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Abstract

Elementary proofs of classical theorems on pricing perpetual call
and put options in the standard Black-Scholes model are given. The
method presented does not rely on stochastic calculus and is also ap-
plied to give prices and optimal stopping rules for perpetual call options
when the stock is driven by a Lévy process with no positive jumps, and
for perpetual put options for stocks driven by a Lévy process with no
negative jumps

1This work was partially written at the Laboratoire de Statistique et Probabilités de
l’Université Paul Sabatier, Toulouse, and benefited from helpful discussion with Walter
Moreira.
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1 Introduction

1.1 Consider a model of a financial market with two assets, a savings account
B = {Bt}t≥0 and a stock S = {St}t≥0. The evolution of B is deterministic,
with

Bt = B0e
rt, B0 = 1, r > 0,

and the stock is random, and evolves according to the formula

St = S0e
Xt , S0 > 0,

where X = {Xt}t≥0, the driving process, is an adapted stochastic process
defined in a stochastic basis (Ω,F ,F = {Ft}t≥0,P) satisfying the usual
conditions. We always assume that the process{St

Bt

}
t≥0

is a martingale under P. (1.1)

M = {τ : Ω→ [0,+∞], {τ ≤ t} ∈ Ft for all t ≥ 0}

denotes the class of all F-stopping times.

1.2 If we are interested in pricing perpetual call and put options, possible
discounted at a constant rate δ ≥ 0, we are led to solve an optimal stopping
problem consisting in finding a cost function V = V (S0) and an optimal
stopping rule τ∗ that satisfy
†mordecki@cmat.edu.uy, http://www.cmat.edu.uy/˜mordecki
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V (S0) = sup
τ∈M

Ee−(r+δ)τG(Sτ ) = Ee−(r+δ)τ∗G(Sτ∗). (1.2)

where the function G = G(S) is given by G(S) = (S − K)+ for call op-
tions and G(S) = (K − S)+ for put options. As usual, we assume that
e−(r+δ)τG(Sτ )1{τ=∞} = lim supt→∞ e−(r+δ)tG(St).

Given a function V̄ and a stopping time τ̄ ∈M, if we are able to verify

(A) V̄ (S0) = Ee−(r+δ)τ̄G(Sτ̄ ),

(B) V̄ (S0) ≥ Ee−(r+δ)τG(Sτ ), for all τ ∈M

we then prove that the pair V̄ , τ̄ is the solution to the problem (1.2).
The aim of this paper is twofold. First we give elementary proofs of clas-

sical results on perpetual calls and puts in the Black-Scholes model. The
proofs consist on the verification of the martingale and supermartingale
property of certain auxiliary processes, in order to see (A) and (B) above,
and are based on independence of increments and Jensen’s inequality respec-
tively, not requiring Itô calculus. In this sense the proofs are elementary, and
this task is carried in section 2. In section 3 we observe that the presented
arguments can be extended to a more general setting, obtaining admissible
prices of perpetual call options for upper semi-continuous Lévy processes,
that is processes with no positive jumps, and admissible prices of perpetual
put options for lower semi-continuous Lévy processes, that is, processes with
no negative jumps. By admissible prices we mean that, as the market is in-
complete, the martingale measure P chosen is such that X is a Lévy process
under P, and prices are computed according to this measure. More gen-
eral results can be obtained with different techniques as in Mordecki (2000).
Section 4 summarizes the results, and concludes with a discussion of related
works and references.

2 Black-Scholes model

In this section we assume that X = {Xt}t≥0 in 1.1 is given by

Xt = σWt + (r − σ2

2
)t

where W = {Wt}t≥0 is a Wiener process under P, and σ > 0. This corre-
sponds to the classical Black and Scholes (1973) model.
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2.1 It is well known, that the solution to (1.2) with G(S) = (S −K)+ and
δ > 0 i.e. the pricing of a perpetual call option with discount has cost
function (see Merton, (1973)),

C(S0) =


ASγ0 0 ≤ S0 < S∗c ,

S0 −K S∗c ≤ S0,
(2.1)

where

γ =
1
2
− r

σ2
+

√(1
2

+
r

σ2

)2
+

2δ
σ2
,

S∗c = K
γ

γ − 1
, A =

1
γγ

(γ − 1
K

)γ−1
,

and optimal stopping rule

τ∗c = inf{t ≥ 0: St ≥ S∗c }.

See also Karatzas and Shreve (1998) or Shiryaev (1999).
Let us prove this result in an elementary way. To see (A) observe that

the process {e−(r+δ)tSγt }t≥0 is a martingale. In fact, for h > 0

E(e−(r+δ)(t+h)Sγt+h − e
−(r+δ)tSγt |Ft)

= e−(r+δ)tSγt Ee−(r+δ)h+γσWh+γ(r−σ
2

2
)h − 1

= e−(r+δ)tSγt

(
e−[r+δ+γ2 σ2

2
+γ(r−σ

2

2
)]h − 1

)
= 0 (2.2)

by the election of γ. We claim that

lim
t→∞

γXt − (r + δ)t = lim
t→∞

Xt − (r + δ)t = −∞. (2.3)

This follows from

E(γX1 − (r + δ)) < EeγX1−(r+δ) = 0,

and

E(X1 − (r + δ)) < EeX1−(r+δ) = e−δ − 1 < 0
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respectively. Now, if S0 < S∗c

Ee−(r+δ)τ∗c (Sτ∗c −K)+ = Ee−(r+δ)τ∗c (Sτ∗c −K)+1{τ∗c<∞} =

AEe−(r+δ)τ∗c Sγτ∗c 1{τ∗c<∞} = lim
t→∞

AEe−(r+δ)(τ∗c ∧t)Sγ(τ∗c ∧t)
= ASγ0 . (2.4)

where we used (2.3). If S∗c ≤ S0 then τ∗c = 0 and

Ee−(r+δ)τ∗c (Sτ∗c −K)+ = S0 −K.

In this way we proved (A).
Let us see (B). Consider for y ≥ 0 the functions v = v(y), and Φ = Φ(y)

given respectively by v(y) = Ayγ , and

Φ(y) =


y, 0 ≤ y ≤ S∗c −K,(
y
A

) 1
γ
, S∗c −K < y.

It is easy to verify the following three properties

• Φ(v(y)) = C(y) with C(y) given in (2.1),

• Φ is concave, because γ > 1,

• Φ(αy) ≤ αΦ(y) for α ≥ 1.

The process {e−(r+δ)tC(St)}t≥0 is a supermartingale. In fact, for h > 0

E(e−(r+δ)(t+h)C(St+h)|Ft) = e−(r+δ)(t+h)E(Φ(v(St+h))|Ft)

≤ e−(r+δ)(t+h)Φ(E(v(St+h)|Ft)) = e−(r+δ)(t+h)Φ(e(r+δ)hv(St)) ≤

e−(r+δ)tΦ(v(St)) = e−(r+δ)tC(St). (2.5)

Take now σ ∈M.

Ee−(r+δ)σ(Sσ −K)+ = E lim
t→∞

e−(r+δ)(σ∧t)(Sσ∧t −K)+

≤ lim inf
t→∞

Ee−(r+δ)(σ∧t)(Sσ∧t −K)+ ≤ lim inf
t→∞

Ee−(r+δ)(σ∧t)C(Sσ∧t) ≤ C(S0)
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where we used (2.3). This proves (B) and concludes the proof.

2.2 We consider now the put case. For δ ≥ 0 the solution to (1.2) with
G(S) = (K − S)+ was given in Mc. Kean (1965), see also Merton (1973),
and has cost function

P (S0) =


K − S0, 0 ≤ S0 ≤ S∗p ,

BS−β0 , S∗p < S0,

(2.6)

where

β =

√(1
2

+
r

σ2

)2
+

2δ
σ2
−
(1

2
− r

σ2

)
> 0,

S∗p = K
β

β + 1
, B = ββ

( K

β + 1

)β+1
,

and optimal stopping rule

τ∗p = inf{t ≥ 0: St ≤ S∗p}.

See also Karatzas and Shreve (1998) or Shiryaev (1999). Let us verify (A)
and (B) in order to prove this result. Denote by w = w(y), y ≥ 0 the
function given by w(y) = By−β. As in 2.1 the election of β allows to show
that {e−(r+δ)tw(St)} is a martingale. Also we know that

lim
t→∞
−βXt − (r + δ)t = lim

t→∞
Xt − (r + δ)t = −∞, (2.7)

because

E(−βX1 − (r + δ)) < Ee−βX1−(r+δ) = 0,

and

E(X1 − (r + δ)) < EeX1−(r+δ) = e−δ − 1 < 0,

respectively. Also as before, when S0 > S∗p

Ee−(r+δ)τ∗p (K − Sτ∗p )+ = Ee−(r+δ)τ∗p (K − Sτ∗p )+1{τ∗p<∞} =

BEe−(r+δ)τ∗pS−βτ∗p 1{τ∗p<∞} = lim
t→∞

Ee−(r+δ)(τ∗p∧t)v(S(τ∗p∧t)) = BS−β0 . (2.8)
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by (2.7). If S0 < S∗p , τ∗p = 0 and Ee−(r+δ)τ∗p (K−Sτ∗p )+ = K−S0, concluding
(A). In order to see (B) consider the function φ = φ(y), y ≥ 0 given

φ(y) =


y, 0 ≤ y ≤ S∗p −K,

K −
(
y
B

)− 1
β
, S∗p −K < y.

The following properties hold

• φ(w(y)) = P (y) with P (y) given in (2.6),

• φ is concave, because β > 0,

• φ(αy) ≤ αφ(y) for α ≥ 1,

and allow to see, as in 2.1 that {e−(r+δ)tP (St)}t≥0 is a supermartingale.
From this, for σ ∈M we have

Ee−(r+δ)σ(K − Sσ)+ = E lim
t→∞

e−(r+δ)(σ∧t(K − Sσ∧t)+

≤ lim inf
t→∞

Ee−(r+δ)(σ∧t)(K − Sσ∧t)+

≤ lim inf
t→∞

Ee−(r+δ)(σ∧t)P (Sσ∧t) ≤ P (S0)

by (2.7), proving (B) and completing the proof.

3 Perpetual options for semi-continuous Lévy pro-
cess

We now see that the proofs above remain in force in a more general set-
ting. For a call option we consider a stock driven by a Lévy process with-
out positive jumps, i.e. an upper semi-continuous Lévy process. In the
put case the driving process has no negative jumps, i.e. it is lower semi-
continuous. For general reference on Lévy processes see Jacod and Shiryaev
(1987), Skorokhod (1991), Bertoin (1996) or Sato (1999). Lévy-Khinchine
formula states, for a Lévy process X = {Xt}t≥0

EeiµXt = exp
{
t
[
iµa− 1

2
σ2µ2 +

∫
R

(eiµy − 1− iµy1{|y|<1})Π(dy)
]}
, (3.1)

where a and σ ≥ 0 are real constants, and Π is a positive measure on R−{0}
such that

∫
(1 ∧ y2)Π(dy) < +∞, called the Lévy measure. The triplet of

parameters (a, σ2,Π) completely determine the law of the process.
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3.1 Call perpetual options for upper semi-continuous Lévy
processes

Let X = {Xt}t≥0 be a Lévy process with no positive jumps. This is equiva-
lent to say that the measure Π in (3.1) is supported on the set (−∞, 0). We
exclude from consideration the case of the negative of a subordinator, i.e.
an a.s. non-increasing process. If λ ≥ 0 we introduce the Laplace exponent
κ = κ(λ) of X

κ(λ) = aλ+
1
2
σ2λ2 +

∫ 0

−∞
(eλy − 1− λy1{−1<y<0})Π(dy), (3.2)

that satisfies EeλXt = etκ(λ). It is known that κ(0) = 0, κ is convex, and
limλ→∞ κ(λ) = ∞. The martingale condition (1.1) reads κ(1) = r, so for
any δ > 0 there exists γ > 1 such that κ(γ) = r + δ.

Theorem 3.1 Consider the model of a financial market of 1.1 with driving
process X, a Lévy process with no positive jumps, triplet (a, σ2,Π) and ex-
ponent (3.2). Then, the solution to the problem (1.2) with G(S) = (S−K)+

and δ > 0 has cost function

C(S0) =


ASγ0 0 ≤ S0 < S∗c ,

S0 −K S∗c ≤ S0,

where γ > 1 is such that κ(γ) = r + δ, S∗c = K γ
γ−1 , A = 1

γγ

(
γ−1
K

)γ−1
, and

optimal stopping rule

τ∗c = inf{t ≥ 0: St ≥ S∗c }.

Proof. We follow the proof in 2.1. {e−(r+δ)tSγt }t≥0 is a martingale, as

E(e−(r+δ)(t+h)Sγt+h − e
−(r+δ)tSγt |Ft) =

e−(r+δ)tSγt (e(−r−δ+κ(γ))h)− 1) = 0.

The rest follows exactly as before, taking into account that on {τ∗c < ∞},
we have

(Sτ∗c −K)+ = ASγτ∗c ,

because the process has no positive jumps.
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3.2 Put perpetual options for lower semi-continuous Lévy
processes

Let X = {Xt}t≥0 be a Lévy process with no negative jumps. The measure
Π in (3.1) is supported now on the set (0,∞). We exclude the case of a
subordinator, i.e. an a.s. increasing process. The Laplace exponent is now
defined for λ ≤ 0 by

κ(λ) = aλ+
1
2
σ2λ2 +

∫ ∞
0

(eλy − 1− λy1{0<y<1})Π(dy), (3.3)

and satisfies EeλXt = etκ(λ). Observe that the martingale condition (1.1)
requires in this case an extra assumption on the jumps, i.e. EeX1 = er <
∞. The finiteness of the exponential moment is ensured by the condition∫∞

0 eyΠ(dy) < ∞. As κ(0) = 0, κ is convex, and limλ→−∞ κ(λ) = ∞ we
obtain that for any δ ≥ 0 there exists β > 0 such that κ(−β) = r + δ.

Theorem 3.2 Consider the model of a financial market of 1.1 with driving
process X, a Lévy process with no negative jumps, triplet (a, σ2,Π) and
exponent (3.3). Then, the solution to the problem (1.2) with G(S) = (K −
S)+ and δ ≥ 0 has cost function

P (S0) =


K − S0 0 ≤ S0 ≤ S∗p ,

BS−β0 S∗p < S0,

where β > 0 is such that κ(−β) = r + δ, S∗p = K β
β+1 , B = ββ

(
K
β+1

)β+1
,

and optimal stopping rule

τ∗p = inf{t ≥ 0: St ≤ S∗p}.

Proof. We follow the proof in 2.2. {e−(r+δ)tw(St)} is a martingale in view
of κ(−β) = r + δ. (2.8) follows because on the set {τ∗p < ∞} we have
(K−Sτ∗p )+ = BS−βτ∗c , as the process has no negative jumps. The rest follows
exactly.

4 Conclusion

This article presents new proofs of classical theorems on pricing call and
put perpetual American options in the Black-Scholes model, with a savings
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account B = {Bt}t≥0 and a stock S = {St}t≥0. The proofs consist in the ver-
ification of the martingale and supermartingale properties, for process of the
type {f(St)}t≥0 for certain auxiliary functions f . The martingale property
is established elementary, by independence of increments. The supermartin-
gale property is verified through Jensen’s inequality. No stochastic calculus
is involved. By observing that the overshot when the process reaches a fixed
level is null for semi-continuous Lévy processes, upper for call options, and
lower for put options, the results are extended to these cases. More general
results based on different techniques can be found in Mordecki (2000) and
the references therein.
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