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Abstract. Given a graph G with characteristic polynomial ¢(t), we consider
the ML-decomposition ¢(t) = q1(t)q2(t)? ... gm(t)™, where each ¢;(t) is an inte-
gral polynomial and the roots of ¢(¢) with multiplicity j are exactly the roots of
q;j(t). We give an algorithm to construct the polynomials ¢;(¢) and describe some

relations of their coefficients with other combinatorial invariants of G. In partic-
n

ular, we get new bounds for the energy E(G) = > |\i| of G, where A1, Aa,..., \n
i=1

are the eigenvalues of G (with multiplicity). Most of the results are proved for

the more general situation of a Hermitian matrix whose characteristic polynomial

has integral coefficients.

1. Introduction

Let A be a Hermitian n X n matrix such that the characteristic polyno-
mial p4(t) = det (tI, — A) has integral coefficients. We consider the multi-
plicity layered decomposition (ML-decomposition for short) of w4(t):
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(ML1) @a(t) = q1(t)g2(t)? ... gm(t)™ with ¢;(t) € Z[t] and 1 # g (t);
(ML2) A € R is a root of ¢ 4(t) with multiplicity j if and only if ¢;(\) = 0.

Obviously, if p4(t) has no roots of multiplicity j, then ¢;(t) = 1. We shall
give an algorithmic construction of the polynomials g;(t) using the Euclidean

algorithm in the family of derivatives @%)(t) of ¢a(t). We show that the
following properties are satisfied by the ML-decomposition.

(ML3) A is a root of g;(t) if and only if for every principal i x i subma-
trix B of A withn—j 41 =i < n, we have pp(A) =0 and @p/(\) # 0 for a
principal (n — j) X (n — j) submatrix B’ of A.

(ML4) For 1= j<m—1 the derivative cpg)(t) accepts an MIL-decom-
position wfi)(t) = Gir1()gj2(t)” - gm()™ 7 with G 1(t) = rj(t)gj11(t) for
some 7;(t) € Z[t], such that the simple roots of cpg)(t) are exactly the roots
of (?]-i-l(t)

Motivation for considering the ML-decomposition arises from applica-
tions to connected graphs G without loops or multiple edges and its charac-
teristic polynomial ¢(t) = @A) (t) where A(G) is the adjacency matrix of
G. Multiplicities of roots of ¢ (t) are related to symmetries of the graph G [3,
Ch. 6], regularity properties [3, Ch. 7] and important structural properties of
the graph G. Moreover, in this paper we get further elementary applications
of the ML-decomposition for ¢g(t). Indeed, let g;(t) =" + ajit™— +---
+ ajn; be the polynomials obtained from the ML-decomposition. We show
the following:

(a) wa(t) = qt)g(t)?. .. gnt)™ with m = m(G) maximal j such that
g Z 1.

(b) n1 = 1, since the spectral radius p(G) = max { ||\ : pc(\) =0} isa
simple root of pg(t).

(¢) If K =G\ {ai,...,a;} is obtained from G by deleting the vertices
ai,...,ak, then m(G) < m(K) + k.

, m ’
(d) Zggg = ; j Z; 8, which implies that a real number A is a root of

(=N (1)

ealty M

¢ (t) with multiplicity my if and only if }gr)l\

(e) The minimal polynomial of A(G) is pa(t) = q1(t)qa(t) ... gm(t). In
particular, in: nj 2 diam (G) + 1, where diam (G) is the diameter of the
graph G. A;:a1 consequence we also get m(G) < n — diam (G).
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For any polynomial ¢(t) with real roots, define the energy of q(t) by
E(q(t)) =Y |\|, where A runs over the roots of ¢(¢), counting multiplicities.

(f) E(G)= Y jE(q;(t)), which yields the following McClelland-type
j=1

bounds for the energy:

m m
S dvJad — 2z +nj(n; — Dlagn, ™ < BG) £ 4y fnj(a?, — 2a50).
j=1 j=1

2. The multiplicity layered decomposition

2.1. Let A be a Hermitian n x n matrix such that the characteristic
polynomial ¢ 4(t) has integral coefficients. Then the eigenvalues of A are the
roots of p4(t), all of them real A\; < A9 = --- < \,,. For any eigenvalue A of
A, we denote by my the multiplicity of A (writing m(A, A) if some confusion
arises).

We shall consider irreducible polynomials in Z[¢] (or equivalently in Q[t]).

LEMMA. Let X be an eigenvalue of A with multiplicity my. Let q(t) be
an irreducible polynomial such that q(\) = 0. Then the following happen:

(a) q(t) has minimal degree among those polynomials p(t) € Z[t] with
p(A) = 0.

(b) If q(N)=0 for some N € C, then N is an eigenvalue of A with
my = Mmy.

PROOF. (a) In fact ¢(t) generates the ideal in Z[t] of those p(t) with
p(A) =0.

(b) ¢(t) divides @A (t), hence X' is an eigenvalue of A. The multiplicity
my is the maximal 7 such that ¢(¢)" divides p4(t). Therefore my =my,. O

2.2. According to (2.1) we consider irreducible polynomials p;(t),...,
ps(t) € Z[t] such that each A; is a root of exactly one p;(t), 1 =i < n. For

each 1 £ i < s, consider r(j) = max { k : p; (1) divides ©a(t)}. Set
qi(t) = pi(t),
r(j)=i

which yields an ML-decomposition ¢4 (t) = q¢1(t)g2(t)*. . . gm(t)™.

Since p4(t) is a monic polynomial, we may assume that each p;(t) and
also ¢;(t) are monic polynomials. Set m(G) =max {j : ¢;(t) # 1}. We shall
need the following:
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LEMMA (cf. [1]). goff) (t)=k! > op(t), where the sum runs over the
7)'n,fk(A)
set Pn—k(A) of all principal (n — k) x (n — k)-submatrices of A.
PrOOF. The proof in [1] considers the case k = 1. The general statement
follows by induction. O

2.3. PROPOSITION. For a oot \ of pa(t) the following are equivalent:

(a) A has multiplicity k.

(b) ar(A) =0.

(¢) For any principal j X j-submatriz B of A withn—k+1=j < n,
we have op(\) =0 and ¢p/(\) # 0 for some (n — k) x (n — k)-submatriz B’
of A.

PROOF. (a) < (b) is clear.

(b) = (c) Let \y £ A9 < --- < A\, be the eigenvalues of A and p1 < o
< -+ = p; those of a principal j x j-submatrix B of A withn—k+1< j S n,
then by the interlacing theorem (see for example [3] for other applications):

)\i éul é >\n—j+i7 (l: 177])

A=\ =-= >\t+kz—1 = ), then )\ gﬂt < >\nfj+t withn —j+1t <t+
k—1and us = A.

In case \ is a root of all B € Py(A), then by the lemma above, ¢ %(\)
= 0 and A has multiplicity at least k + 1, a contradiction.

(c) = (a) Apply again the Lemma. [

2.4. Let A be a Hermitian matrix with characteristic polynomial 4(t)

€ Z[t]. Let pa(t) = [] ¢i(t)" the ML-decomposition with g, (t) # 1.
j=1
L t) = med (pa(t), o'{ (¢ (m=) ¢
EMMA. qm( ) mc (@A( ),QOA ( )a'- P4 ( ))

PROOF. The claim follows from a straightforward but tedious calculation,
we shall illustrate only the case m = 3.

©A = q1g5q5 (omitting the variable t),

O = 41305 + 201020505 + 301950395 = (419205 + 2q14505 + 3919245) 4245,

where the polynomial r in parenthesis is not divisible by any ¢;, i = 1,2, 3.
(Indeed, if p is an irreducible factor of ¢; dividing also 71, then p | ¢} gags.
By (2.1), pt ¢, i = 2,3 and therefore p | ¢§ = p's + ps’ where s € Z[t] such
that ¢ = ps. This implies p | p’s and p | s, which in turn implies that ¢; has
multiple roots, a contradiction. The cases ¢ = 2,3 are similar.) Now, ¢/} =
roqs wWith ro = rgaqs + 116593 + 2119244 is not divisible by any ¢;, i = 1,2, 3.
Hence g3 = med (pa, ¢y, ¢%). O
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The inductive construction of the polynomials ¢ (t),...,qn(t) is easily
carried out:

qm<t) = mcd ((pA(t)7 (P{A(t)v cees (p.(Am_l)(t))v

¢m—1(t) = med ( pat)  Pa(t) (p(f\m_z) (t)>

Gm(®)™ g (@)™ am (t)?

@a(t) .
et)’ast)’ . g™

qi(t) =

2.5. To get more precise information on the derivatives of p4(t) we need
some results of elementary analysis.

PROPOSITION. Let p(t) be a polynomial of degree n whose roots are real.
Then the following hold:

(a) For every 1< j<n—1, pUi(t) has only real roots.

(b) If M =A==\, are the roots of p(t) and p1 = po < -+ S
the roots of pU)(t), then \; < p; < A—jri 1=1,...,7). O

m .
2.6. Let pa(t) = J] ¢(t)" be the ML-decomposition as above.
i=1

PROPOSITION. For any i = 1, the following is an ML-decomposition:
A1) = (ri®ai (1)) g2 g (™,

that is, A is a simple root of ‘PX) (t) if and only if ri(N) =0 or gi+1(\) =0,

where i = 7_14iGit1 -+ Gm+ Y (GHV)1i-1Gi - Qitj-1054 jQitj+1- - - Gm, With
7=0

ro(t) = 1.

PROOF. The given decomposition follows by induction. It is enough to
show that A is a simple root of cpf;) (¢) if and only if r;(A) =0 or ¢;i4+1(A) = 0.
We show it by induction on 4, the case ¢ = 0 being clear.

Assume ¢;4+1(A) =0 and A is not a simple root of ‘PE;) (t). Then by (2.1),
ri(A) = 0. Hence 7;_1(A)qi(A\)qj 11 (MN)gir1(A) ... gm(X) = 0 and only r;_1(\)
= 0 is possible, which contradicts the induction hypothesis.
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Assume 7;(A) = 0 and A is not a simple root of @X) (t). By (2.5), Ais also
a oot of ¢4 () = (rio1()ai(t)) gis1(8)? . g (8)™ .

If r;_1(X) = 0, by induction hypothesis, A is a simple root of go%fl)(t). On
the other hand, 7,_;(A)gi(A) ... gm(A) = 0 and either 7;_; () = 0 or ¢;+;(A)
=0 (for any 0 < j < m — i) yield a contradiction.

If ¢iyj(A) = 0 for some 0 < j < m — i, we get

T‘l',l()\)qi(A) e qi+j,1()\)q;+j(>\) e qm()\) = 0

which also yields a contradiction.
The converse of the claim is clear. ]

2.7. The following result shows an interesting relation between the poly-
nomials r;(t) as defined in (2.6).

PROPOSITION. For 1 < i< m —1, and for any A\ € R, we have

ri(N)? Z rict (N @ (Mripa(A).

PROOF. Any polynomial p(t) having only real roots p; < po < -+ < pp
satisfies

"1 "(#)p(t) — p'(t)? "
:Z -~ and p't)p(t) — () :_Z

1
(t)” = (- )

=
S
1
—
~
|
IS
s

Applying this inequality for p(t) = cpfj) (t) and using (2.6) the result follows.

O

3. ML-decomposition for graphs

3.1. Let G be a connected graph without loops or multiple edges. Let
1,...,n be the vertices of G and A = A(G) its adjacency matrix. The re-
sults of Section 2 apply since A is a symmetric matrix and the characteristic
polynomial () has integral coefficients. Set pg(t) = t" +ait" ' +---+a,
and let A\ < Ao < -+ < A\, be its (real) roots.
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m .
Consider the ML-decomposition ¢ (t) = [] ¢;(t)? with n,, =1, where
j=1

n; is the degree of ¢;(t) (write m(G) :=m). The Perron-Frobenius Theo-
rem (see [4]) says that the spectral radius p(G) is a simple root of ¢g(t).
Therefore ¢ (t) # 1.

The minimal polynomial is pg(t) = 1] g;(t).
j=1

3.2. EXAMPLES. (1) Let G be the cubic graph

L]
o= | e

with 10 vertices and characteristic polynomial
o(t) = t10 — 1565 — 47 + 75¢t° 4 2415 — 157t* — 36> + 144¢% 4 16t — 48.
Then
q(t) =t>—5t+6=(t—3)(t—2) and p(G)=3,
et)=t+1, @t)=t2+t—2=>0—-1)(t+2).
The ML-decompositions of the derivatives of ¢(t) are as follows:
o' (t) = [(5t* — 1563 — 1062 + 36t + 2)(t + 1)] [(t — D)t +2)]
¢"(t) = [(15t° — 15¢° — 95¢* + 37> + 148t + 6t — 24)(t — 1)(t + 2)].

(2) Let G be the cubic graph

with 12 vertices and with characteristic polynomial
o(t) = t12 — 1810 — 269 + 1175 4 727 — 33945

— 306t° + 414t* + 532t3 — 99¢% — 324¢ — 108.
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Then
q(t)=t—3 and p(G) =3,
Gt) =t —t? =5t +6 = (t —2)(t* +t —3) with roots —2.3<1.3<2,

Q5(t) =t+ 1.

3.3. Let G be a graph as in (3.1). The principal (n — k) x (n — k)-
submatrices of A(G) correspond to the full subgraphs of G obtained by
deleting k vertices. Then (2.2) and (2.3) yield:

PROPOSITION. Let A be a root of pg(t). The following are equivalent:

(a) A\ has multiplicity k.

(b) ar(A) =0.

(c) For any full subgraph K = G\ {a1,...,a;} withn—k+1<j<n
we have g (N) = 0 and there is a full subgraph K' = G\ {a1,...,an—k} with
er/(A) #0. O

COROLLARY. Let K =G\ {a1,...,ar} be a full subgraph of G. Then
m(G) =m(K)+k. O

3.4. For any polynomial p(¢) with (possibly repeated) real roots A\; < Ao
<0<\, we have

There are several uses of these rational functions (see [5, Ch. 2]). Two im-
portant facts are the following;:

(a) lim Lat=N) _ m, is the multiplicity of A as a root of pg(t).

t—\ wa(t)
(b) iggg = 3 tr (A(G)") 2=+ is the generating function in the vari-
r20
able 1.

Note that tr (A(G)") counts the number of closed walks of length r in G.
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For the polynomials ¢;(t) = t" +aj "t 4.+ ajn,; we define the com-
panion matric

(a1 —aj2 .. —Gjn;y —n;]
1 0 ... 0 0
A= O 1 ... 0 0

0 10
which satisfies det (tI,,; — A;) = ¢;(t). The trace of the powers A7 is easily
written as a polynomial in the coefficients a;1, ..., aj,,;. For instance:

tr (AJ) = —aj1, ftr (A?) = a?l — 2aj2, tr (A?) = —a?l + 3aj1aj2 — 2aj3.

3

PROPOSITION. tr (A(G)") = Y jtr(4%). O
=1

J

3.5. The diameter diam (G) of G is the longest distance between two
vertices of G.
m(G)
PROPOSITION. (a) nj 2 diam (G) + 1.
=1

J

m(G)
(b) > (j—1)nj; =n—diam(G) — 1.

j=2
(¢) m(G) £ n—diam (G).
m(QG)
PROOF. (a) ) n; is the number of distinct eigenvalues of G. This
j=1
number is at least diam (G) + 1 (see for example [3, 3.13]).
m(G)
(b) Since n = ) jn;, the inequality follows from (a).
j=1

(c) Follows from (b). O

4. The energy of a graph and the ML-decomposition

4.1. The purpose of this section is to obtain McClelland-type bounds
for the energy of a graph as an application of the ML-decomposition.

First observe that McClelland’s bounds hold for quite general situations
namely:
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THEOREM (cf. [7]). Let A be a Hermitian n X n-matriz and let E(A)
n
= Y |\i| be the energy of A, where A\j < Ao < --- S\, are the eigenvalues
i=1
of A counted with multiplicities. Then

Vi (42) + n(n — 1)|det AP/ < E(4) < /ntr (A7),

PROOF (cf. [6]). We have

E(AP =Y NP+ 23 Il A = tr(4%) + n(n — D) AM { Al Al }

i=1 j<k

where AM denotes the arithmetic mean. Let GM { |Aj|[Ax|} = | det A|2/" be
the geometric mean. Then GM < AM yields the first inequality.
Moreover, the variance of the numbers |[\;], j =1,2,...,n is:

0 < var {171} = AM{ NP} — (AM {31}’
a 1 E(A
me I = L - (BA)
7j=1
and the second inequality holds.

4.2. THEOREM. We have

m(G) m(G)
S iyl — 2as0) 4+ mj(ng = Dlagn, [ < BG) £ Y jyfnjla? — 2a,0).
j=1 j=1

ProoF. Using that

m(QG) ’ m(G
Ze) _q;(t) ,
= E and n = E n;,
valt) o o) P =

and Coulson Theorem [2], we get

w1 [ i a3 L -]
m(G)
= Z_; JE(A;),
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where A; is the companion matrix of ¢;(t). Here i = v/—1.
By (3.4), tr (A?) = a?l — 2aj2 and det Aj = a;p,;. The result follows from
(4.1). O

4.3. As an example we calculate McClelland bounds and the bounds
(4.2) for the graph (3.2 (2)):

lower | E(G) | upper
McClelland’s bounds | 17.94 | | 20.19
o 19.2
(4.2) bounds 19.1 | 19.48
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