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A CONSTRUCTION FOR 
VERTEX-TRANSITIVE GRAPHS 

BRIAN ALSPACH AND T. D. PARSONS 

1. Introduction. A useful general strategy for the construction of 
interesting families of vertex-transitive graphs is to begin with some 
family of transitive permutation groups and to construct for each group T 
in the family all graphs G whose vertex-set is the orbit V of T and for 
which T ^ Aut (G), where Aut (G) denotes the automorphism group of 
G. For example, if we consider the family of cyclic groups ( ( 0 1 . . .n— 1)) 
generated by cycles ( 0 1 . . . » - 1) of length n, then the corresponding 
graphs are the ^-vertex circulant graphs. 

In this paper we consider transitive permutation groups of degree mn 
generated by a "rotation" p which is a product of m disjoint cycles of 
length n and by a "twisted translation" r such that rpr~l = pa for some a. 
The abstract groups isomorphic to the groups T = (p, T) are the semi-
direct products of two cyclic groups. We call the corresponding graphs 
metacirculants. 

We note that similar constructions apply to vertex-transitive digraphs, 
though we shall restrict our attention here to graphs. 

2. A family of transitive permutation groups. Let Zm = 
{0, 1, . . . , m — 1} and Zn = {0, 1, . . . , n — 1} be the rings of integers 
modulo m and n, respectively, where m ^ 1 and n ^ 2. Let Zr* denote 
the group of units of the ring Zr. Let 

V = {«// : i C Zm and j G Zn) 

where superscripts and subscripts are always reduced modulo m and 
modulo ny respectively. 

Let a 6 Z„* and define two permutations p and r on F by 

p(*>/) = fj+i 

and 
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It is easy to see that p and r generate a transitive subgroup (p, r) of the 
symmetric group on V. 

Notice that p has a cycle decomposition as 

p = (vo°Vi° • • • v°n^)(voW . • • vLi) • . • (»om-1Viw-1 . • • C^1) 

so that (p) is cyclic of order n and has the m orbits V°, F1, . . . , Vm~l 

where V1 = {vo\ Vi\ . . . , Vn-i} for i = 0, 1, . . . , m — 1. 
Now let a be the order of a in Zn* and let b — 1cm (a, w). Then 

rô(v) = *#/ = v 
since 6 = 0 (mod m) and a& = 1 (mod n). Hence, rb — 1 and the order of 
r divides 6. On the other hand, if rc = 1, then 

so that c = 0 (mod m) and ac = 1 (mod n). This implies that b divides c. 
Thus, r has order 6 and the cyclic subgroup (r) has order b. 

It is easy to verify that (p) H (r) = {1} and that rpr~l = pa. The 
group (p, r) has the presentation 

(p, r : p» = 1 = T\ TPT-1 = pa) 

and so has a rather simple structure. Indeed, (p) is a normal subgroup of 
(p, r ) and p —» pa is an automorphism of (p) so that (p, r) is a semi-direct 
product of (p) by (r). If a — 1 G Zn*, it is not hard to see that (p, r) is 
a metacyclic group. 

Now suppose that we wish to construct all those graphs G having 
vertex-set V(G) = V and for which (P}r) ^ Aut (G). Let M = [w/2j 
and abbreviate "is adjacent to" by ~. An arbitrary unordered pair of 
distinct vertices of G can be written as an ordered pair (VJ\ vh

i+T) for 
some r such that 0 ^ r ^ /x. In fact, the ordering will be unique unless 
r = 0 or m is even and r = ra/2 = M- If (p, T) ^ Aut (G), we have 
A / ~ vh

i+T if and only if vo° ~ vs
r where 5 = or^h — j). Therefore, to 

construct G it suffices to specify the sets 

Sr = {s G Zn : vv° ~ vs
r] for 0 ^ f ^ M 

and to determine what conditions these sets Sr must satisfy in order that 
(P,T) S Aut (G). 

First, 0 (? So or else G would have loops. Since p £ Aut (G), we need 
S0 = — So. Further, s £ S r if and only if Vo° ^ vs

r if and only if Tm(vo°) ~ 
Tm(vs

T) if and only if v0° ~ vT
ams if and only if ams Ç Sr. In case m is even 

(so that p. = w/2) , then 5 Ç SM if and only if 

v0° ~ v / 

if and only if 
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if and only if 

—a^s/ u\ n 0 —a^s/ 0 \ 
P (Vo ) = V-a»s ~ Vo = p (>VS) 

if and only if 

— a"s G SM. 

Finally, if the remaining edges of G are given by 

E(G) = {{Vj\vh
i+r)\ 0 g r g M and «-'(ft - j ) Ç Sr}, 

it is then easy to see that (p, T) ^ Aut (G). 

3. Metac i rcu lant graphs . We summarize the above four conditions 
for the basic definition to follow. 

(1) 0 g S0 = -So 
(2) amSr = S r for 0 ^ r ^ M 
(3) If m is even, then aMSM = — SM 

(4) £(G) = {{v/, ^ + r } : 0 ^ r g M and h - j £ a*5r}. 

If m ^ l , » è 2 , a Ç Zn*, /x = lrn/2], and if So, Si, . . . , SM are subsets 
of Zn satisfying conditions (1), (2), and (3), then we define the meta
circulant graph G = G (m, n, a, So, . . . , SM) to be the graph with F(G) = V 
and with E(G) given by (4). We shall also say that G is an (m, n)-
metacirculant graph. 

These are special cases of the "uniformly (m, n)-galactic graphs" 
studied by Marusic [3]. The (2, £)-metacirculants (where p is a prime) 
have been discussed in [3], and earlier in [1]. 

It is straightforward to check that G is a well-defined graph such that 
(p, r) ^ Aut (G). By the above discussion we have the following result. 

THEOREM 1. The metacirculant G = G (m, n, a, So, . . . , SM) is vertex-
transitive with (p, T) ^ Aut (G). Conversely, any graph G' with vertex-set V 
and (p, T) ^ Aut (G') is an (w, n)-metracirculant. 

This approach to metacirculant graphs should be viewed as a construc
tive approach. First one chooses the number of blocks and the block sizes 
(m and n, respectively). Then one chooses a Ç Zn* which can be viewed 
as how a block is "twisted" as it goes onto the next block. The sets 
So, Si, . . . , SM are then chosen so as to accommodate am. The edges are 
then put in to accommodate (p, r) . 

Example 1. The metacirculant G(2, 5, 2, {1, 4}, {0}) is the Petersen 
graph. 

Recall that if T is a group and 1 g-A = A-1 C r , then the Cayley 
graph i£(I \ A) has vertex-set T and edge-set {{x, xd] : x Ç T and ô € A}. 
For any Cayley graph K(T, A), the automorphism group Aut K(T, A) 
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contains the left regular representation of I\ thus K(T, A) is vertex-
transitive. In fact, this property is characteristic for Cayley graphs, since 
by a theorem of Sabidussi [4] a graph is Cayley if and only if its auto
morphism group contains a regular subgroup. 

Suppose F is a semi-direct product of a cyclic group of order n by a 
cyclic group of order m. Then Aut K(T, A) contains a regular subgroup 
isomorphic to T, and this subgroup must be a semi-direct product of a 
cyclic subgroup (p) of order w b y a cyclic subgroup (r) of order m. Now 
rpr~l = pa for some integer a relatively prime to n, and thus (r) acts as 
a permutation group on the m orbits of (p). Since (p, r ) is regular, and 
hence transitive on the vertices of K(T, A), r must permute the orbits of 
(p) in a cycle of length m. Therefore we can label the vertices of K(T} A) 
as Vj\ i Ç Zm and j € Zn, so that 

p = (*,0(V . . . vo_x) . . . (v^Vl
m-' . . . iCTÎ) and T(W/) = w^1. 

Theorem 1 then implies that K(T, A) is an (m, w)-metacirculant. 

THEOREM 2. £yer3; Cayley graph K(T, A), for a group T which is a semi-
direct product of a cyclic group of order n by a cyclic group of order m, is an 
(m, n)-metacirculant graph. 
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v4° t/3o 

Example 2. The metacirculant G(3, 7, 3, {1,6}, {0}) is the Cayley graph 
K(T, A) for 

r = (a, 6 : a3 = 1 = b\ aba~l = 62) and A = {a, 6, a"1, b~1}. 

Not every vertex-transitive graph is a Cayley graph. Sabidussi [5] has 
characterized vertex-transitive graphs in a way which shows their close 
relation to Cayley graphs. However, it is usually not easy to compute 
whether given vertex-transitive graphs are Cayley graphs. 

Recently, Godsil [2] has determined those Kneser graphs K(n, k) which 
are Cayley graphs. The Kneser graph K(n, k) has as its vertices the 
^-element subsets of {1, 2, . . . , n\, where n è 2k + 1 and k ^ 2, and has 
as its edges the unordered pairs of &-sets which are disjoint. In particular, 
Godsil showed that the "odd graphs" Ok+ï = K(2k + 1, k) are non-
Cayley. The Petersen graph is K(5, 2). 

Among vertex-transitive graphs, it may be expected that the Cayley 
graphs enjoy special properties. For instance, there are only six known 
connected vertex-transitive graphs which are non-Hamiltonian, and these 
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graphs are not Cayley graphs. It may be that all connected Cayley graphs 
are Hamiltonian. If one wishes to study vertex-transitive graphs in 
general, then it is desirable to have some nice constructions for families 
of vertex-transitive non-Cayley graphs, such as the odd graphs. 

As can be seen from Theorem 2 and Example 1, some metacirculants 
are Cayley graphs and others are not. We shall investigate which meta
circulants are Cayley graphs. 

4. Metacirculants which are Cayley graphs. We now seek condi
tions on the structure parameters of metacirculants which will result in 
these graphs being Cayley graphs. One such condition is that a — 1. 

THEOREM 3. The Cayley graph K(Zm X Zn, A) is isomorphic to the meta-
circulant G(m, n, 1, 50, . . . , 5M) where Sr = {j Ç Zn: (r, j) Ç A)} for 
0 S r ^ M. 

Proof. It is easy to see that the mapping (i,j) —» vf1 is an isomorphism. 

The circulant graph Circ (n, S) is the Cayley graph K(Zn, S) where Zw is 
the additive group of integers modulo n. Every such circulant graph is 
trivially representable as a metacirculant G(l, n, 1, So) with S0 = S. 
By Theorem 3, if m and n are relatively prime, then Circ (run, S) is 
representable as G(ra, n, 1,50,. . . , 5M) with Sr = {j (mod n) : nr + mj £ S\ 
for 0 ^ r ^ /i. However, if gcd (ra, w) ^ 1, then Circ (mn, S) may fail to 
be representable as any G(m, n, a, So, ... , 5M). This is the case for the 
9-cycle C9 = Circ (9, {1, 8j), which is not any G(3, 3, a, 50, Si). 

Let F(ST) = {P £ Zn*: pSr = 5r} for 0 ^ r ^ /x and let F(G) = 
Hf=o F(Sr). Clearly, F(So), F(SI), . . . , -/7(5M) and F(G) are subgroups 
of the multiplicative group Zn*. If 0 £ -F(G) it is obvious that the mapping 
a / —> ^^/ is an automorphism of G. In addition, the identity mapping 
vji ~~* vji is a n isomorphism of G onto G(m, n, a/3, S0, . . . , 5M). Therefore, 
if a G ^(G) and so a - 1 G F (G), then z;/ —> z>/ is an isomorphism of G onto 
G(w, w, «of1, 5o, . . . , SM). But cm-1 = 1 (mod n) and we obtain a corollary 
to Theorem 3. 

COROLLARY 4c. If a G F (G), then the metacirculant graph G is a Cayley 
graph K(Zm X Zn, A). In addition, if gcd (m, n) = 1, then G is a circulant 
graph. 

Let Ea = {e G Z: ae G F(G)). Then m G Ea by condition (2) earlier 
and a £ E (recall that a is the order of a in Zn*). We abbreviate (V 
divides 5" by r|s. Now a\4>(n), where <t>(n) = |Zn*| is the Euler phi 
function. Since (Ea, + ) is a subgroup of the integers Z, we have Ea = 
{<&: x G Z} where J is the smallest positive element of Ea. Thus, d divides 
gcd (a, m) = gcd (a, m, 4>(n)). If gcd (a, m) = 1, which will certainly 
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hold if gcd (m, <j>(n)) = 1, then d = 1 so that a £ ^(G). In this case, 
Corollary 4 gives the following two results. 

COROLLARY 5. If gcd (a, m) = 1, then G ~ i£(Zm X Zn, A). 

COROLLARY 6. If gcd (ra, n) = gcd (m, <f>(n)) = 1, then all (m, n)-
metacirculant graphs are circulant graphs. 

We now improve upon the above simple observations. Assume that 
gcd (a, m) > 1 and let pu . . . , pk be the distinct primes dividing both 
a and m. Let 

a = £^1 . . . pk
ek a' and m = £ / i . . . pk

fk mf 

where gcd (a, ra') = 1 = gcd (a', m). Let 

4̂ = { i : l ^ i ^ & and et > /<} and 

u = a ' n ^ ' " if-4 ^ 0 

while w = a' if 4̂ = 0. 

LEMMA 7. L^ w £ Z. r/zew w|w if and <m/;y if/or ez/er;y t ^ Z we have 
m\wt implies a\wt. 

Proof. Suppose that w = uv for some p. If m\wt and i $ ^4, then/* ^ et 

and pifi\wt so that £iei|w/. Since 

we certainly have that a\wt. 
Conversely, suppose that m\wt implies a\wt for all integers /. Let pja\ 

ai ^ 0, be the highest power of pt dividingw for i — 1, 2, . . . , k. Choose 

t = m' n Pifi~"> 
i:*i<fi 

Then m\wt so that a\wt. If crz < / f , then pt
fj is the highest power of pt 

dividing wt. Now a\wt, so that a'|w and pt
ei\wt for z = 1, 2, . . . , &. When 

ẑ > /*» then <n è / i must hold and £/*' is the highest power of pi that 
divides both wt and w. Hence, o-* ̂  ez- for i £ ^4, so w|w. 

Recall that a permutation group is semi-regular if the only permutation 
that has any fixed points is the identity permutation. 

LEMMA 8. With u as defined above, the group (p, rM) is semi-regular and 
has order m'tiTl^Ap/K 

Proof. Recall that r has order b = 1cm (a, m). We have 

b = a'm'YlpieiïlPif' 
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so that 

b/u = m' Tip/1-

From the discussion in Section 2, it follows that 

(p, TU) = j p V ( : 0 ^ s ^ rc - 1 and 0 ^ / ^ b/u} 

has order rc&/w = m'n TL^A P/K Suppose that *// = pVw'(*;/). Then 

Thus, m\ut. By Lemma 7, we have a|w/ so that 

aut = 1 (mod w) and 7 = 7 + 5 (mod w). 

This implies that 5 = 0 (mod n) and ps = 1. Also, m\ut and a\ut imply that 
6|w/ so that rut = 1. We conclude that p V = 1, and so 1 is the only 
element of (p, rw) having a fixed point. 

THEOREM 9. Let G = G(m, n, a, Sc, . . . , SM), a ftg the order of a £ Zn*, 
and c = a/gcd (a, m). If gcd (c, m) = 1, /fee» G is a Cayley graph for the 
group (p, r c) . Furthermore, this group is abelian if gcd (a, m) — 1 a ^ i/ ts 
cyclic if gcd (a,m) = 1 = gcd (m, »). 

Proof. Letting a = a'pi*1 . . . pk
ek and m = rn'p\fl. . . £*/* as done before, 

we have that gcd (c, m) = 1 if and only if / * ^ e*, i = 1, . . . , fe, if and 
only if 4̂ — 0 and w = a' = c. By Lemma 8, if gcd (c, w) = 1, then 
(p, r c) is semi-regular of order mn. Thus its order and degree are equal so 
that (p, rc) is a regular permutation group contained in Aut (G). There
fore G is a Cayley graph. If gcd (a, m) = 1, then c = a so the group is 
(p, Ta) and it is abelian because rapT~a = pa° = p. Furthermore, if gcd 
(m, w) = 1, then (p, ra) = (pra) is cyclic and G is a circulant graph. 

5. Metacirculants of order qp. In Theorem 9 we have given sufficient 
conditions for the metacirculant G(ra, n, a, So, . . . , SM) to be a Cayley 
graph. We now seek necessary conditions. We specialize m and n to be 
distinct primes q and p with q < p. In this case, we can determine the 
structure of the Sylow ^-subgroups of Aut (G). 

LEMMA 10. The Sylow p-subgroups of Aut (G) have order pe > p if and 
only if e — q if and only if for each r, 0 < r S ix.we have Sr = 0 or ST = ZP. 

Proof. Assume that for each r, 0 < r ;g /x, that S r = 0 or S r = Zp. It is 
clear that Aut (G) contains the £-group P of order pQ that is the direct 
product 11^=1 (pi) where pt is the p-cycle 

Pi = («0^1* • • • V - l ) . 

But Aut (G) is a subgroup of the symmetric group of degree qp, and the 
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Sylow ^-subgroups of this symmetric group have order pq. Thus, P is a 
Sylow p-subgroup of Aut (G) and we have e — q. 

Assume that e = q. Then since q > 1, we know that the Sylow p-
subgroups of Aut (G) have the order pe > p. 

Finally, assume that the Sylow ^-subgroups of Aut (G) have order 
pe > p. Let P be a Sylow p-subgroup containing the automorphism p. 
It is then clear that the orbits of P are 7°, 71, . . . , Vq~l. Consider P0 , 
the stabilizer of Vo° under P. Since P restricted to any orbit is cyclic of 
order p, P0 fixes every vertex in 7°. Suppose that for some r j* 0, both 
Sr 7e 0 and Sr ^ Zp. Then P 0 must fix every vertex of Vr since P restricted 
to Vr is a £-group. In the same way, P 0 must fix every vertex of 72 r , 
which implies then P0 fixes every vertex of 73r . Continuing in this way 
we obtain P 0 is trivial. This implies that \P\ = p, which is a contradiction. 
From this contradiction, we conclude that for every r ^ O w e have Sr — 0 
or Sr = Zp. 

Notice that if \P\ > p, then by Lemma 10 the metacirculant G is a 
wreath product of an order q circulant over an order p circulant, and so G 
is isomorphic to a circulant graph of order qp. 

LEMMA 11. Let H be a multiplicative cyclic group of order n and x £ H 
be an element of order e. Then there exists a generator g of H such that 
gn/e = x. 

Proof. (L. Babai). Let H = (h). Then (x) = (hn/e) is the unique sub
group of order e so that x = hnt/e for some / relatively prime to e. Let 
w* = n/gcd (n, en) so that gcd (e, n)* = 1. By the Chinese Remainder 
Theorem, there is an integer r such that r = / (mod e) and r = 1 (mod 
«*). Then gcd (r, n) = 1 so that g = hr generates H and 

THEOREM 12. Le/ G = G(ç, £, a, So, . . . , SM) wfeere q < p are primes. 
Suppose that q2\a and for some r, 0 < r S M> 0 < |5 r | < p. Then G is a 
Cayley graph if and only if aSo = 50 awd /fere exists a cyclic permutation 
à = ( v i . . . iq-\) ofTLq = {0, 1, . . . , q — 1} and a sequence a0, ai, . . . , 
aq_i in 7JV having the propertiesy 

(i) If 0 < r S M, 0 S k è q ~ 1, and *(* + r) = *(jfe) + t (mod ç) 
/or 50me t such that 0 < t S M> ̂ w 

5 r == «'<*>-% + a~*(a* - at+r) (modp). 

(ii) 7/0 < r g M, 0 g jfe g g - 1, a«d d-(jfe) = &(k + r) + * (mod g) 
/or some / such that 0 < t S M> ̂ w 
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(iii) For some y Ç Zp, where either y = 1 or y = aa/q, we have 

yqat» + y*-laix + . . . + yaiq_x = 0 ( m o d p ) . 

(In conditions (i), (ii) the subscript on ak+r is reduced modulo q.) 

Proof. Suppose tha t the hypotheses of Theorem 12 hold. Using Lemma 
11, we can let Zp* = (X) and a = x (p~1) /a. Now assume tha t G is a Cayley 
graph, so tha t Aut (G) contains a regular subgroup T of order qp. By 
Lemma 10, T h e Sylow ^-subgroups of Aut (G) have order p. Replacing Y 
by one of its conjugates in Au t (G), if necessary, we lose no generality in 
assuming tha t (p) g I \ Then there exists a £ Aut (G) such t ha t F = 
(p, <r) and aQ = 1 = pp and apa~l = p7 where 7* = 1 (mod p). If y ^ 1 
(mod £ ) , by replacing a with an appropria te a\ we may assume t h a t 
7 = X(p-1)/Ç so t ha t r = (p, a) where a* = 1 = pp, crpa"1 = p7 and either 

7 = 1 or 7 = X(p~])/?. If 7 = 1, then y G F(G) . Otherwise, 

for some integer s because q2\a. Since aq Ç ^ ( G ) , we have t ha t 7 £ ^ ( G ) . 
In either case, 7 £ F(G) so t ha t 7 5 r = ST for 0 ^ r ^ pi. 

Now r = (p, 0-) is transit ive and imprimitive on V(G) with blocks 
F°, F1 , . . . , F ç _ 1 so t ha t (a) acts transitively on the blocks. We may 
define a cyclic permutat ion & on Zq by o-(F*) = F* ( i ) . Define at £ Z p by 
<r(floO = ^T G / ( l )- Then we claim 

(A) <r(Vjl) = Vy[%.ai) for all ^ 6 Z and 7 £ ZP. 

T o see this, note tha t 

(a(wS)(j(vi) . . . o-(V-i)) . . . ( c r ^ o ^ V ^ i * - 1 ) • • • o-W-i1)) 
- 1 7 / O O O N / ç -1 q-l q-l \ 

= apa = p = (v0Vy . . . z>(p_i)7) . . . (vo V • • • ^ -1 )7 ) > 

and together with the definition of & this implies (A). 
Let & = (i0ii • • • iq-i) where i0 = 0, ii = o-(O), and so on. From (^4) 

we obtain 

j / 0 \ _ (7-7(0) a V ô J — vTyfl0-{-7y-iai + . . . + 7 a i . 
1 ? - _ 1 

Since aff = 1, this yields 

7^*0 + yq~lan + • • • + yo>iq-\ = 0 (mod p). 

We now obtain conditions on 5 0 , . . . , S^ by using the fact t ha t (A) 
determines a £ Aut (G). Recall t ha t 7 £ ^ ( G ) . We have 7/ Ç ct̂ So if 
and only if v0

k ~ vf if and only if 

*(*) / A\ / fc\ â(fe) 
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if and only if 

yj G a^So. 

Therefore, akSo = <xâ(k)So which implies that 50 = a*(0)S0. Now <r(0) ê 
{1, 2, . . . , 5 — 1} modulo g and since both a* and a°(0) are in F(SQ), we 
have a G F(So), so thataSo = So-

Now let 0 < r ^ jit. Similarly to the above we obtain yj £ akSr if and 
only if 

Vyak ~Vy(J+ak+r)-

There are two cases to consider. 
In case 1, we have &(k + r) = &(k) + t (mod q) for some t satisfying 

0 < t 5s ju. The adjacency condition in the previous paragraph then holds 
if and only if 

y(j + ak+r) - yak G a*™St 

if and only if 

j + ak+r - ak e a^St 

if and only if 

j e a*&St + (ak - ak+r). 

This shows that 

Sr = a^~kSt + a~k(ak - ak+r). 

In case 2, we have &(k) = a(k + r) + t (mod q) for some t satisfying 
0 < t ^ M- Using an argument similar to that for case 1, we obtain that 

Sr = -a*<*+'>-*St + a~k{ak - ak+r). 

This completes the argument that if G is a Cayley graph, then aSo = So 
and conditions (i), (ii), (iii) hold. Suppose that, conversely, aSo = So 
and conditions (i), (ii), (iii) hold for some appropriate cyclic permutation 
& of Zq and sequence a<j, ai, . . . , a5_i in Z„. Let 7 = 1 if ao + #i + • . • 
+ aq-i = 0 (mod £). Otherwise, let 7 = aa/*. Define <r(t;/) by (4 ) . Then 
<7-* = 1 by condition (iii) and the fact that & = (i0ii . . . iq-\) has length q. 
Furthermore, a G Aut (G) as can be seen by reversing the various "if and 
only if" statements used previously. Lastly, <jp<j~l = py follows from (A). 
Thus (p, a) is a regular subgroup of Aut (G), which implies that G is a 
Cayley graph. 

This concludes the proof of Theorem 12. 

COROLLARY 13. Let q2\p — 1 and q2\a. Let So, . • . , S^ be such that 
aSo 7* So but aqSr = Sr for 0 ^ r ^ JU. Suppose for some r, 0 < r ^ ju, 
/ t o 0 < |57 | < />. TTten G(g, £, a, 50, . . . , 5) is m?/ a Cayley graph. 
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Proof. This follows immediately from Theorem 12. 

Let g be a prime. By Dirichlet's famous theorem, there are infinitely 
many primes p in the arithmetic progression 1, 1 + q2, 1 + 2q2, . . . , 
that is, there are infinitely many primes p > q such that q2 divides p — 1. 
Choose such a prime p and let p — 1 = qkN where gcd (q, N) = 1. If X 
generates Z^*, then choose a = \N, S0 = (aQ) VJ (—(a5)), each Sr for 
0 < r ^ ix = (q — l ) / 2 to be a union of cosets of (a*) in Zp* together 
possibly with the element 0 of Zp, and have at least one Sr, r ^ 1, non
empty and not equal to Zp. Then G(q, p, a, So, ... , 5M) is not Cayley 
and it is easy to see how to construct many other such vertex-transitive 
non-Cayley graphs by using Theorem 12 similarly. 

As a particular example, let g =3,p = 19, a = 4 , 5 0 = {1,7,8,11,12,18} 
and 5i = {0}. The resulting (3, 19)-metacirculant is non-Cayley, has 57 
vertices, and is regular of degree 8. 

There are several problems about metacirculants that we wish to men
tion. In [3] it is shown that the line-graph of the Petersen graph is not a 
metacirculant, although its automorphism group has an element p which is 
a product of three disjoint 5-cycles. Marusic has also pointed out to us 
that the odd graph O4 of order 35 = 5-7 is not a metacirculant, though 
it also has an automorphism which is a ' 'rotation" p, the product of five 
7-cycles. We do not know of any other vertex-transitive graphs with qp 
vertices which are not (q, p)-metacirculants, although it seems likely that 
some such graphs will exist. So the first problem is to characterize the 
vertex-transitive graphs of order qp, and in particular, those which are 
not metacirculants. 

The second problem is to find necessary and sufficient conditions for 
G(q, p, a, So, ... , Su) and G(q, p, a!', S</, . . • , 5 / ) to be isomorphic. This 
was done for q = 2 in [1, 3]. 

A third problem is to determine which (w, n)-metacirculants are 
Hamiltonian. 
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