Práctico 4

- 1. Sea M un módulo tal que $M = K \oplus K' = L \oplus L'$.
 - a) Probar que K = L implica que $K' \cong L'$ pero que no tienen por que ser iguales.
 - b) Probar que si tenemos H un submódulo de M, tal que $K\subseteq H\subseteq M$, entonces

$$H \cong K \oplus (H \cap K')$$

- 2. Sea $(M_{\alpha})_{\alpha \in A}$ un conjunto de R-módulos e I un ideal a izquierda de R. Probar que
 - a) $I(\bigoplus_{\alpha \in A} M_{\alpha}) = \bigoplus_{\alpha \in A} IM_{\alpha}$
 - b) $\bigoplus_{\alpha \in A} M_{\alpha} / I(\bigoplus_{\alpha \in A} M_{\alpha}) \cong \bigoplus_{\alpha \in A} M_{\alpha} / IM_{\alpha}$
- 3. Sean R un dominio y $(M_{\alpha})_{\alpha \in A}$ un conjunto de módulos.
 - a) Probar que $\prod_{\alpha \in A} M_{\alpha}$ es divisible si y solamente si M_{α} es divisible para todo $\alpha \in A$.
 - b) Probar que $\bigoplus_{\alpha \in A} M_{\alpha}$ es libre de torsión si y solamente si M_{α} es libre de torsión para todo $\alpha \in A$.
- 4. Sea M un grupo abeliano libre de torsión. Probar que hay un monomorfismo de grupos abelianos $f: M \to \mathbb{Q}^M$.
- 5. a) Probar que no existe ningún monomorfismo desde $\mathbb{Z}^{\mathbb{N}}/\mathbb{Z}^{(\mathbb{N})}$ hacia \mathbb{Z}^{A} (para ningún A).
 - b) Probar que el monomorfismo natural $\mathbb{Z}^{(\mathbb{N})} \hookrightarrow \mathbb{Z}^{\mathbb{N}}$ no escinde.
- 6. Sea $M_1 \leq M_2 \leq \ldots \leq M_n \ldots$ una cadena de submódulos de M tal que M_n es un sumando directo de M para todo n natural. Probar que existe una sucesión $M'_1, M'_2, \ldots M'_n, \ldots$ de sumandos directos de M, tales que $M_k = M'_1 \oplus M'_2 \oplus \ldots \oplus M'_k$ para $k = 1, 2, \ldots n, \ldots$
- 7. Sea R el anillo de las matrices 2×2 triangulares superiores sobre \mathbb{Z}_2 .
 - a) Hacer una lista de todos los sumandos directos de $_{R}R$ y R_{R} .
 - b) Para la lista de la parte anterior encontrar los idempotentes que generan a los sumandos directos.
 - c) Encontrar dos idempotentes e, f tales que Re = Rf pero que $eR \neq fR$.
- 8. Sean e y f idempotentes en un anillo R.
 - a) Probar que Re = Rf si y solamente si f = e + (1 e)xe para algún $x \in R$.
 - b) Probar que $Re \cong Rf$ si y solamente si existe $x \in eRf$ e $y \in Re$ tales que xy = e e $y \in Re$ tales que $y \in Re$ e $y \in Re$ tales que $y \in Re$
 - c) Probar que $Re \cong Rf$ si y solamente si $eR \cong fR$.
 - d) Si e, f están en el centro de R, entonces $Re \cong Rf$ si y solamente si e = f.
- 9. Sea el anillo $R = End(V_{\mathbb{k}})$ donde $V_{\mathbb{k}}$ es un espacio vectorial sobre el cuerpo \mathbb{k} .
 - a) Probar que un idempotente e es primitivo si y solamente si $dim_{\mathbb{k}}(Im(e)) = 1$.
 - b) Probar que si e, f son idempotentes primitivos, entonces $Re \cong Rf$.
 - c) Probar que si $dim_{\mathbb{K}}(V) = n$ entonces tenemos un conjunto $\{e_1, e_2, \dots, e_n\}$ completo de idempotentes primitivos ortogonales.

- 10. Consideremos $M_n(\mathbb{k})$ donde \mathbb{k} es un cuerpo y n > 1.
 - a) Encontrar en $M_n(\mathbb{k})$ un conjunto completo de idempotentes primitivos ortogonales.
 - b) Encontrar dos conjuntos distintos completos de idempotentes primitivos ortogonales para el subanillo de $M_n(\mathbb{k})$ formado por las matrices triangulares superiores $n \times n$.
- 11. Sea e_1, \ldots, e_n un conjunto de idempotentes ortogonales en un anillo R.
 - a) Probar que $e = e_1 + \ldots + e_n$ también es idempotente.
 - b) Probar que $e_1, \ldots, e_n, 1-e$ es un conjunto completo de idempotentes ortogonales de R si $e \neq 1$.
- 12. Sean e y f idempotentes de un anillo R.
 - a) Probar que si ef = fe o si fe = 0, entonces e + f ef es un idempotente y Re + Rf = R(e + f ef).
 - b) Mostrar que es posible ef=0 sin que $\{e,f\}$ sea ortogonal.
 - c) Probar que $Re + Rf = Re \oplus R(f fe)$.
 - d) Mostrar que no es cierto en general que e+f-ef sea idempotente.