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1. Stochastic integration

Consider the class of processes

H = {h = (h(s))0≤t≤T }

that satisfy (A) and (B):
*Notas preparadas por E. Mordecki para el curso de Simulación en procesos estocásticos

2017.
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(A) h(t),W (t+ h)−W (t) are independent, ∀0 ≤ t ≤ t+ h ≤ T ,

(B)
∫ T
0
E(h(t)2)dt <∞.

Example: If E[f(W (t))2] ≤ K, then h(t) = f(W (t)) ∈ H: In fact,

f(W (t)),W (t+ h)−W (t) are independent,

and ∫ T

0

E(f(W (t))2)dt < KT.

1.1. Properties

The stochastic integral has the following properties

(P1) E
∫ T
0
h(t)dW (t) = 0

(P2) Itô isometry:

E

(∫ T

0

h(t)dW (t)

)2

=

∫ T

0

E(h(t))2dt.

1.2. Comments

I(h) =
∫ T
0
h(t)dW (t), is a random variable.

For 0 ≤ t ≤ T we define

I(h, t) =

∫ T

0

1[0,t)h(t)dW (t)
nt.
=

∫ t

0

h(s)dW (s),

to obtain a stochastic process.

The proofs of properties (P1) and (P2) are based on the independence of
hk and W (tk)−W (tk−1).

The approximation is in the complete space L2(Ω,F ,P) of random varia-
bles with second finite moment, using Cauchy sequences arguments.

2. Simulation of stochastic integrals: Euler sche-
me

The definition of a stochastic integral suggest a way to simulate an appro-
ximation of the solution. Given a process h, we choose n and we define a mesh
tnk = kT/n, k = 0, . . . , n.

n−1∑
k=0

h(tni )[W (tni+1)−W (tni )].

It is very important to estimate the integrand in tni and to take the increment
of W in [tni , t

n
i+1] to have the independence. Otherwise a wrong result is obtained.
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3. Itô Formula

Theorem 1. Let {W (t) : t ≥ 0} be a Brownian motion, and consider a smooth1

function f = f(t, x) : [0,∞)×R→ R. Then

f(t,W (t))− f(0,W (0)) =

∫ t

0

∂f

∂x
(s,W (s))dW (s)

+

∫ t

0

(
∂f

∂t
(s,W (s)) +

1

2

∂2f

∂x2
(s,W (s)

)
ds.

If f(t, x) = f(x) (i.e. the function does not depend on time) the formula
takes the simpler form

f(W (t))− f(W (0)) =

∫ t

0

f ′(W (s))dW (s) +
1

2

∫ t

0

f ′′(W (s))ds.

3.1. Example: f(x) = x2

If f(t, x) = x2, then

∂f

∂t
= 0,

∂f

∂x
= 2x,

∂2f

∂x2
= 2,

and Itô formula gives

W (t)2 = 2

∫ t

0

W (s)W (s) +

∫ t

0

ds = 2

∫ t

0

W (s)W (s) + t,

If t = 1: ∫ 1

0

W (s)W (s) =
1

2
(W (1)2 − 1),

our previous result.

3.2. Example: Geometric Brownian motion

If f(t, x) = S0e
σx+µt, then

S(t) = f(t,W (t)) = S0e
σW (t)+µt,

is the Geometric Brownian motion. To apply Itô Formula, we compute:

∂f

∂t
= µf,

∂f

∂x
= σf,

∂2f

∂x2
= σ2f.

and

f(t,W (t))− f(0,W (0) =

∫ t

0

(
µ+

1

2
σ2

)
f(s,W (s))ds

+

∫ t

0

σf(s,W (s))dW (s).

1By smooth we mean f(t) differentiable in t and twice differentiable in x.
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As f(t,W (t)) = S(t), we obtain

S(t)− S(0) =

∫ t

0

(
µ+

1

2
σ2

)
S(s)ds+

∫ t

0

σS(s)dW (s).

This same expression, in differential form, is

dS(t) = rS(t)dt+ σS(t)dW (t), S(0) = S0. (1)

where we used that µ = r − σ2/2. So, as the the two assets in Black-Scholes
model satisfy the equations{

dB(t) = B(t)(rdt), B(0) = B0,

dS(t) = S(t)(rdt+ σdW (t)), S(0) = S0.

The second is a modification of the first + noise.

4. Introduction to SDE

With the purpose of constructing a large class of stochastic processes, we
consider stochastic differential equations (SDE) driven by a Brownian motion.
Given then two functions:

b : R→ R, σ : R→ R,

a driving Brownian motion {W (t) : 0 ≤ t ≤ T} and an independent random
variable X0 (the initial condition) our purpose is to construct a process X =
{X(t) : 0 ≤ t ≤ T} such that, for t ∈ [0, T ], the following equation is satisfied:

X(t) = X0 +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s). (SDE)

4.1. Comments

As usual ordinary differential equations, the SDE just introducen can be
written in differential form

dX(t) = b(X(t))dt+ σ(X(t))dW (t), X(0) = X0, t ∈ [0, T ].

We can think that we add “noise” σ(X(t))dW (t) to an ordinary differential
equation

dX(t) = b(X(t))dt, X(0) = x0, t ∈ [0, T ].

As for fixed ω the trajectories of W are not smooth, we use the stochastic
integral ∫ t

0

σ(X(s))dW (s)

We should precise conditions on X0, b, σ for this equation to have one
unique solution.
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5. Existence and uniqueness of solutions of SDE

We know that a GBM satisfies the SDE in (1). The following theorem answers
the inverse question: if a stochastic process satisfies the equation (1), then, it is
a GBM.

Theorem 2. Let W = {W (t) : 0 ≤ t ≤ T} be a BM and X0 an independent rv
with finite second moment. Consider two functions

b(t, x), σ(t, x) : [0, T ]×R→ R.

Assume that there exists K such that, for all t ∈ [0, T ] and x, y in R

(L) |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K|x− y|,

(G) |b(x)|+ |σ(x)| ≤ K(1 + |x|).

Then, there exists a unique stochastic process

X = {X(t) : 0 ≤ t ≤ T}

that satisfies

dX(t) = b(t,X(t))dt+ σ(X(t))dW (t), X(0) = X0.

i.e., the integral equation (SDE). Furthermore,

E

(
máx
0≤t≤T

X(t)2
)
<∞.

By uniqueness we mean that if another process Y satisfies the SDE, then

P({ω : ∃t such that X(t) 6= Y (t)}) = 0.

6. Euler scheme

The idea is to freeze the coefficients in small intervals in order to produce a
sum that approximate the solution of the SDE.

Determine n, and define δ = T/n.

Consider the mesh {δi : i = 0, . . . , n}, to produce a discretizationX(δi) : i =
0, . . . , n.

Set X(0) = x0, where x0 is the result of a simulation of X0.

While i < n set

Xi+1 = Xi + b(Xi)δ + σ(Xi)[W (δ(i+ 1))−W (δi)].
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6.1. Comments on the Euler scheme

Consider the step function (time change)

τn(t) =



0, if 0 ≤ t < T/n,

T/n, if T/n ≤ t < 2T/n,
...

...

kT/n, if kT/n ≤ t < (k + 1)T/n,
...

...

(n− 1)T/n, if (n− 1)T/n ≤ t ≤ (k + 1)T/n.

It can be seen that

τn(t) =

⌊
nt

T

⌋
T

n
.

Below, we see a plot of the time change τn(t) for n = 5 and T = 1
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It should be noticed that

máx |τn(t)− t| = T

n
.

Consider now the equation, for t ∈ [0, T ]:

X(τn(t)) = X0 +

∫ t

0

b(X(τn(s)))ds+

∫ t

0

σ(X(τn(s)))dW (s), (2)

As the coefficients b(X(τn(t))) and σ(X(τn(t))) are constant over the time inter-
vals (kT/n, (k+ 1)T/n), we can solve this equation recursively: X(τn(0)) = X0.
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For t < T/n, we have τn(t) = 0, so

X(τn(T/n))

= X(0) +

∫ T/n

0

b(X(0))ds+

∫ T/n

0

σ(X(0))dW (s)

= X(0) + b(X(0))δ + σ(X(0))

∫ T/n

0

dW (s)

= X(0) + b(X(0))δ + σ(X(0))W (δ),

and this gives X1 = X(τn(T/n)), is the first step of Euler scheme. Let us analyze
the second setp:

X2 = X(τn(2T/n))

= X1 +

∫ 2T/n

T/n

b(X(T/n))ds+

∫ 2T/n

T/n

σ(X(T/n))dW (s)

= X1 + b(X1)δ + σ(X1)[W (2δ)−W (δ)].

We conclude that the sequence provided by the Euler scheme is the solution to
the stochastic difference equation (2) .

As τn(t) → t uniformly, we hope that the approximation provided by the
Euler scheme is close to the true solution.

6.2. Simulation of the solution of an SDE

We consider the SDE

dS(t) = rS(t)dt+ σS(t)dW (t), S(0) = S0.

The Euler discretization is, with Si = S(tni ), ∆ = T/n:

Si+1 = Si + rSiδ + σSi[W (tni+1 + ∆)−W (tni + ∆)]

= Si[1 + rδ + σN(0, δ)].

So, the code to simulate and plot one trajectory follows:
# Euler scheme for the GBM

n<-100 # time discretization

r<-1

sigma<-0.1

t<-1

delta<-t/n

steps<-seq(0,t,length=n)

s0<-1

gbm<-rep(0,n)
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gbm[1]<-s0

for(j in 2:n){
gbm[j]<-gbm[j-1]* (1+r*delta+sigma*rnorm(1,0,sqrt(delta)))

}
plot(steps,gbm,col=‘‘red",type=‘‘l")

The code give us the following plot
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6.3. Lookback options

A lookback option pays the maximum of the stock price in a prescribed
process. Its price is given by

L(K) = e−rTE

(
máx
0≤t≤T

S(t)−K
)+

,

where S(t) is the Geometric Brownian motion. We price the option by simula-
tion. In each run, we save the payoff, defined as(

máx
0≤t≤T

S(t)−K
)+

= máx

[
( máx
0≤t≤T

S(t)−K), 0

]
.

6.4. Code for Lookback options

# Loockback options Euler scheme for the GBM

n<-100 # time discretization

m<-10 # nr. of paths

r<-0.01; sigma<-0.02; t<-1; k<-250; delta<-t/n

steps<-seq(0,t,length=n)

s0<-100

payoff<-rep(0,m)

for(i in 1:m){
gbm<-rep(0,n)

gbm[1]<-s0

for(j in 2:n){
gbm[j]<-gbm[j-1]*
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(1+r*delta+sigma*rnorm(1,0,sqrt(delta)))

}
payoff[i]<-max(max(gbm)-k,0)

}
cat("L-k price:", exp(-r*t)*mean(payoff))

6.5. Random Genetic Drift model

The continuous version of the discrete-time Wright-Fisher model is the so-
lution of the following SDE:

dX(t) =
√
X(t)(1−X(t))dW (t), X(0) = x, t ≥ 0.

Here X(t) represents the proportion of A alleles in a gene population at time t (is
the continuous limit of a proportion that has binomial distribution). Observe
that once X(t) = 0 or X(t) = 1 the variation dX(t) = 0, meaning that the
process remains at this fixed values. This corresponds to the fact that the SDE
has absobing end points.

It always reach one of the two limits. Defining

τ0 = ı́nf{t ≥ 0: X(t) = 0}, τ1 = ı́nf{t ≥ 0: X(t) = 1},

interesting questions are:

what is Px(τ0 < τ1) = a

How are the distribution of X(t) for given t ≥ 0

How fast does this distribution converge to

`(x) = aδ0(dx) + (1− a)δ1(dx)
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