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Abstract. Given a graph G with characteristic polynomial ϕ(t), we consider

the ML-decomposition ϕ(t) = q1(t)q2(t)
2 . . . qm(t)m, where each qi(t) is an inte-

gral polynomial and the roots of ϕ(t) with multiplicity j are exactly the roots of
qj(t). We give an algorithm to construct the polynomials qi(t) and describe some
relations of their coefficients with other combinatorial invariants of G. In partic-

ular, we get new bounds for the energy E(G) =
n∑

i=1

|λi| of G, where λ1, λ2, . . . , λn

are the eigenvalues of G (with multiplicity). Most of the results are proved for
the more general situation of a Hermitian matrix whose characteristic polynomial
has integral coefficients.

1. Introduction

Let A be a Hermitian n× n matrix such that the characteristic polyno-
mial ϕA(t) = det (tIn −A) has integral coefficients. We consider the multi-
plicity layered decomposition (ML-decomposition for short) of ϕA(t):
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(ML1) ϕA(t) = q1(t)q2(t)
2 . . . qm(t)m with qj(t) ∈ Z[t] and 1 6= qm(t);

(ML2) λ ∈ R is a root of ϕA(t) with multiplicity j if and only if qj(λ) = 0.

Obviously, if ϕA(t) has no roots of multiplicity j, then qj(t) = 1. We shall
give an algorithmic construction of the polynomials qj(t) using the Euclidean

algorithm in the family of derivatives ϕ
(j)
A (t) of ϕA(t). We show that the

following properties are satisfied by the ML-decomposition.
(ML3) λ is a root of qj(t) if and only if for every principal i× i subma-

trix B of A with n− j + 1 5 i 5 n, we have ϕB(λ) = 0 and ϕB′(λ) 6= 0 for a
principal (n− j)× (n− j) submatrix B′ of A.

(ML4) For 1 5 j 5 m− 1 the derivative ϕ
(j)
A (t) accepts an ML-decom-

position ϕ
(j)
A (t) = q̂j+1(t)qj+2(t)

2 . . . qm(t)m−j with q̂j+1(t) = rj(t)qj+1(t) for

some rj(t) ∈ Z[t], such that the simple roots of ϕ
(j)
A (t) are exactly the roots

of q̂j+1(t).
Motivation for considering the ML-decomposition arises from applica-

tions to connected graphs G without loops or multiple edges and its charac-
teristic polynomial ϕG(t) = ϕA(G)(t) where A(G) is the adjacency matrix of
G. Multiplicities of roots of ϕG(t) are related to symmetries of the graph G [3,
Ch. 6], regularity properties [3, Ch. 7] and important structural properties of
the graph G. Moreover, in this paper we get further elementary applications
of the ML-decomposition for ϕG(t). Indeed, let qj(t) = tnj + aj1t

nj−1 + · · ·
+ ajnj be the polynomials obtained from the ML-decomposition. We show
the following:

(a) ϕG(t) = q1(t)q2(t)
2 . . . qm(t)m with m = m(G) maximal j such that

nj = 1.

(b) n1 = 1, since the spectral radius ρ(G) = max
{‖λ‖ : ϕG(λ) = 0

}
is a

simple root of ϕG(t).
(c) If K = G \ {a1, . . . , ak} is obtained from G by deleting the vertices

a1, . . . , ak, then m(G) 5 m(K) + k.

(d) ϕ′G(t)

ϕG(t) =
m∑

j=1
j

q′j(t)
qj(t)

; which implies that a real number λ is a root of

ϕG(t) with multiplicity mλ if and only if lim
t→λ

(t−λ)ϕ′G(t)

ϕG(t) = mλ.

(e) The minimal polynomial of A(G) is µG(t) = q1(t)q2(t) . . . qm(t). In

particular,
m∑

j=1
nj = diam (G) + 1, where diam (G) is the diameter of the

graph G. As a consequence we also get m(G) 5 n− diam (G).
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For any polynomial q(t) with real roots, define the energy of q(t) by
E

(
q(t)

)
=

∑ |λ|, where λ runs over the roots of q(t), counting multiplicities.

(f) E(G) =
m∑

j=1
jE

(
qj(t)

)
, which yields the following McClelland-type

bounds for the energy:
m∑

j=1

j
√

a2
j1 − 2aj2 + nj(nj − 1)|ajnj |2/nj 5 E(G) 5

m∑

j=1

j
√

nj(a2
j1 − 2aj2).

2. The multiplicity layered decomposition

2.1. Let A be a Hermitian n× n matrix such that the characteristic
polynomial ϕA(t) has integral coefficients. Then the eigenvalues of A are the
roots of ϕA(t), all of them real λ1 5 λ2 5 · · · 5 λn. For any eigenvalue λ of
A, we denote by mλ the multiplicity of λ (writing m(A,λ) if some confusion
arises).

We shall consider irreducible polynomials in Z[t] (or equivalently in Q[t]).
Lemma. Let λ be an eigenvalue of A with multiplicity mλ. Let q(t) be

an irreducible polynomial such that q(λ) = 0. Then the following happen:
(a) q(t) has minimal degree among those polynomials p(t) ∈ Z[t] with

p(λ) = 0.
(b) If q(λ′) = 0 for some λ′ ∈ C, then λ′ is an eigenvalue of A with

mλ′ = mλ.
Proof. (a) In fact q(t) generates the ideal in Z[t] of those p(t) with

p(λ) = 0.
(b) q(t) divides ϕA(t), hence λ′ is an eigenvalue of A. The multiplicity

mλ is the maximal i such that q(t)i divides ϕA(t). Therefore mλ = mλ′ . ¤

2.2. According to (2.1) we consider irreducible polynomials p1(t), . . . ,
ps(t) ∈ Z[t] such that each λi is a root of exactly one pj(t), 1 5 i 5 n. For
each 1 5 i 5 s, consider r(j) = max

{
k : pj(t)

k divides ϕA(t)
}

. Set

qi(t) =
∏

r(j)=i

pj(t),

which yields an ML-decomposition ϕA(t) = q1(t)q2(t)
2 . . . qm(t)m.

Since ϕA(t) is a monic polynomial, we may assume that each pj(t) and
also qj(t) are monic polynomials. Set m(G) = max

{
j : qj(t) 6= 1

}
. We shall

need the following:
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Lemma (cf. [1]). ϕ
(k)
A (t) = k!

∑
Pn−k(A)

ϕB(t), where the sum runs over the

set Pn−k(A) of all principal (n− k)× (n− k)-submatrices of A.
Proof. The proof in [1] considers the case k = 1. The general statement

follows by induction. ¤

2.3. Proposition. For a root λ of ϕA(t) the following are equivalent:
(a) λ has multiplicity k.
(b) qk(λ) = 0.
(c) For any principal j × j-submatrix B of A with n− k + 1 5 j 5 n,

we have ϕB(λ) = 0 and ϕB′(λ) 6= 0 for some (n− k)× (n− k)-submatrix B′
of A.

Proof. (a) ⇔ (b) is clear.
(b) ⇒ (c) Let λ1 5 λ2 5 · · · 5 λn be the eigenvalues of A and µ1 5 µ2

5 · · · 5 µj those of a principal j× j-submatrix B of A with n−k +1 5 j 5 n,
then by the interlacing theorem (see for example [3] for other applications):

λi 5 µi 5 λn−j+i, (i = 1, . . . , j).

If λt = λt+1 = · · · = λt+k−1 = λ, then λt 5 µt 5 λn−j+t with n− j + t 5 t +
k − 1 and µt = λ.

In case λ is a root of all B ∈ Pk(A), then by the lemma above, ϕn−k
A (λ)

= 0 and λ has multiplicity at least k + 1, a contradiction.
(c) ⇒ (a) Apply again the Lemma. ¤

2.4. Let A be a Hermitian matrix with characteristic polynomial ϕA(t)

∈ Z[t]. Let ϕA(t) =
m∏

j=1
qi(t)

i the ML-decomposition with qm(t) 6= 1.

Lemma. qm(t) = mcd (ϕA(t), ϕ(1)
A (t), . . . , ϕ(m−1)

A (t)).
Proof. The claim follows from a straightforward but tedious calculation,

we shall illustrate only the case m = 3.

ϕA = q1q
2
2q

3
3 (omitting the variable t),

ϕ′A = q′1q
2
2q

3
3 + 2q1q2q

′
2q

3
3 + 3q1q

2
2q

2
3q
′
3 = (q′1q2q3 + 2q1q

′
2q3 + 3q1q2q

′
3)q2q

2
3,

where the polynomial r1 in parenthesis is not divisible by any qi, i = 1, 2, 3.
(Indeed, if p is an irreducible factor of q1 dividing also r1, then p | q′1q2q3.
By (2.1), p - qi, i = 2, 3 and therefore p | q′1 = p′s + ps′ where s ∈ Z[t] such
that q1 = ps. This implies p | p′s and p | s, which in turn implies that q1 has
multiple roots, a contradiction. The cases i = 2, 3 are similar.) Now, ϕ′′A =
r2q3 with r2 = r′1q2q3 + r1q

′
2q3 + 2r1q2q

′
3 is not divisible by any qi, i = 1, 2, 3.

Hence q3 = mcd (ϕA, ϕ′A, ϕ′′A). ¤

Acta Mathematica Hungarica 114, 2007



ON THE MULTIPLICITY OF THE EIGENVALUES OF A GRAPH 95

The inductive construction of the polynomials q1(t), . . . , qm(t) is easily
carried out:

qm(t) = mcd (ϕA(t), ϕ′A(t), . . . , ϕ(m−1)
A (t)),

qm−1(t) = mcd

(
ϕA(t)
qm(t)m ,

ϕ′A(t)
qm(t)m−1 , . . . ,

ϕ
(m−2)
A (t)

qm(t)2

)
,

...

q2(t) = mcd
(

ϕA(t)
q3(t)

3 . . . qm(t)m ,
ϕ′A(t)

q3(t)
2 . . . qm(t)m−1

)
,

q1(t) =
ϕA(t)

q2(t)
2q3(t)

3 . . . qm(t)m .

2.5. To get more precise information on the derivatives of ϕA(t) we need
some results of elementary analysis.

Proposition. Let p(t) be a polynomial of degree n whose roots are real.
Then the following hold:

(a) For every 1 5 j 5 n− 1, p(j)(t) has only real roots.
(b) If λ1 5 λ2 5 · · · 5 λn are the roots of p(t) and µ1 5 µ2 5 · · · 5 µj

the roots of p(j)(t), then λi 5 µi 5 λn−j+i (i = 1, . . . , j). ¤

2.6. Let ϕA(t) =
m∏

i=1
qi(t)

i be the ML-decomposition as above.

Proposition. For any i = 1, the following is an ML-decomposition:

ϕ
(i)
A (t) =

(
ri(t)qi+1(t)

)
qi+2(t)

2 . . . qm(t)m−i,

that is, λ is a simple root of ϕ
(i)
A (t) if and only if ri(λ) = 0 or qi+1(λ) = 0,

where ri = r′i−1qiqi+1 . . . qm +
m−i∑
j=0

(j +1)ri−1qi . . . qi+j−1q
′
i+jqi+j+1 . . . qm, with

r0(t) = 1.
Proof. The given decomposition follows by induction. It is enough to

show that λ is a simple root of ϕ
(i)
A (t) if and only if ri(λ) = 0 or qi+1(λ) = 0.

We show it by induction on i, the case i = 0 being clear.
Assume qi+1(λ) = 0 and λ is not a simple root of ϕ

(i)
A (t). Then by (2.1),

ri(λ) = 0. Hence ri−1(λ)qi(λ)q′i+1(λ)qi+1(λ) . . . qm(λ) = 0 and only ri−1(λ)
= 0 is possible, which contradicts the induction hypothesis.
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Assume ri(λ) = 0 and λ is not a simple root of ϕ
(i)
A (t). By (2.5), λ is also

a root of ϕ
(i−1)
A (t) =

(
ri−1(t)qi(t)

)
qi+1(t)

2 . . . qm(t)m−i+1.

If ri−1(λ) = 0, by induction hypothesis, λ is a simple root of ϕ
(i−1)
A (t). On

the other hand, r′i−1(λ)qi(λ) . . . qm(λ) = 0 and either r′i−1(λ) = 0 or qi+j(λ)
= 0 (for any 0 5 j 5 m− i) yield a contradiction.

If qi+j(λ) = 0 for some 0 5 j 5 m− i, we get

ri−1(λ)qi(λ) . . . qi+j−1(λ)q′i+j(λ) . . . qm(λ) = 0

which also yields a contradiction.
The converse of the claim is clear. ¤

2.7. The following result shows an interesting relation between the poly-
nomials ri(t) as defined in (2.6).

Proposition. For 1 5 i 5 m− 1, and for any λ ∈ R, we have

ri(λ)2 = ri−1(λ)qi(λ)ri+1(λ).

Proof. Any polynomial p(t) having only real roots µ1 5 µ2 5 · · · 5 µn

satisfies

p′(t)
p(t)

=
n∑

i=1

1
t− µi

and
p′′(t)p(t)− p′(t)2

p(t)2
= −

n∑

i=1

1
(t− µi)

2

which is negative for any λ 6= µi (1 5 i 5 n). Hence

p′(λ)2 = p′′(λ)p(λ) for any λ ∈ R.

Applying this inequality for p(t) = ϕ
(i)
A (t) and using (2.6) the result follows.

¤

3. ML-decomposition for graphs

3.1. Let G be a connected graph without loops or multiple edges. Let
1, . . . , n be the vertices of G and A = A(G) its adjacency matrix. The re-
sults of Section 2 apply since A is a symmetric matrix and the characteristic
polynomial ϕG(t) has integral coefficients. Set ϕG(t) = tn +a1t

n−1 + · · ·+an

and let λ1 5 λ2 5 · · · 5 λn be its (real) roots.
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Consider the ML-decomposition ϕG(t) =
m∏

j=1
qj(t)

j with nm = 1, where

nj is the degree of qj(t) (write m(G) := m). The Perron–Frobenius Theo-
rem (see [4]) says that the spectral radius ρ(G) is a simple root of ϕG(t).
Therefore q1(t) 6= 1.

The minimal polynomial is µG(t) =
m∏

j=1
qj(t).

3.2. Examples. (1) Let G be the cubic graph

with 10 vertices and characteristic polynomial

ϕ(t) = t10 − 15t8 − 4t7 + 75t6 + 24t5 − 157t4 − 36t3 + 144t2 + 16t− 48.

Then

q1(t) = t2 − 5t + 6 = (t− 3)(t− 2) and ρ(G) = 3,

q2(t) = t + 1, q3(t) = t2 + t− 2 = (t− 1)(t + 2).

The ML-decompositions of the derivatives of ϕ(t) are as follows:

ϕ′(t) =
[
(5t4 − 15t3 − 10t2 + 36t + 2)(t + 1)

][
(t− 1)(t + 2)

]2

ϕ′′(t) =
[
(15t6 − 15t5 − 95t4 + 37t3 + 148t2 + 6t− 24)(t− 1)(t + 2)

]
.

(2) Let G be the cubic graph

with 12 vertices and with characteristic polynomial

ϕ(t) = t12 − 18t10 − 2t9 + 117t8 + 72t7 − 339t6

− 306t5 + 414t4 + 532t3 − 99t2 − 324t− 108.
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Then

q1(t) = t− 3 and ρ(G) = 3,

q2(t) = t3 − t2 − 5t + 6 = (t− 2)(t2 + t− 3) with roots − 2.3 < 1.3 < 2,

q5(t) = t + 1.

3.3. Let G be a graph as in (3.1). The principal (n− k)× (n− k)-
submatrices of A(G) correspond to the full subgraphs of G obtained by
deleting k vertices. Then (2.2) and (2.3) yield:

Proposition. Let λ be a root of ϕG(t). The following are equivalent:
(a) λ has multiplicity k.
(b) qk(λ) = 0.
(c) For any full subgraph K = G \ {a1, . . . , aj} with n− k + 1 5 j 5 n

we have ϕK(λ) = 0 and there is a full subgraph K ′ = G \ {a1, . . . , an−k} with
ϕK′(λ) 6= 0. ¤

Corollary. Let K = G \ {a1, . . . , ak} be a full subgraph of G. Then
m(G) 5 m(K) + k. ¤

3.4. For any polynomial p(t) with (possibly repeated) real roots λ1 5 λ2

5 · · · 5 λn, we have

p′(t)
p(t)

=
n∑

i=1

1
t− λi

.

Hence for the ML-decomposition we get

ϕ′G(t)
ϕG(t)

=
m∑

j=1

j
q′j(t)
qj(t)

.

There are several uses of these rational functions (see [5, Ch. 2]). Two im-
portant facts are the following:

(a) lim
t→λ

ϕ′G(t)(t−λ)

ϕG(t) = mλ is the multiplicity of λ as a root of ϕG(t).

(b) ϕ′G(t)

ϕG(t) =
∑
r=0

tr
(
A(G)r)x−(r+1) is the generating function in the vari-

able x−1.
Note that tr

(
A(G)r) counts the number of closed walks of length r in G.

Acta Mathematica Hungarica 114, 2007



ON THE MULTIPLICITY OF THE EIGENVALUES OF A GRAPH 99

For the polynomials qj(t) = tnj + aj1t
nj−1 + · · ·+ ajnj we define the com-

panion matrix

Aj =




−aj1 −aj2 . . . −ajnj−1 −ajnj

1 0 . . . 0 0
0 1 . . . 0 0

. . .
...

...

0 1 0




which satisfies det (tInj −Aj) = qj(t). The trace of the powers Ar
j is easily

written as a polynomial in the coefficients aj1, . . . , ajnj . For instance:

tr (Aj) = −aj1, tr (A2
j ) = a2

j1 − 2aj2, tr (A3
j ) = −a3

j1 + 3aj1aj2 − 2aj3.

Proposition. tr
(
A(G)r) =

m∑
j=1

j tr (Ar
j). ¤

3.5. The diameter diam (G) of G is the longest distance between two
vertices of G.

Proposition. (a)
m(G)∑
j=1

nj = diam (G) + 1.

(b)
m(G)∑
j=2

(j − 1)nj 5 n− diam (G)− 1.

(c) m(G) 5 n− diam (G).

Proof. (a)
m(G)∑
j=1

nj is the number of distinct eigenvalues of G. This

number is at least diam (G) + 1 (see for example [3, 3.13]).

(b) Since n =
m(G)∑
j=1

jnj , the inequality follows from (a).

(c) Follows from (b). ¤

4. The energy of a graph and the ML-decomposition

4.1. The purpose of this section is to obtain McClelland-type bounds
for the energy of a graph as an application of the ML-decomposition.

First observe that McClelland’s bounds hold for quite general situations
namely:
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Theorem (cf. [7]). Let A be a Hermitian n× n-matrix and let E(A)

=
n∑

i=1
|λi| be the energy of A, where λ1 5 λ2 5 · · · 5 λn are the eigenvalues

of A counted with multiplicities. Then
√

tr (A2) + n(n− 1)|det A|2/n 5 E(A) 5
√

n tr (A2).

Proof (cf. [6]). We have

E(A)2 =
n∑

i=1

|λi|2 + 2
∑

j<k

|λj | |λk| = tr (A2) + n(n− 1)AM
{ |λj | |λk|

}
,

where AM denotes the arithmetic mean. Let GM
{ |λj | |λk|

}
= | detA|2/n be

the geometric mean. Then GM 5 AM yields the first inequality.
Moreover, the variance of the numbers |λj |, j = 1, 2, . . . , n is:

0 5 var
{ |λj |

}
= AM

{ |λj |2
} − (AM

{ |λj |
}
)
2

=
1
n

n∑

j=1

|λj |2 −
[

1
n

n∑

j=1

|λj |
]2

=
1
n

tr (A2)−
(

E(A)
n

)2

and the second inequality holds.

4.2. Theorem. We have

m(G)∑

j=1

j
√

[a2
j1 − 2aj2] + nj(nj − 1)|ajnj |2/nj 5 E(G) 5

m(G)∑

j=1

j
√

nj [a2
j1 − 2aj2].

Proof. Using that

ϕ′G(t)
ϕG(t)

=
m(G)∑

j=1

j
q′j(t)
qj(t)

and n =
m(G)∑

j=1

jnj ,

and Coulson Theorem [2], we get

E(G) =
1
π

∫ ∞

−∞

[
n− itϕ′G(it)

ϕG(it)

]
dt =

m(G)∑

j=1

j

π

∫ ∞

−∞

[
nj −

itq′j(it)
qj(it)

]
dt

=
m(G)∑

j=1

jE(Aj),
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where Aj is the companion matrix of qj(t). Here i =
√−1.

By (3.4), tr (A2
j ) = a2

j1 − 2aj2 and detAj = ajnj . The result follows from
(4.1). ¤

4.3. As an example we calculate McClelland bounds and the bounds
(4.2) for the graph (3.2 (2)):

lower | E(G) | upper
McClelland’s bounds 17.94 | | 20.19

| 19.2 |
(4.2) bounds 19.1 | | 19.48
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