) ∈ Bt,∀t ∈ G, and (t 7→ ‖f(t)‖) ∈ L1(G,λ)}. Then Cc(B)
and L1(B) are *-algebras with the operations: f ∗ g(t) =

∫
G f(r)g(r−1t),

f∗(t) = ∆(t)−1f(t−1)∗. Moreover, L1(B) is a Banach *-algebra with the
norm: ‖f‖1 =

∫
G ‖f(t)‖. The enveloping C∗-algebra of L1(B) is called the

cross-sectional algebra of B, and it is denoted by C∗(B).
Suppose that φ : A → B is a homomorphism of Fell bundles. If f ∈ L1(A)

we have that φ1(f) : G→ B, given by φ1(f)(t) = φ
(
f(t)

)
, belongs to L1(B),

and ‖φ1(f)‖1 ≤ ‖f‖1. Moreover φ1 is a homomorphism of *-algebras, so
it uniquely extends to a homomorphism C∗(φ) : C∗(A) → C∗(B). This
way we obtain a functor from the category of Fell bundles over G to the
category of C∗-algebras. In fact this functor is the compostion of the functor
A 7→ C∗(A) from the category of Banach *-algebras with approximate unit
and contractive homomorphisms to the category of C∗-algebras, with the

functor: A 7→ L1(A),
(
A φ→ B

)
7→
(
L1(A)

φ1→ L1(B)
)
.

There is a bijection between non-degenerate representations of the Fell
bundle B and non-degenerate representations of the C∗-algebra C∗(B). In
one direction this correspondence consists of passing from a representation
π : B → L(H) to its integrated form

∫
G π : C∗(B)→ L(H), characterized by

〈
∫
G π(f)ξ, η〉 =

∫
G〈π(f(t))ξ, η〉dt, ∀f ∈ Cc(B), ξ, η ∈ H (see [13, VIII-13.2]).

Among the representations of B there is one of particular importance: the
(left) regular representation, which we describe below. Note that Cc(B) is a
right Be-module with the action given by pointwise multiplication. Moreover
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the map 〈·, ·〉 : Cc(B) × Cc(B) → Be such that 〈ξ, η〉 =
∫
G ξ(s)

∗η(s)ds is a
pre-inner product. Completing Cc(B) with respect to the norm defined by
〈·, ·〉 we obtain a full right Hilbert Be-module, which is denoted by L2(B).
Again, it is not dificult to check that B 7→ L2(B) is a functor. There exists
a unique representation ΛB : B → L(L2(B)) such that ΛBbtξ(s) = btξ(t

−1s)
∀s, t ∈ G, bt ∈ Bt and ξ ∈ Cc(B) (if no confusion can arise we write just
Λ instead of ΛB). This is called the regular representation of B on L2(B).
Its integrated form is also called the regular representation, and it satisfies
Λf (ξ) = f ∗ ξ, ∀f ∈ Cc(B) ⊆ C∗(B) and ∀ξ ∈ Cc(B) ⊆ L2(B), where the
convolution f ∗ ξ is defined as: f ∗ ξ(t) =

∫
G f(s)ξ(s−1t)ds. The reduced

cross-sectional algebra is then defined as: C∗r (B) := ΛB(C∗(B)) ⊆ L(L2(B)).
When we look at the regular representation as a homomorphism ΛB :

C∗(B)→ C∗r (B), then it is clear that ΛB is onto. In the case that ΛB is also
injective, thus an isomorphism, we say that the Fell bundle B is amenable.
The reader is referred to [12], [9] and [3] for further information on the
reduced cross-sectional algebra.

It can be shown that B 7→ C∗r (B) also is a functor, and in fact Λ is a
natural transformation from C∗ to C∗r ([5, page 277]).

4.1. Cross-sectional algebras.

Lemma 4.1. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles and suppose
that A

⊗
B is a tensor product of A and B. Then there exists a unique

homomorphism of algebras jc : Cc(A)
⊙
Cc(B) → Cc(A

⊗
B), such that

jc(f�g) = f�g, that is: jc(f�g)(t, s) = f(t)⊗g(s), ∀f ∈ Cc(A), g ∈ Cc(B),
t ∈ G, and s ∈ H. Moreover jc is injective and jc(Cc(A)

⊙
Cc(B)) is dense

in Cc(A
⊗
B) in the inductive limit topology.

Proof. The existence and uniqueness of the linear map jc follows from the
universal property of tensor products. It is clear that jc is a homomorphism
of *-algebras. To see that it is injective suppose that l =

∑n
i=1 fi � gi ∈

ker jc. Then 0 = 〈jc(l), jc(l)〉 =
∫
G×H

∑n
i,j=1 fi(t)

∗fj(t) ⊗ gi(s)∗gj(s)d(t, s).

On the other hand we have
∫
G×H

∑n
i,j=1 fi(t)

∗fj(t) ⊗ gi(s)
∗gj(s)d(t, s) =( ∫

G

∑n
i,j=1 fi(t)

∗fj(t)dt
)
⊗
( ∫

H

∑n
i,j=1 gi(s)

∗gj(s)ds
)
. Therefore, if we think

of l as an element of L2(A)
⊙
L2(B) we have that 〈jc(l), jc(l)〉 = 〈l, l〉, where

the latter is the pre-inner product of L2(A)
⊙
L2(B) computed in l. Since

〈l, l〉 = 0, it follows that l = 0.
Let see that jc(Cc(A)

⊙
Cc(B)) is dense in Cc(A

⊗
B) in the induc-

tive limit topology. It is clear that jc(Cc(A)
⊙
Cc(B)))(t, s) is dense in

(A
⊗
B)(t,s), ∀(t, s) ∈ G ×H. On the other hand, if Θ = Cc(G)

⊙
Cc(H),

let θ ∈ Θ and l ∈ Cc(A)
⊙
Cc(B), say θ =

∑
i φi � ψi and l =

∑
j fj � gj ,

then: θjc(l)(t, s) =
(∑

i φi(t)ψi(s)
)(∑

j fj(t) ⊗ gj(s)
)

=
∑

i

∑
j(φifj)(t) ⊗

(ψigj)(s) = jc(l
′)(t, s), where l′ =

∑
i

∑
j φifj � ψigj ∈ Cc(A)

⊙
Cc(B).

Thus jc(Cc(A)
⊙
Cc(B)) is dense in Cc(A

⊗
B) by [3, Lemma 5.1]. �
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Proposition 4.2. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles. Then
there exists a unique isomorphism j : C∗(A)

⊗
maxC

∗(B)→ C∗(A
⊗

max B),
such that j(f ⊗ g)(t, s) = f(t) ⊗ g(s), ∀f ∈ Cc(A), g ∈ Cc(B), and (t, s) ∈
G×H.

Proof. Recall that if H is a Hilbert space and C = (Ct)t∈G is a Fell bundle,
then there is a bijection between R(C,H) and R

(
C∗(C),H

)
such that to

each π ∈ R(C,H) corresponds the integrated representation
∫
G π of C∗(C),

which is determined by its values on elements of Cc(C): if f ∈ Cc(C) and
h ∈ H, then (

∫
G π)f

∣∣
h

=
∫
G π
(
f(t)

)
hdt. Note as well that if C′ = (C ′s)s∈H is

another Fell bundle, then the map R(C, C′,H) → R
(
C∗(C), C∗(C′),H

)
such

that (π, π′) 7→ (
∫
G π,

∫
H π
′) is also a bijection, because the corresponding

integrands commute. On the other hand, by Proposition 3.18 we have a
bijection between R(C, C′,H) and R(C

⊗
max C′,H), given by (π1, π2) 7→ π1×

π2, where (π1 × π2)(a⊗ b) = π1(a)π2(b).
Let jc : Cc(A)

⊙
Cc(B)→ Cc(A

⊗
max B) be the map provided by Lemma

4.1. The comments above imply that C∗(A)
⊗

maxC
∗(B) and C∗(A

⊗
max B)

are respectively the completions of Cc(A)
⊙
Cc(B) and jc(Cc(A)

⊙
Cc(B))

with respect to the norms:

‖
∑
i

fi � gi‖ = sup{‖
∑
i

∫
G
π1(fi)

∫
H
π2(gi)‖ : (π1, π2) ∈ R(A,B,H)},

‖jc(
∑
i

fi � gi)‖ = sup{‖
∫
G×H

(π1 × π2)(
∑
i

fi ⊗ gi)‖ : (π1, π2) ∈R(A,B,H)}.

Now, if h ∈ H:(∫
G×H

(
π1 × π2

)(∑
i

fi ⊗ gi
))

h =

∫
G×H

∑
i

π1

(
fi(t)

)
π2

(
gi(s)

)
hd(t, s)

=
∑
i

∫
G

∫
H
π1

(
fi(t)

)
π2

(
gi(s)

)
hdsdt

=
∑
i

∫
G
π1

(
fi(t)

) ∫
H
π2

(
gi(s)

)
hdsdt

=
∑
i

∫
G
π1

(
fi(t)

)(∫
H
π2(gi)

)
hdt

=
∑
i

(∫
G
π1(fi)

∫
H
π2(gi)

)
h.

Thus jc : Cc(A)
⊙
Cc(B) → jc(Cc(A)

⊙
Cc(B)) is an isometry with these

norms so it extends uniquely to an isomorphism between C∗(A)
⊗

maxC
∗(B)

and the C*-algebra jc(Cc(A)
⊙
Cc(B). Since by Lemma 4.1 jc(Cc(A)

⊙
Cc(B)

is dense in Cc(A
⊗

max B) in the inductive limit topology, then it is also dense
in C∗(A

⊗
max B). �
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Proposition 4.3. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles, and
suppose that α ≥ β are C∗-norms on A

⊙
B. Then there exist a unique

homomorphism σαβ : C∗(A
⊗

α B) → C∗(A
⊗

β B) such that σαβ (f � g) =

f � g, ∀f ∈ Cc(A), g ∈ Cc(B). Moreover σαβ is surjective.

Proof. By Proposition 3.9 there exists a surjective homomorphism of Fell
bundles σαβ : A

⊗
α B → A

⊗
β B. Then there is an induced homomorphism

σαβ : C∗(A
⊗

α B)→ C∗(A
⊗

β B), which we still denote by σαβ . If f ∈ Cc(A),

g ∈ Cc(B), σαβ (f�g)(t, s) = σαβ
(
f(t)⊗g(s)

)
= f(t)⊗g(s) = f�g(t, s), from

where it follows that σαβ (f � g) = f � g. Since span{f � g : f ∈ Cc(A), g ∈
Cc(B)} is dense in C∗(A

⊗
α B), we conclude that σαβ is surjective. �

Consider two Fell bundles A = (At)t∈G and B = (Bs)s∈H . Then L2(A)
and L2(B) are full right Hilbert modules over Ae and Be respectively. If α is
a C∗-norm on A

⊙
B, then α|(Ae⊙Be) ∈ N (Ae

⊙
Be). Since L2(A)r = Ae

and L2(B)r = Be, α|(Ae⊙Be) defines a C*-norm α̃ on L2(A)
⊙
L2(B), given

by (2), that is α̃(µ) :=
√
α(〈µ, µ〉), ∀µ ∈ L2(A)

⊙
L2(B). The comple-

tion L2(A)
⊗

α̃ L
2(B) of L2(A)

⊙
L2(B) with respect to α̃ is a full right

Hilbert module over Ae
⊗

α|Ae⊗Be
Be, so we have (L2(A)

⊗
α̃ L

2(B))r =

Ae
⊗

α|Ae⊗Be
Be, whose its corresponding inner product is determined by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉 ⊗ 〈η1, η2〉, ∀ξ1, ξ2 ∈ L2(A), η1, η2 ∈ L2(B) (see
Theorem 2.7).

Lemma 4.4. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles, and let
α be a C∗-norm on A

⊙
B. If α̃ is as above, then there exists a unique

isomorphism j2 : L2(A)
⊗

α̃ L
2(B) → L2(A

⊗
α B), such that j2(ξ ⊗ η) =

ξ � η, ∀ξ ∈ Cc(A) ⊆ L2(A), η ∈ Cc(B) ⊆ L2(B). In particular we have
L2(A)

⊗
min L

2(B) ∼= L2(A
⊗

min B) and L2(A)
⊗

max L
2(B) ∼= L2(A

⊗
max B).

Proof. Let jc be the map defined in Lemma 4.1. If ξ1, ξ2 ∈ Cc(A), η1, η2 ∈
Cc(B), then jc(ξ1 ⊗ η1), jc(ξ2 ⊗ η2) ∈ Cc(A

⊗
α B) ⊆ L2(A

⊗
α B) and we

have

〈jc(ξ1 ⊗ η1), jc(ξ2 ⊗ η2)〉 =

∫
G×H

(ξ1 ⊗ η1)(t, s)∗(ξ2 ⊗ η2)(t, s)d(t, s)

=

∫
G

∫
H
ξ1(t)∗ξ2(t)⊗ η1(s)∗η2(s)dsdt = 〈ξ1, ξ2〉 ⊗ 〈η1, η2〉

On the other hand, if a ∈ Ae, b ∈ Be, ξ ∈ Cc(A), and η ∈ Cc(B), we have(
jc(ξ⊗η)

)
(a⊗ b)(t, s) = (ξ(t)⊗η(s))(a⊗ b) = ξ(t)a⊗η(s)b = jc

(
(ξ⊗η)(a⊗

b)
)
(t, s). Thus jc is a homomorphism of pre-Hilbert modules over Ae

⊗
αBe

which is injective by Lemma 4.1 and has dense image in L2(A
⊗

α B): by
Lemma 4.1, the image of jc is dense in the Cc(A

⊗
α B) in the inductive limit

topology, and therefore is dense in L2(A
⊗

α B). Thus jc extends uniquely
to an isomorphism j2 : L2(A)

⊗
α̃ L

2(B) → L2(A
⊗

α B). The last two
statements follow from the fact that if α = ‖ ‖min, then also α̃ = ‖ ‖min and,
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similarly, if α = ‖ ‖max, then also α̃ = ‖ ‖max (because α 7→ αAe
⊙
Be 7→ α̃

are isomorphisms of posets). �

With the notation as above, we have inclusions C∗r (A) ⊆ L
(
L2(A)

)
and

C∗r (B) ⊆ L
(
L2(B)

)
, so C∗r (A)

⊙
C∗r (B) is included in L

(
L2(A)

)⊙
L
(
L2(B)

)
,

which in turn is included in L
(
L2(A)

⊗
α̃ L

2(B)
)
according to Corollary 2.13.

Therefore we have an inclusion C∗r (A)
⊙
C∗r (B) ↪→ L

(
L2(A)

⊗
α̃ L

2(B)
)
.

Definition 4.5. If α is a C∗-norm on A
⊙
B, we define C∗r (A)

⊗
αC
∗
r (B) to

be the closure of C∗r (A)
⊙
C∗r (B) in L

(
L2(A)

⊗
α̃ L

2(B)
)

(that is: we call α
the norm on C∗r (A)

⊙
C∗r (B) inherited by the inclusion above). Recall that,

in particular, if α = ‖ ‖min, then we also have α = ‖ ‖min.

Suppose that u : H1 → H2 is a unitary operator between the Hilbert
modulesH1 andH2. Then u induces an isomorphism Adu : L(H1)→ L(H2),
given by Adu(T ) = uTu∗, ∀T ∈ L(H1).

Proposition 4.6. Let A and B be Fell bundles over the locally compact
groups G and H respectively, j2 : L2(A)

⊗
α̃ L

2(B) → L2(A
⊗

α B) the iso-
morphism given by Lemma 4.4, and α the C*-norm given by Definition 4.5.
Then Adj2

(
C∗r (A)

⊗
αC
∗
r (B)

)
= C∗r (A

⊗
α B), and there is a unique iso-

morphism jr : C∗r (A)
⊗

αC
∗
r (B) → C∗r (A

⊗
α B) such that jr

(
ΛAf ⊗ ΛBg

)
=

Λ
A

⊗
α B

(f⊗g) , ∀f ∈ Cc(A), g ∈ Cc(B).

In particular C∗r (A
⊗

min B) ∼= C∗r (A)
⊗

minC
∗
r (B).

Proof. As usual, by the universal property of tensor products we see that
there exists a unique map ΛA � ΛB : A

⊙
B → L

(
L2(A)

⊗
α L

2(B)
)

such

that (ΛA�ΛB)(a� b) = ΛAa ⊗ΛBb , ∀a ∈ A, b ∈ B. Writing just Λ instead of

ΛA
⊗
α B we have

Λ(at⊗bs)
(
j2(ξ ⊗ η)

)
(t0, s0) = (at ⊗ bs)(ξ ⊗ η)

(
(t, s)−1(t0, s0)

)
= atξ(t

−1t0)⊗ bsη(s−1s0)

=
(
ΛAatξ

)
(t0)⊗

(
ΛBbsη

)
(s0)

=
(
ΛAatξ ⊗ ΛBbsη

)
(t0, s0)

= j2
(
ΛAatξ ⊗ ΛBbsη

)
(t0, s0)

= j2
(
(ΛA � ΛB)(at � bs)(ξ ⊗ η)

)
(t0, s0),

It follows that Λx = j2(ΛA � ΛB)(x)j∗2 , ∀x ∈ A
⊙
B, so ΛA � ΛB extends

uniquely to a representation ΛA ⊗ ΛB : A
⊗

α B → L(L2(A)
⊗

α L
2(B))

such that ΛA ⊗ ΛB(x) = j∗2Λxj2, ∀x ∈ A
⊗

α B. Taking the corresponding
integrated representations, we have that Λ(f⊗g) = j2(ΛA ⊗ ΛB)(f ⊗ g)j∗2 ,
∀f ∈ Cc(A), g ∈ Cc(B). If jc is the map given by Lemma 4.1, then
jc(Cc(A)

⊙
Cc(B)) is dense in C∗r (A

⊗
α B). Therefore we conclude that

C∗r (A
⊗

α B) = j2
(
C∗r (A)

⊗
αC
∗
r (B)

)
j∗2 , as we wanted to prove.
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In particular, jr : C∗r (A)
⊗

αC
∗
r (B) → C∗r (A

⊗
α B) given by x 7→ j2xj

∗
2

is an isomorphism satisfying jr
(
ΛAf ⊗ΛBg

)
= Λ(f⊗g), ∀f ∈ Cc(A), g ∈ Cc(B).

The uniqueness of such an isomorphism is clear. As for the last statement
just recall that α = ‖ ‖min if α = ‖ ‖min (Corollary 2.13). �

In functorial language, Proposition 4.2 and the last statement of Propo-
sition 4.6 can be stated as follows. Let B 7→ C∗(B) and B 7→ C∗r (B) be the
functors sending a Fell bundle B to its cross-sectional and reduced croseed
sectional algebras respectively, and let ⊗max and ⊗min be the bifunctors of
taking maximal and minimal tensor products respectively (of Fell bundles
or of C*-algebras). Then we have:

C∗ ◦ ⊗max = ⊗max ◦ (C∗ × C∗) : F× F→ C∗

C∗r ◦ ⊗min = ⊗min ◦ (C∗r × C∗r ) : F× F→ C∗,

where F is the category of Fell bundles and C∗ the category of C*-algebras.
That is: taking full (reduced) cross-sectional algebras commute with taking
maximal (respectively: minimal) tensor products.

Theorem 4.7. Let A and B be Fell bundles over the locally compact groups
G and H respectively. Then for every C∗-norm α on A

⊙
B we have the

following commutative diagram Dα:

C∗(A
⊗

max B)
σmax
α // // C∗(A

⊗
α B)

Λ // // C∗r (A
⊗

α B)

C∗(A)
⊗

maxC
∗(B)

ΛA⊗maxΛB
// //

j∼=

OO

C∗r (A)
⊗

maxC
∗
r (B)

σ̃max
α

// // C∗r (A)
⊗

αC
∗
r (B)

∼=jr

OO

where Λ = ΛA
⊗
α B, the map σmax

α is provided by Proposition 4.3, j is given
by Proposition 4.2, jr by Proposition 4.6, and ΛA⊗maxΛB is the tensor prod-
uct of the regular representations of C∗(A) and C∗(B) respectively. Finally,
the existence and the surjectivity of σ̃max

α̃ is obvious.

Proof. Let f ∈ Cc(A), g ∈ Cc(B). Then, by Proposition 4.2 and Lemma
4.1 we have Λσmax

α j(f ⊗ g) = Λσmax
α (f � g) = Λ(f�g). On the other hand

Lemma 4.1 and Proposition 4.6 imply that jrσ̃
max
α (ΛA ⊗max ΛB)(f ⊗ g) =

jrσ̃
max
α

(
ΛAf ⊗ΛBg

)
= jr

(
ΛAf ⊗ΛBg

)
= Λ(f�g). Since Cc(A)

⊙
Cc(B) is dense in

C∗(A)
⊗

maxC
∗(B), we conclude that ΛA

⊗
α Bσ

max
α j(x) = jrσ̃

max
α (ΛA ⊗max

ΛB)(x), ∀x ∈ C∗(A)
⊗

maxC
∗(B), and therefore the diagram commutes. �

Corollary 4.8. The Fell bundle A
⊗

max B is amenable if and only if A and
B are amenable and C∗(A)

⊗
maxC

∗(B) = C∗(A)
⊗

maxC
∗(B).
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Proof. For α = max, the diagram Dmax becomes:

C∗(A
⊗

max B)
Λ // // C∗r (A

⊗
max B)

C∗(A)
⊗

maxC
∗(B)

σ̃max
max◦(Λ

A⊗maxΛB)

// //

j∼=

OO

C∗r (A)
⊗

maxC
∗
r (B)

∼=jr

OO

If Λ is an isomorphism, then so is σ̃max
max ◦ (ΛA⊗ΛB), and therefore also σ̃max

max,
because ΛA ⊗ ΛB is surjective. Moreover the injectivity Λ implies that of
ΛA⊗ΛB, and therefore that of ΛA and ΛB, and also that ‖ · ‖max = ‖ · ‖max.
In other words, the amenability of A

⊗
max B implies the amenability of A

and of B, and also that ‖ · ‖max = ‖ · ‖max. The converse is clear. �

4.2. Some applications. Suppose that B = (Bt)t∈G is a Fell bundle over
the locally compact group G, and for φ, ψ ∈ Cc

(
G,M(Be)

)
and b ∈ Bt let

φ · b ·ψ :=
∫
G φi(s)

∗bψi(t
−1s)ds. Since every x ∈M(Be) defines a multiplier

of B of order e, then we have that φ · b ·ψ ∈ Bt, ∀b ∈ Bt. So we have a map
Φφ,ψ : B → B defined by b 7→ φ · b · ψ. For bt ∈ Bt we have

φ · bt · ψ =

∫
(suppφ)∩(t suppψ)

φ(s)∗btψ(t−1s)ds, so if m is Haar measure:

‖φ · bt · ψ‖ ≤ m
(
(suppφ) ∩ (t suppψ)

)
‖φ‖∞‖ψ‖∞‖bt‖.

Besides, if f ∈ Cc(B), we have φ·f ·ψ ∈ Cc(B), with supp(φ·f ·ψ) ⊆ supp(f)
and ‖φ · f · ψ‖∞ ≤ m

(
(suppφ) ∩ supp(f)(suppψ)

)
‖φ‖∞‖ψ‖∞‖f‖∞. By

Lemma 3.16 the map (s, t) 7→ φ(s)∗f(t)ψ(t−1s) is continuous. Then [13,
II-15.19] implies that φ · f · ψ ∈ Cc(B). It follows that the map B → B
such that b 7→ φ · b · ψ is a continuous map on the bundle B, and that
Φφ,ψ : Cc(B) → Cc(B) given by f 7→ φ · f · ψ is continuous in the inductive
limit topology. In fact, in [9, Lemma 3.2] is shown that

(6) ‖Φφ,ψ(b)‖ ≤ ‖φ‖ ‖ψ‖‖b‖,

where ‖φ‖ and ‖ψ‖ are the norms of φ and ψ as elements of L2(G,M(Be)).
Hence we also have ‖Φφ,ψ(f)‖∞ ≤ ‖φ‖ ‖ψ‖‖f‖∞ and ‖Φφ,ψ(f)‖1 ≤ ‖φ‖ ‖ψ‖‖f‖1
∀f ∈ Cc(B), and therefore Φφ,ψ extends to a bounded map on L1(B).

Definition 4.9. (cf. [9, Definition 3.6]) Let B be a Fell bundle over the
locally compact group G, and M ≥ 0.

(1) We say that B has the pointwise M -approximation property if there
exist nets (φi)i∈I , (ψi)i∈I ⊆ Cc

(
G,M(Be)

)
such that:

(i) supi∈I{‖φi‖ ‖ψi‖} ≤M (as elements of L2(G)
⊗

M(Be)), and
(ii) φi · b · ψi converges to b, ∀b ∈ B.
If I = N we say that B has the countable M -pointwise approximation
property. We say that B has the (countable) pointwise approxima-
tion property if B has the (countable) M -pointwise approximation
property for some M > 0.
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(2) B is said to have the M -approximation property if there are nets
(φi), (ψi) as in (1) such that φi · f · ψi converges uniformly to f ,
∀f ∈ Cc(B). It is said to have the approximation property if it has
the M -approximation property for some M ≥ 0.

(3) We say that B has the L1-approximation property if there are nets
(φi), (ψi) as in (1) such that φi · f · ψi converges to f in L1(B),
∀f ∈ Cc(B).

In all the cases above we say that B has the positive corresponding approx-
imation property if we can choose φi = ψi, ∀i.

The fact that we allow the approximating nets (φi)i∈I and (ψi)i∈I to take
values on the multiplier algebra M(Be) rather than in Be is not an essential
change in relation to the original definition of approximation property, but
it allows some more flexibility (it is enough to multiply the approroximating
nets by an approximate unit of Be to obtain nets as in [9, Definition 3.6]).

It was proved in [9] that if G is an amenable group then the Fell bundle
has the positive 1-approximation property.

For a Fell bundle B over a discrete group it is currently customary to
say that B has the approximation property when it has the positive 1-
approximation property. The corresponding net is called a Cesaro net for B
by Exel in [8, Definition 20.4].

Since L2(G) is a Hilbert space, it is a nuclear C∗-tring, so there is a unique
tensor product L2(G)

⊗
M(Be). On the other hand L2(G)

⊗
M(Be) is

naturally identified with L2
(
G,M(Be)

)
, the completion of Cc

(
G,M(Be)

)
with respect to the inner product: 〈f, g〉 =

∫
G f(t)∗g(t)dt. Thus we also

have that L2
(
G,M(Be)

)
= L2

(
G ×M(Be)

)
, where G ×M(Be) is the Fell

bundle over G with the product topology and pointwise defined operations.

Proposition 4.10. Let B be a Fell bundle over the locally compact group
G. We have:

(1) If G is discrete, the three next statements are equivalent to each
other: B has the M -pointwise approximation property; B has the M -
approximation property; B has the M - L1-approximation property.

(2) If B has the approximation property then it also has the L1-appro-
ximation property.

(3) If B has the countable pointwise approximation property, then B has
the L1-approximation property.

Proof. The first statement easily follows by observing that, if G is discrete
and f ∈ Cc(B), then supp(f) is finite. Suppose now that (φi), (ψi) ⊆
Cc(G,M(Be)) are nets such that φi · f · ψi converges uniformly to f , ∀f ∈
Cc(B), with supi ‖φi‖ ‖ψi‖ ≤M <∞. Thus φi · f · ψi converges to f in the
inductive limit topology, because supp(φ · f · ψ) ⊆ supp(f). Therefore the
net φi · f · ψi converges to f in L1(B).
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Suppose now that B has the countable pointwise approximation property:
there exist sequences (φn), (ψn) ⊆ Cc(G,M(Be)) with supn∈N{‖φn‖ ‖ψn‖} =
M <∞ and φn·b·ψn → b, ∀b ∈ B. Let Φn := Φφn,ψn : Cc(B)→ Cc(B) be the
corresponding induced map. Then, since ‖Φn(f) − f‖∞ ≤ (M + 1)‖f‖∞,
we have that ‖(Φn(f) − f)‖1 =

∫
supp(f) ‖Φn(f)(t) − f(t)‖dt → 0 by the

dominated convergence theorem. �

The following theorem is a direct generalization of the corresponding re-
sult [12, Theorem 4.6] for discrete groups, so we omit the proof here, al-
though for the convenience of the reader we have provided its details in
Appendix 5.

Theorem 4.11. If B is a Fell bundle with the L1-approximation property,
then B is amenable. In particular if B has the approximation property, then
B is amenable.

Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles, and α a C∗-norm
on A

⊙
B. Let α be the C∗-norm on M(Ae)

⊙
M(Be) as a subalgebra

of M(Ae
⊗

αBe) (see [20, T.6.3], or alternatively use Corollary 2.13 and
[15, Theorem 2.4] for the right Hilbert modules Ae and Be over them-
selves), and M(Ae)

⊗
αM(Be) the corresponding tensor product. If φ ∈

Cc(G,M(Ae)) and φ′ ∈ Cc(H,M(Be)), we have a section φ ⊗ φ′ ∈ Cc
(
G ×

H,M(Ae)
⊗

αM(Be)
)
⊆ L2(G×H,M(Ae

⊗
αBe)) such that φ⊗ φ′(t, s) =

φ(t)⊗φ′(s), ∀(t, s) ∈ G×H. Moreover: ‖φ⊗φ′‖ = ‖φ‖ ‖φ′‖ by Remark 2.9.

Proposition 4.12. Let A = (At)t∈G and B = (Bs)s∈H be Fell bundles,
and α a C∗-norm on A

⊙
B. Suppose that (φi)i∈I , (ψi)i∈I ⊆ Cc(G,M(Ae))

and (φ′j)j∈J , (ψ
′
j)j∈J ⊆ Cc(H,M(Be)). Consider (φi ⊗ φ′j)(i,j)∈I×J , (ψi ⊗

ψ′j)(i,j)∈I×J ⊆ Cc
(
G×H,M(Ae

⊗
αBe)

)
. Then:

(1) If φi · a ·ψi → a, ∀a ∈ A and φ′j · b ·ψ′j → b and supi∈I{‖φi‖ ‖ψi‖} ≤
M <∞, supj∈J{‖φ′j‖ ‖ψ′j‖} ≤ N <∞, then (φi⊗φ′j) ·x ·(φi⊗φ′j)→
x, ∀x ∈ A

⊗
α B, and sup(i,j)∈I×J{‖φi⊗φ′j‖ ‖ψi⊗ψ′j‖} ≤MN <∞.

(2) If A and B have the (positive, countable) pointwise approximation
property, then A

⊗
α B also has the (respectively: positive, countable)

pointwise approximation property.
(3) If A and B have the L1-approximation property then A

⊗
α B also

has the L1-approximation property, and therefore it is amenable.

Proof. Note first that 2) follows from 1). To prove 1), let Φi : A → A
and Φ′j : B → B be the maps induced by the pairs (φi, ψi) and (φ′j , ψ

′
j),

∀(i, j) ∈ I×J . Let at0 ∈ A and bs0 ∈ B. Since Φi and Φ′j converge pointwise
to the identity maps respectively on A and B, there exist i0 ∈ I, j0 ∈ J such
that ∀i ≥ i0, j ≥ j0 we have ‖Φi(at0) − at0‖ < ε/N(1 + ‖at0‖ + ‖bs0‖) and
‖Φ′j(bs0)− bs0‖ < ε/(1 + ‖at0‖+ ‖bs0‖). Consider Φi,j : A

⊗
α B → A

⊗
α B

such that

Φi,j(x(t,s)) =

∫
G×H

(φi ⊗ φ′j)(t′, s′)x(t,s)(ψi ⊗ ψ′j)(t−1t′, s−1s′)d(t′, s′).
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Then for (i, j) ≥ (i0, j0) we have:

‖Φi,j(at0 ⊗ bs0)− (at0 ⊗ bs0)‖ = ‖Φi(at0)⊗ Φ′j(bs0)− (at0 ⊗ bs0)‖
≤ ‖
(
Φi(at0)− at0

)
⊗ Φ′j(bs0)‖+ ‖at0 ⊗

(
Φ′j(bs0)− bs0

)
‖

≤ ‖Φi(at0)− at0‖ ‖Φ′j(bs0)‖+ ‖at0‖ ‖Φ′j(bs0)− bs0‖

≤ ε

N(1 + ‖at0‖+ ‖bs0‖)
N‖bs0‖+

ε

(1 + ‖at0‖+ ‖bs0‖)
‖at0‖ < ε.

By (6) we have ‖Φi,j(x)‖ ≤ MN‖x‖, ∀x ∈ A
⊗

α B, and consequently
Φi,j(x)→ x, ∀x ∈ A

⊗
α B. This proves 1) and therefore also 2).

To see that 3) holds, suppose now that for the maps Φi and Φ′j above

and every f ∈ Cc(A), g ∈ Cc(B) we have that ‖Φi(f) − f‖1 → 0 and
‖Φ′j(g)−g‖1 → 0. Note that if f ∈ Cc(A) and g ∈ Cc(B), then Φi,j(f �g) =

Φi(f)� Φ′j(g), and therefore

‖Φi,j(f � g)− f � g‖1 = ‖Φi(f)� Φ′j(g)− f � g‖1
≤ ‖Φi(f)�

(
Φ′j(g)− g

)
‖1 + ‖

(
Φi(f)− f

)
� g‖1

≤M ‖f‖1 ‖Φ′j(g)− g‖1 + ‖Φi(f)− f‖1 ‖g‖1
→ 0 when i, j →∞

It follows that Φi,j(l) → l in L1(A
⊗

α B), ∀l ∈ L = {
∑

k fk � gk}. Since L
is dense in Cc(A

⊗
α B) in the inductive limit topology, it is also dense in

L1(A
⊗

α B). Since ‖Φi,j‖ ≤ MN , ∀i ∈ I, j ∈ J , then ‖Φi,j(h) − h‖1 → 0,
∀h ∈ L1(A

⊗
α B). �

The last statement of the next result was first proved by the author in
the case of discrete groups in the previous preprint version of the present
paper mentioned at the end of the introduction, and was later proved for
arbitrary locally compact groups in [2] and in [9].

Corollary 4.13. If A = (At)t∈G and B = (Bs)s∈H are Fell bundles with
the L1-approximation property, then Ae

⊙
Be admits exactly one C∗-norm

if and only if C∗(A)
⊙
C∗(B) admits exactly one C∗-norm. In particular, if

A is a Fell bundle with the L1-approximation property (this is automatically
true if G is amenable) and nuclear unit fiber Ae, then C∗(A) is also nuclear.

Proof. Since A and B are Fell bundles with the L1-approximation property,
then A

⊗
min B also has the L1-approximation property by Proposition 4.12,

so the diagram Dmin becomes:

C∗(A
⊗

max B)
σmax
min // // C∗(A

⊗
min B)

C∗(A)
⊗

maxC
∗(B)

σ̃max
min

// //

j∼=

OO

C∗(A)
⊗

minC
∗(B)

∼=jr

OO

If Ae
⊙
Be admits just one C∗-norm, then A

⊗
max B = A

⊗
min B which

implies σmax
min = id, and therefore σ̃max

min = id, from where it follows that
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C∗(A)
⊗

maxC
∗(B) = C∗(A)

⊗
minC

∗(B). Conversely, suppose now that
C∗(A)

⊙
C∗(B) admits just one C∗-norm. Then σ̃max

min = id, and therefore
σmax

min = id. Thus A
⊗

max B = A
⊗

min B, so Ae
⊗

maxBe = Ae
⊗

minBe.
As for the last assertion, notice that every C∗-algebra B may be con-

sidered as a Fell bundle over the trivial group, and it is clear that this
Fell bundle has the (positive, countable) L1-approximation property: it is
enough to take φ : G → M(B) such that φ(t) = 1, ∀t ∈ G. Consequently,
by the first part of this Corollary we have C∗(A)

⊗
maxB = C∗(A)

⊗
minB,

that is, C∗(A) is a nuclear C∗-algebra. �

Corollary 4.14. If A = (At)t∈G is a Fell bundle with the L1-approximation
property and nuclear unit fiber, and if B = (Bs)s∈H is an amenable Fell
bundle, then A

⊗
B also is amenable.

Proof. By Corollary 4.13, our assumptions onA imply that C∗(A) is nuclear.
Therefore we have C∗(A)

⊗
maxC

∗(B) = C∗(A)
⊗

maxC
∗(B), and then the

result follows from Corollary 4.8. �

Corollary 4.15. Any twisted partial crossed product of a nuclear C∗-algebra
by an amenable group is nuclear. In particular, the partial C∗-algebra C∗p(G)
of an amenable discrete group G is nuclear.

Definition 4.16. Let A, B and C be Fell bundles over the locally compact

group G. We say that a sequence 0 //A
φ //B

ψ //C //0 is exact if
φ is injective, ψ is surjective, and kerψ = Imφ, where kerψ := {b ∈ B :
ψ(b) is a zero element}.
Proposition 4.17. The functors A 7→ L1(A) and A 7→ C∗(A) are exact.

That is, if 0 //A
φ //B

ψ //C //0 is an exact sequence of Fell bundles
over the locally compact group G, then:

(1) 0 //L1(A)
φ1 //L1(B)

ψ1

//L1(C) //0 is exact, and

(2) 0 //C∗(A)
C∗(φ) //C∗(B)

C∗(ψ) //C∗(C) //0 also is exact.

Proof. Since every non-degenerate representation of L1(A) has a unique ex-
tension to a representation of L1(B), we have that C∗(A) is the closure of
L1(A) in C∗(B), so it is enough to prove 1), because then 2) follows from
[21, 2.29] and the fact that L1(F) has an approximate unit, for every Fell
bundle F .

Since ‖φ(a)‖ = ‖a‖, ∀a ∈ A, it follows that φ1 is an isometry.
Let see that kerψ1 = Imφ1. The inclusion Imφ1 ⊆ kerψ1 is clear. In

order to see the converse inclusion let g ∈ kerψ1. Then ‖ψ1(g)‖1 = 0, so
ψ
(
g(t)

)
= 0 almost everywhere in G. Without loss of generality we may

suppose that ψ
(
g(t)

)
= 0, ∀t in G. Thus, g(t) ∈ kerψ = Imφ, ∀t ∈ G, and

therefore there exists a unique f(t) ∈ At such that φ
(
f(t)

)
= g(t), ∀t ∈ G.

Since φ is a continuous and isometric isomorphism between A and φ(A) (by
[13, II-13.17]), and we have f = (φ1)−1(g), then f ∈ L1(A). Thus g ∈ Imφ1.
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Finally, we show that ψ1 is surjective. We will suppose, as we can, that
A ⊆ B. Note that L1(A) is a closed *-ideal of L1(B). Thus there exists an

isomorphism of *-algebras L1(B)
L1(A)

ψ̄→ ψ1
(
L1(B)

)
⊆ L1(C). The image of ψ̄

contains ψ1
(
Cc(B)

)
, which is dense in Cc(C) in the inductive limit topology:

since ψ is surjective then we may apply [3, 5.1] to ψ1
(
Cc(B)

)
, thus concluding

that Imψ̄ is dense in L1(C). Then it is sufficient to prove that ψ̄ is an

isometry, where L1(B)
L1(A)

is endowed with the quotient norm. Let f ∈ Cc(B)

and f̄ its projection into the quotient space. Then ‖ψ̄‖ = ‖ψ1‖, and therefore
‖ψ̄(f̄)‖ ≤ ‖ψ1‖ ‖f̄‖ ≤ ‖f̄‖. To prove the converse inequality consider an
arbitrary ε > 0, and let M be the measure of a compact neighborhood V of
supp(f). For each s ∈ V , there exists gs ∈ Cc(A) such that ‖f(s)−gs(s)‖ <
‖f(s)‖ + ε/M , and we may suppose that supp(gs) ⊆ V . Since f , gs, and

t 7→ ‖f(t)‖ = ‖ψ(f(t))‖ are continuous, for every s ∈ supp(f) must exist
an open neighborhood Vs of s, which we may suppose to be contained in V ,
such that ‖f(t) − gs(t)‖ < ‖f(t)‖ + ε/M , ∀t ∈ Vs. Now, {Vs : s ∈ sup(f)}
is an open covering of the compact set supp(f). Let Vs1 , . . . , Vsn be a finite
subcovering. Let G? be the one point compactification of G, and define
sn+1 := ?, Vsn+1 = G? \ supp(f) and gsn+1 = 0, where ? represents the

adjoined point at infinity. Then {Vsi}n+1
i=1 is an open covering of G?. Let

(φi)
n+1
i=1 be a partition of the unit of G?, subordinated to {Vsi}n+1

i=1 , and define

g(t) =
∑n+1

i=1 φi(t)gsi(t), ∀t ∈ G. Then g ∈ Cc(A), supp(g) ⊆ V , and

‖f̄‖ ≤
∫
G
‖f(t)− g(t)‖dt =

∫
V
‖
n+1∑
i=1

(
φi(t)f(t)− φi(t)gsi(t)

)
‖dt

≤
n+1∑
i=1

∫
Vsi

φi(t)‖f(t)− gsi(t)‖dt ≤
∫
V

n+1∑
i=1

φi(t)
(
‖f(t)‖+ ε/M

)
dt

≤
∫
G
‖ψ
(
f(t)

)
‖dt+ ε = ‖ψ1(f)‖1 + ε.

Since ε was arbitrary, we conclude that ‖f̄‖ ≤ ‖ψ1(f)‖1, and therefore
‖f̄‖ = ‖ψ̄(f)‖1. Moreover ψ̄ has dense image in L1(C), so Im(ψ̄) = L1(C)
and, since Im(ψ1) = Im(ψ̄), we conclude that ψ1 is surjective. �

For our next result, recall from [6, 5.3] that the definition of exact C*-
algebra extends to C*-trings, and that a C*-tring E is exact if and only if
Er is exact. In particular, if A = (At)t∈G is a Fell bundle, its unit fiber is
an exact C*-algebra if and only if each fiber At is an exact C*-tring.

Theorem 4.18. Let A = (At)t∈G be a Fell bundle with exact unit fiber and
the L1-approximation property. Then C∗(A) is an exact C∗-algebra.

Proof. Let B be a C∗-algebra and I C B. Since At is exact ∀t ∈ G, the
sequence of Fell bundles 0 //A

⊗
I //A

⊗
B //A

⊗
(B/I) //0 is

exact, and each one of the bundles in the sequence has the L1-approximation
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property by Proposition 4.12 (here
⊗

=
⊗

min). Since C∗ is an exact
functor from the category of Banach *-algebras with approximate unit to
the category of C∗-algebras, and in this case we have C∗ = C∗r , the sequence
of C∗-algebras

0 // C∗r
(
A
⊗

I
)

// C∗r
(
A
⊗

B
)

// C∗r
(
A
⊗

(B/I)
)

// 0

also is exact.
Now Proposition 4.6 provides a natural isomorphism between C∗r

(
A
⊗

C
)

and C∗r (A)
⊗

C, for every C∗-algebra C. Thus we obtain the following
commutative diagram:

0 // C∗r (A
⊗

I) //

∼=
��

C∗r (A
⊗

B) //

∼=
��

C∗r (A
⊗

(B/I)) //

∼=
��

0

0 // C∗r (A)
⊗

I // C∗r (A)
⊗

B // C∗r (A)
⊗

(B/I) // 0

Since the first row is exact and the diagram is commutative, then the second
row also is exact. Hence it follows that C∗(A), which is equal to C∗r (A), is
an exact C∗-algebra. �

Since any Fell bundle over an amenable locally compact group has the
approximation property, from Theorem 4.18 we obtain the following gener-
alization of [14, Proposition 7.1] (see also [7, Proposition 7.5]):

Corollary 4.19. Any twisted partial crossed product of an exact C∗-algebra
by an amenable group G is also exact.

5. Appendix

Proof of Theorem 4.11. Let π : B → B(H) be a non-degenerate representa-
tion such that π

∣∣
Be

is faithful. We also call π the integrated representation

of π, and to its unique extension to M(B) as well. Since π
∣∣
Be

is faithful,

then so is π
∣∣
M(Be)

. Given φ ∈ Cc
(
G,M(Be)

)
⊆ L2(G)

⊗
M(Be), consider

the operator Vφ : H → L2(G)
⊗

H such that Vφh
∣∣
t

= π
(
φ(t)

)
h. We have:

‖Vφ‖2 = sup
‖h‖=1

∫
G
〈π
(
φ(t)

)
h, π

(
φ(t)

)
h〉dt = sup

‖h‖=1

∫
G
〈π
(
φ(t)∗φ(t)

)
h, h〉dt

= sup
‖h‖=1

〈
∫
G
π
(
φ(t)∗φ(t)

)
dt h, h〉 = sup

‖h‖=1
〈π(〈φ, φ〉)h, h〉

= ‖π(〈φ, φ〉)‖ = ‖〈φ, φ〉‖.

where we used that π(〈φ, φ〉) is positive and π
∣∣
M(Be)

is faithful to obtain the

last two equalities. We compute V ∗φ : if h ∈ H, ξ ∈ L2(G), then

〈Vφh, ξ〉 =

∫
G
〈π
(
φ(t)

)
h, ξ(t)〉dt =

∫
G
〈h, π

(
φ(t)∗

)
ξ(t)〉dt = 〈h,

∫
G
π
(
φ(t)∗

)
ξ(t)dt〉,



TENSOR PRODUCTS OF FELL BUNDLES OVER GROUPS 39

so V ∗φ (ξ) =
∫
G π
(
φ(t)∗

)
ξ(t)dt. Note that if ψ ∈ Cc

(
G,M(Be)

)
, then

V ∗φ Vψh =

∫
G
π
(
φ(t)∗

)
Vψh

∣∣
t
dt =

∫
G
π
(
φ(t)∗

)
π
(
ψ(t)

)
hdt = π(〈φ, ψ〉)h.

Moreover, if φ1, φ2, φ3 ∈ Cc
(
G,M(Be)

)
, h ∈ H, we have:

Vφ1〈φ2,φ3〉h
∣∣
t

= π(φ1(t)〈φ2, φ3〉)h = π(φ1(t))π(〈φ2, φ3〉)h = Vφ1V
∗
φ2Vφ3h

∣∣
t

Therefore, since φ 7→ Vφ is an isometry on the dense subspace Cc
(
G,M(Be)

)
of the C*-tring L2(G,M(Be)), it extends to a homomorphism of positive C*-
trings π2 : L2(G)

⊗
M(Be) → π2

(
L2(G)

⊗
M(Be)

)
⊆ B

(
H,L2(G)

⊗
H
)
,

which is consequently an isomorphism of C*-trings.
Consider now the representation πλ : B → B

(
L2(G)

⊗
H
)
, such that

πλ(bt) = λt ⊗ π(bt) and its integrated representation, which we continue to
call πλ : C∗(B) → B(L2(G)

⊗
H) (here λ is the left regular representation

of G). Define, for φ, ψ ∈ L2(G)
⊗

M(Be), the completely bounded map Ψ :
πλ
(
C∗(B)

)
→ B(H), given by Ψ(x) = V ∗φ xVψ, ∀x ∈ πλ

(
C∗(B)

)
. We have

‖Ψ(x)‖ ≤ ‖φ‖ ‖ψ‖ ‖x‖, so ‖Ψ‖ ≤ ‖φ‖ ‖ψ‖. Consider also, for f ∈ Cc(B),
the function Φ(f) : G → B such that Φ(f)

∣∣
t

=
∫
G φ(s)∗f(t)ψ(t−1s)ds. Let

F (t, s) = φ(s)∗f(t)ψ(t−1s). By 3.16, F : G × G → B is continuous and of
compact support, and such that F (t, s) ∈ Bt, ∀t ∈ G. Then by [13, II-15.19],
the function t 7→

∫
G F (t, s)ds is a compactly supported continuous section

of B. In other words, Φ(f) ∈ Cc(B). In fact, it is clear that supp
(
Φ(f)

)
⊆

supp(f). Besides, we have π
(
Φ(f)

)
= Ψ

(
πλ(f)

)
, for if h, k ∈ H:

〈π
(
Φ(f)

)
h, k〉 = 〈

∫
G
π
(
Φ(f)

∣∣
t

)
h, k〉 =

∫
G
〈π
[ ∫

G
φ(s)∗f(t)ψ(t−1s)ds

]
h, k〉

=

∫
G

∫
G
〈π
(
φ(s)∗f(t)ψ(t−1s)

)
h, k〉dsdt

=

∫
G

∫
G
〈π
(
φ(s)∗

)
π
(
f(t)

)
π
(
ψ(t−1s)

)
h, k〉dsdt

=

∫
G
〈π
(
φ(s)∗

) ∫
G
π
(
f(t)

)
Vψh

∣∣
t−1s

dt, k〉ds

=

∫
G
〈π
(
φ(s)∗

)[ ∫
G

(λt ⊗ π)
(
f(t)

)
(Vψh)dt

]∣∣
s
, k〉ds

=

∫
G
〈π
(
φ(s)∗

)
πλ(f)(Vψh)(s)ds, k〉 = 〈

∫
G
π
(
φ(s)∗

)(
πλ(f)Vψh(s)

)
ds, k〉

= 〈(V ∗φ πλ(f)Vψ)h, k〉 = 〈Ψ
(
πλ(f)

)
h, k〉,

whence π
(
Φ(f)

)
= Ψ

(
πλ(f)

)
. In particular we have Ψ

(
πλ
(
Cc(B)

))
⊆

π
(
Cc(B)

)
⊆ π

(
C∗(B)

)
, which is closed, and therefore Ψ

(
πλ
(
C∗(B)

))
⊆

π
(
C∗(B)

)
. Then we have Ψ : πλ

(
C∗(B)

)
→ π

(
C∗(B)

)
. Suppose now

that (φi), (ψi) are approximating nets as in (3) of Definition 4.9, with
‖φi‖ ‖ψi‖ ≤ M , ∀i, so we have Φi : Cc(B) → Cc(B) and Φi(f) converges
to f in L1(B), for all f ∈ Cc(B). Let Ψi : πλ

(
C∗(B)

)
→ π

(
C∗(B)

)
be
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the correspondending completely bounded maps, that is: Ψi(x) = V ∗φixVψi ,

∀x ∈ πλ
(
C∗(B)

)
. Since Φi(f)→ f in L1(B), then Φi(f)→ f also in C∗(B),

thus π
(
Φi(f)

)
→ π(f) in π

(
C∗(B)

)
. Consequently, ‖π

(
Φi(f)

)
‖ → ‖π(f)‖.

On the other hand, π
(
Φi(f)

)
= Ψi

(
πλ(f)

)
, whence

‖π(f)‖ = lim
i
‖π
(
Φi(f)

)
‖ = lim

i
‖Ψi

(
πλ(f)

)
‖

≤ lim sup
i
‖Ψi‖ ‖πλ(f)‖ ≤M‖πλ(f)‖.

Since Cc(B) is dense in L1(B), it follows that ‖π(y)‖ ≤ M‖πλ(y)‖, ∀y ∈
C∗(B). In particular, if π is a faithful representation of C∗(B), we conclude
that πλ is also faithful. On the other hand, it is proved in [10, Proposi-
tion 2.3] that the representation Λ ⊗ id : B → B(L2(B) ⊗Be H), given by
(Λ ⊗ id)b(ξ ⊗ h) := Λbξ ⊗ h, is equivalent to a subrepresentation of πλ, so
it is faithful as well. This implies that Λ is faithful, which is to say that
C∗(B) = C∗r (B). �
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