Simulación Monte Carlo y procesos estocásticos: Segunda entrega*

November 6, 2017

Contents

1 Variance reduction techniques 1
2 Stochastic Integrals 4
$\begin{array}{lll}3 & \text { Stochastic differential equations } & 7\end{array}$

1 Variance reduction techniques

In the following exercises, when not specified confidence level is $1-\alpha=0.95$ and sample size $n=10^{6}$. Present your results in a table with values obtained and the corresponding error of estimation for each method used, computed as

$$
\epsilon=\frac{1.96 s}{\sqrt{n}} .
$$

where $s=\hat{\sigma}$.

1. We want to estimate by simulation:

$$
\mu=\int_{0}^{1} \frac{1}{2 \sqrt{x+x^{2}}} d x=\int_{0}^{1} \frac{1}{2 \sqrt{x}} \frac{1}{\sqrt{1+x}} d x .
$$

In all cases provide the 95% error of estimation.
*Fecha límite para la entrega de ejercicios: Viernes 1 de diciembre (2017)
(a) Estimate μ using uniform random variables, by the sample mean method.
(b) Estimate μ using random variables with density $f(x)=1 /(2 \sqrt{x})$ for $0 \leq x \leq 1$.
(c) Use antithetic variables.
(d) Use control variates, with $g(x)=1-x$. First find the optimal c^{*} with a small sample $\left(10^{3}\right)$ and then run your algorithm with this estimation.
2. We want to compute the integral by simulation:

$$
\mu=\int_{0}^{1}(1-x) e^{-x^{2}} d x
$$

In all cases provide the 95% error of estimation.
(a) Estimate μ using the acceptance-rejection method on the square $[0,1]^{2}$.
(b) Estimate μ using uniform random variables, by the sample mean method.
(c) Estimate μ using random variables with density $f(x)=2(1-x)$ in $0 \leq x \leq 1$.
(d) Use antithetic variables.
(e) Use control variates, with $g(x)=1-x$. First find the optimal c^{*} with a small sample $\left(10^{3}\right)$ and then run your algorithm with this estimation.

The general purpose of the following exercises is to estimate using different methods of variance reduction the following quantities

$$
\begin{aligned}
& \mu_{1}=4 \int_{0}^{1} \sqrt{1-x^{2}} d x=\pi \\
& \mu_{2}=\int_{0}^{1} \sqrt{-\log x} d x=\frac{1}{2} \sqrt{\pi} \\
& \mu_{3}=\mathbf{P}(Z>4), \text { where } Z \sim \mathcal{N}(0,1) \\
& \mu_{4}=\mathbf{E}\left(e^{Z}-5\right)^{+}, \text {where } Z \sim \mathcal{N}(0,1)
\end{aligned}
$$

3. Compute μ_{1} with the following methods:
(a) Acceptance rejection on the square $[0,1]^{2}$.
(b) Sample mean method.
(c) Use antithetic variables.
(d) Use control variates, with $g(x)=1-x$. First find the optimal c^{*} with a small sample $\left(10^{3}\right)$ and then run your algorithm with this estimation.
(e) Use the stratified method, i.e. using, for $\mu=\int_{0}^{1} h(x) d x$ the formula

$$
\hat{\mu}=\frac{1}{n} \sum_{j=1}^{n} h\left(\frac{U_{j}+j-1}{n}\right) .
$$

You can combine with antithetic variates (In this case it is no direct to obtain an error estimate).
(f) Do you know a deterministic method to compute this integral? For instance, compute a Riemann sum, or use the trapezoidal rule:

$$
\hat{\mu}=\frac{1}{2 n}(f(0)+f(1))+\frac{1}{n} \sum_{j=1}^{n-1} f(j / n) .
$$

4. Compute μ_{2} with the following methods:
(a) Can you use acceptance rejection method with uniform variables?
(b) Use the sample mean method.
(c) Use antithetic variables.
(d) Use control variates, with $g(x)=-\log x$, taking into account that $\int_{0}^{1}-\log (x) d x=1$. First find the optimal c^{*} with a small sample $\left(10^{3}\right)$ and then run your algorithm with this estimation.
5. Compute μ_{3} with the following methods:
(a) First use crude MC. As the probability is very small, a large n is necessary.
(b) Check if the antithetic variates method improves the situation.
(c) Use the importance sampling method, based in the following idenantity.

$$
\begin{aligned}
\mathbf{P}(Z>4) & =\int_{4}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=\int_{4}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{e^{-(x-4)^{2} / 2}}{e^{-(x-4)^{2} / 2}} d x \\
& =\int_{4}^{\infty} e^{-4 x+8} \frac{e^{-(x-4)^{2} / 2}}{\sqrt{2 \pi}} d x=\mathbf{E} e^{-4 X+8} \mathbf{1}_{\{X>4\}} .
\end{aligned}
$$

where $X \sim \mathcal{N}(4,1)$.
6. Compute μ_{4} with the following methods:
(a) First use crude MC.
(b) Use antithetic variates.
(c) Now we use control variates in the following way. Check the following identity:

$$
\mathbf{E}\left(e^{Z}-K\right)^{+}=\mathbf{E}\left(e^{Z}\right)-K+\mathbf{E}\left(K-e^{Z}\right)^{+} .
$$

(here $x^{+}=\max (0, x)$, and you can use that $\left.x=x^{+}-(-x)^{+}\right)$. Then, computing $\mathbf{E} e^{Z}=e^{1 / 2}$, we find the price of the put option, given by

$$
P(K)=\mathbf{E}\left(K-e^{Z}\right)^{+} .
$$

You can use also antithetic variates in this situation.
(d) Importance sampling can be implemented in the following way. Check the following identity:
$\mathbf{E}\left(e^{Z}-K\right)^{+}=\int_{\mathbf{R}}\left(e^{x}-K\right)^{+} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=e^{1 / 2} \int_{\mathbf{R}}\left(1-K e^{-x}\right)^{+} \frac{1}{\sqrt{2 \pi}} e^{-(x-1)^{2} / 2} d x$. that is known as put-call duality.

$$
P(K)=e^{1 / 2} \mathbf{E}\left(1-K e^{-X}\right)^{+} .
$$

where $X \sim \mathcal{N}(1,1)$. You can use also antithetic variates in this situation.

2 Stochastic Integrals

7. Wiener integral (a) Use Itô's formula to prove that

$$
\int_{0}^{T} e^{W(t)-t / 2} d t=e^{W(T)-T / 2}-1
$$

(b) Use the Euler scheme to simulate the integral

$$
I=\int_{0}^{1} e^{W(t)-t / 2} d W(t)
$$

Plot a histogram and estimate the expectation and the variance of I.
(c) Consider the random variable

$$
J=e^{W(1)-1 / 2}-1
$$

Plot a histogram, compute the expectation and variance of J.
(d) Plot the two histograms in the same figure and comment the results.
8. We consider the stochastic integral

$$
I=\int_{0}^{1} e^{t} d W(t)
$$

(a) Compute $\mu=\mathbf{E}(I)$ and $\sigma^{2}=\operatorname{var}(I)$.
(b) Simulate values of I using the Euler scheme for stochastic integrals and estimate approximately μ and σ^{2}.
(c) Plot in the same figure a histogram of the sample for I with the corresponding normal density.
9. Itô isometry. We check the isometry property in an example using simulation. Consider the process $\left\{h(t)=e^{W(t)}: 0 \leq t \leq 1\right\}$. The property states

$$
\mathbf{E}\left(\int_{0}^{1} e^{W(t)} d W(t)\right)^{2}=\int_{0}^{1} \mathbf{E}\left[\left(e^{W(t)}\right)^{2}\right] d t=\int_{0}^{T} \mathbf{E}\left(e^{2 W(t)}\right) d t
$$

(a) First, using that $\mathbf{E}\left(e^{\mathcal{N}\left(\mu, \sigma^{2}\right)}\right)=e^{\mu+\sigma^{2} / 2}$, compute $\int_{0}^{1} \mathbf{E}\left(e^{2 W(s)}\right) d s$.
(b) Compute by simulation

$$
\mathbf{E}\left(\int_{0}^{1} e^{W(s)} d W(s)\right)^{2}, \quad 0 \leq t \leq 1
$$

with the corresponding error, and check that the numbers coincide.
10. We want to check numerically that

$$
\int_{0}^{1} W(t) d W(t)=\frac{1}{2}\left(W(1)^{2}-1\right) .
$$

Write then a code to compute a Brownian trajectory, compute both the integral and the result. Repeat the previous experiment a reasonable number of times, and plot the results in an (x, y) plot.
11. Hermite polynomial of degree three. (a) Write a code to simulate the integral

$$
I=\int_{0}^{1}\left(W(t)^{2}-t\right) d W(t)
$$

Plot a histogram and compute the expectation and the variance of I.
(b) Consider the random variable

$$
J=\frac{1}{3} W(1)^{3}-W(1) .
$$

Plot a histogram, compute the expectation and variance of J.
(c) Use Itô formula with the function ${ }^{1} H_{3}(t, x)=\frac{1}{3} x^{3}-t x$ to prove that in fact $I=J$.
12. Hermite polynomial of degree four. Use Itô's formula to prove that

$$
H_{4}(t, W(t))=12 \int_{0}^{t} H_{3}(s, W(s)) d W(s)
$$

Conclude that $\mathbf{E} H_{4}(t, W(t))=0$.
13. Brownian Bridge. (a) Let $\{W(t): 0 \leq t \leq 1\}$ be a Brownian motion. Prove that the process

$$
R(t)=(1-t) \int_{0}^{t} \frac{1}{1-r} d W(r), \quad 0 \leq t \leq 1
$$

is a Brownian bridge.
(b) We are interested in the random variable

$$
A=\int_{0}^{1} R(t) d t
$$

Prove that $\mathbf{E}(A)=0$, and device a simulation scheme using the representation of part (a) to estimate $\operatorname{var}(A)$ (True value 1/12).
14. The Ornstein-Uhlenbeck process and its maximum. Let $X=\{X(t): 0 \leq$ $t \leq 1\}$ be an OU process with parameters $a=1, b=0, \sigma=1$. departing from $X_{0} \sim \mathcal{N}(0,1)$. Compute by simulation a confidence interval of

$$
\mu=\mathbf{E}\left(\max _{0 \leq t \leq 1} X(t)\right)
$$

[^0]
3 Stochastic differential equations

15. The CIR process is the solution to the SDE given by

$$
d X(t)=a(b-X(t)) d t+\sigma \sqrt{X(t)} d W(t) .
$$

Define the parameters

$$
\begin{aligned}
& \alpha=\frac{2 a b}{\sigma^{2}}, \quad \text { (shape paramater) }, \\
& \beta=\frac{2 a}{\sigma^{2}}, \quad(\text { rate parameter }) .
\end{aligned}
$$

It is known that the asymptotic distribution of the CIR process is a Gamma distribution, with density

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \quad x \geq 0
$$

(a) Consider $x_{0}=\alpha / \beta$, and the parameters

$$
a=b=1, \sigma=0.5
$$

Use the Euler scheme to simulate trajectories of the CIR process
(b) Simulate 100 trajectories and consider the final values. Plot a histogram of this values and compare it in the same plot with the Gamma density with the corresponding parameters.
16. Geometric Brownian motion. A look-back option pays the maximum of the observed price of the stock. Its price is given by

$$
L(K)=e^{-r T} \mathbf{E}\left(\max _{0 \leq t \leq T} S(t)-K\right)^{+}
$$

where $S(t)=S_{0} \exp \left(\sigma W(t)+\left(r-\sigma^{2} / 2\right) t\right)$ is a geometric Brownian motion.
Provide a simulation code using the Euler scheme for the SDE

$$
d S(t)=S(t)[r d t+\sigma d W(t)]
$$

to compute prices of look-back options for $S_{0}=100, r=0.01, \sigma=0.2$, $T=1$.
17. Consider the Stochastic differential equation

$$
d X(t)=\frac{1}{|X(t)|} d t+d W(t), \quad x_{0}=1
$$

(a) Write a code to simulate a trajectory in an interval $[0,1]$
(b) Define

$$
M=\max _{0 \leq t \leq 1} X(t)
$$

and use your code to estimate $\mathbf{E}(M)$ and $\operatorname{var}(M)$.
(c) Plot a histogram with a sample of variables with the same distribution as M.

[^0]: ${ }^{1} 3 H_{3}(t, x)$ is the Hermite polynomial of degree 3.

