
Clase 6: El método de Monte Carlo *

4 de septiembre de 2017
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1. The Monte Carlo method

The basis of the application of the Monte Carlo method (MC) are the
limit theorems in probability. Given a sequence of random variables {Xn} =
{X1, X2, . . . } and another random variable X, we say that:

*Notas preparadas por E. Mordecki para el curso de Simulación en procesos estocásticos
2017.
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The sequence {Xn} converges almost sure to X, when

P (Xn →n X) = 1,

denoted Xn → X, a.s.

The sequence {Xn} converges in distribution to X when

FXn(x)→n FX(x) for all x continuity points of x,

denoted Xn
d→ X, and also FXn

d→ FX .

1.1. Limit Theorems

Consider a sequence of independent random variables {Xn} with com-
mon distribution F ,

Theorem 1 (Law of large numbers) If µ = EX1 <∞, then

X̄n =
X1 + · · ·+Xn

n
→ µ, a.s.

Theorem 2 (Central Limit Theorem (CLT)) If µ = EX1, and σ2 =
varX1 <∞, we have

√
n

σ

(
X̄n − µ

) d→ N (0, 1). (1)

In other terms, we have

P

(
X1 + · · ·+Xn − nµ

σ
√
n

≤ x
)
→ Φ(x) =

1√
2π

∫ x

−∞
e−t

2/2dt.

1.2. Monte Carlo method

Suppose that we want to compute a quantity µ that can be written as
the expectation of a certain random variable X, i.e.

µ = EX.

If we are able to simulate a large sequence X1, . . . Xn of independent random
variables, distributed as X, we will have

X̄n ≈ µ, (2)

obtaining an approximation of the unknown quantity µ.
The CLT gives a way to assess the quality of this approximation.
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2. Confidence interval for Monte Carlo method

The CLT allow us to evaluate the quality of the approximation in (2).
Let 1 − α be a desired confidence level (usually 0,95, i.e. α = 0,05), and
z1−α/2 the quantile such that

P(−z1−α/2 ≤ Z ≤ z1−α/2) = 1− α.

Then, applying the CLT (assuming varX <∞), we have

P

(
−
σz1−α/2√

n
≤ X̄n − µ ≤

σz1−α/2√
n

)
→ 1− α.

We say that the true value µ lies in the confidence interval (CI):(
X̄n −

σz1−α/2√
n

, X̄n +
σz1−α/2√

n

)
.

We also say that the error of estimation, at the desired confidence level, is

ε =
σz1−α/2√

n
.

As usually σ is also unknown, to compute the error we estimate σ through

σ̂ = s =

√√√√ 1

n− 1

n∑
k=1

(Xk − X̄n)2. (3)

Usual values are:
α 0.1 0.05 0.01

z1−α/2 1.64 1.96 2.58.

2.1. Example 1: Computation of a probability

Given an event A we want to compute its probability

p = P(A) = E1A.

Suppose that we are able to simulate independently, for k = 1, . . . , n:

Xk =

{
1, if ω ∈ A,
0, if ω /∈ A.

Then, as EX1 = p,

p̂n =
X1 + · · ·+Xn

n
≈ p.
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To construct the CI, we have σ2 = varX1 = p(1−p). So we can estimate

σ̂ =
√
p̂n(1− p̂n).

and the error of estimation for p is

ε =
z1−α/2√

n

√
p̂n(1− p̂n).

An important observation is that, as p(1− p) ≤ 1/4, we have the bound

ε ≤
z1−α/2

2
√
n
.

2.2. Example: Computation of π

We compute the area of a circle trough the acceptance - rejection method.

As the area of the circle is π (the radius being one) the probability of a
uniform vector in [−1, 1]×[−1, 1] to hit the circle is π/4. We use the following
code

> n<−1e7
# we produces a vec to r o f T F read as 1 and 0 :
> x<−( r u n i f (n)ˆ2+ r u n i f (n)ˆ2<=1)
> 4∗mean( x )
[ 1 ] 3 .141376
> 1.96∗4∗ sd ( x )/ s q r t (n)
[ 1 ] 0 .001017929

So, our 95 % confidence interval for π with n = 107 is

[3,1403, 3,1424]

If n = 108 we get
[3,141352, 3,141995]
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2.3. Application: computing integrals by the rejection met-
hod

Let g : D(⊂ Rd)→ [0,∞). We want to compute

µ =

∫
D
g(x)dx.

If D is bounded, and g is also bounded, we can find a hyper-rectangle in
Rd+1, denote it

R =
d∏

k=1

[ak, bk]× [0, b], λ(R) =

d∏
k=1

(bk, ak)b.

such that D ⊂
∏d
k=1[ak, bk], 0 ≤ g(x) ≤ b. Define the set

S = {x ∈ Rd+1 : (x1, . . . , xn) ∈ D, 0 ≤ xn+1 ≤ g(x1, . . . , xn)}

we have λ(S) = µ. If we simulate a uniform random vector U = (U1, . . . , Un+1)
in R, we have

P(U ∈ S) =
λ(S)

λ(R)
=

µ

λ(R)
.

We obtain a MC estimator p̂n of the probability P(U ∈ S), with a sample
of size n. The confidence interval for µ of the form

ε =
z1−α/2λ(R)
√
n

√
p̂n(1− p̂n).

It is important to notice that the speed at which the error vanishes does not
depend on the dimension d. MC is specially suited for large dimensions, as
the speed of competing methods usually depends on d.

2.4. Example: Computation of a double integral

We want to compute

µ =

∫∫
[0,1]2

xy

(
sin

1

xy

)2

dxdy.

As

0 ≤ f(x, y) = xy

(
sin

1

xy

)2

≤ 1,
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our box is [0, 1]3 (that has volume 1).

If U3 ≤ f(U1, U2) we accept, otherwise, reject.

Our code follows:

# computation o f a double i n t e g r a l
n<−1e7
u1<−r u n i f (n)
u2<−r u n i f (n)
u3<−r u n i f (n)
x<−(u1<u2∗u3∗ s i n (1/( u2∗u3 ) ) ˆ 2 )
mu<−mean( x )
e<−1.96∗ sd ( x )/ s q r t (n)
cat (mu−e ,mu+e )

Produces a 95 % confidence interval:

[0,15933, 0,15979]

For n = 107, the interval is

[0,159463, 0,159606]

3. Example 2: Computation of an integral by the
sample mean method

Let g : D(⊂ Rd)→ R. We want to compute

µ =

∫
D
g(x)dx.

To perform the MC method, we need a density fX(x) > 0 on D, and we
should be able to simulate X ∼ fX . In this case we extend g (under the
same notation) to Rd such that g(x) = 0, x /∈ D. Finally

µ =

∫
D
g(x)dx =

∫
Rd

g(x)dx

=

∫
Rd

(
g(x)

fX(x)

)
fX(x)dx = E

(
g(X)

fX(X)

)
.

Denoting Y = g(X)
fX(X) we estimate Ȳn ≈ µ. To construct a confidence interval,

we require

EY 2 =

∫
g(x)2

fX(x)
dx <∞.
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In this case, we estimate s throgh

s2 =
1

n− 1

∑
(Yk − Ŷn)2,

and compute the error with confidence 1− α as

ε =
z1−α/2√

n
s.

3.1. Example: Integrals in [0, 1]

If our integral is defined in [0, 1] we simply take fX(x) = 1 and sample
uniform variables. For instance, we compute

µ =

∫ 1

0
4
√

1− x2dx = π.

> n<−1e7
> x<−4∗s q r t (1− r u n i f (n )ˆ2)
> mu <−mean( x )
> e <−1.96∗ sd ( x )/ s q r t (n)
> c (mu−e ,mu+e )
[ 1 ] 3 .141063 3.142169

> n<−1e8
. . .

[ 1 ] 3 .141449 3.141799

3.2. Example: Integral over [0,∞)

We want to compute

µ =

∫ ∞
0

e−xx sinxdx.

As f(x) = e−x is the density of T ∼ exp(1), we have

µ = E(T sinT ),

and we can proceed by the average sample method.
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3.3. Example: Double integral as a mean

∫∫
[0,1]2

xy

(
sin

1

xy

)2

dxdy =
1

4

∫∫
[0,1]2

(
sin

1

xy

)2

fXY (x, y)dxdy

=
1

4
E

(
sin

1√
UV

)2

.

We have to prove that if (U, V ) is uniform in [0, 1]2, then (
√
U,
√
V ) has

density
fXY (x, y) = 4xy.

> n<−10e6
> x<−(1/4)∗( s i n (1/ s q r t ( r u n i f (n)∗ r u n i f (n ) ) ) ) ˆ 2
> mu<−mean( x )
> e<−1.96∗ sd ( x )/ s q r t (n)
> cat (mu−e ,mu+e )
0.1594209 0.1595292

4. Example 3: Option pricing

Suppose that certain asset (as the CAC40) has a value S0. We model its
future value at time T of an asset S by

ST = S0e
σW (T )+(r−σ2/2)T .

where

W (T ) ∼ N(0, T ).

r is the interest rate in the market (for instance 0.01),

σ is the volatility of the asset.

A call option is a contract that gives the right (but no the obligation) to
buy this asset at time T by a strike price K.

The price of a Call option written on an asset S is computed through
the formula

C = C(r, σ,K, T ) = e−rTE(ST −K)+
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(an expectation!)

Black-Scholes closed formula gives this price, by

C(r, σ, T,K) = S0Φ(d1)−Ke−rTΦ(d2),

d1,2 =
log(S0/K) + (r ± σ2/2)T

σ
√
T

.

To evaluate the accuracy of MC, and also to prepare us for cases when Z is
not normal, (and no closed formula exists) we can approximate the price as

Ĉ =
1

n

d∑
k=1

(
S0e

σ
√
TZk+(r−σ2/2)T −K

)+
where Z1, . . . , Zn are simulated independent standard normal random varia-
bles.

5. Exercises

When not specified confidence level is 1 − α = 0,95 and sample size
n = 106.

Exercise 1. Empirical law of large numbers. In this exercise we empirically test
the Law of Large numbers with the help of R, for different distributions.
Then simulate a vector (X1, ..., Xn) with the distribution F , compute the
partial sums

S0 = 0, Sn = X1 + · · ·+Xn,

and prove empirically that Sn/n→ E(X1) a.s. by plotting the sequence

(S0, S1/1, S2/2, ..., Sn/n).

(a) Use the following distributions: (i) Uniform in [0, 1], (ii) Standard normal
distribution (i.e. zero mean one variance) (iii) Normal with mean 1 and
variance 4, (iv) exponential with parameter 4, (v) Cauchy distribution, (vi)
binomial distribution with parameters (10, 1/2). Take n = 10000. The six
plots should appear in the same window with the help of the command lines.
Use different colors for each plot, and adjust the plots with ylim=c(-n,n)

in such a way that all of them are visible.

(b) Does the law of large numbers hold for all examples? Can you justify
your answer?
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Exercise 2. Empirical Central Limit Theorem (CLT)

(a) Determine which of the following seven distributions F satisfy the CLT,
computing the theoretical mean µ and standard deviation σ corresponding
to F : (i) Uniform in [0, 1], (ii) Normal with mean 1 and variance 4, (iii)
exponential with parameter 4, (iv) Cauchy distribution, (v) Pareto with
parameter 1/2, (vi) Pareto with parameter 3/2, (vii) Pareto with parameter
5/2.

(b) For the distributions that satisfy the CLT, consider a random sample
(X1, . . . , Xn) with distribution F , and consider the standardized mean, de-
fined as

Z =
X̄n − µ
σ/
√
n

Prove that EZ = 0 and varZ = 1.

(c) Generate now a sample Z1, . . . , Z100 of standardized means, taking n =
10000 for each Zk and plot a histogram the sample.

(d) Plot, on the same picture, the standard normal density.

Exercise 3. Computing an integral. Compute

µ =

∫ 1

0
x

(
sin

1

x

)2

dx,

by the following three methods:

(a) Acceptance-rejection.

(b) Sample mean method, as E(f(U)) for U uniform.

(c) Sample mean method, as E(g(X)) for X with density 2x1{0≤x≤1}.

Compare the errors of the three methods.

Exercise 4. The area under the e−x
2
.

(a) Prove that ∫ 1

0

√
− log ydy =

∫ ∞
0

e−x
2
dx =

√
π

2
.

(b) Compute the first integral using exponential random variables, and the
second, using uniform random variables. Compare the errors for the same
number of variates.
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Exercise 5. The Basel problem1 consist in the summation of the series

∞∑
n=1

1

n2
.

We are going to approximate this quantity using simulation.

(a) Prove that if U is uniform in [0, 1], the discrete random variable X =
b1/Uc satisfies

P(X = n) =
1

n(n+ 1)
.

(b) Prove that
π2

6
= E

(
X + 1

X

)
.

(c) Provide an approximation by simulation of π2/6 with the corresponding
confidence intervals.

Exercise 6. Options prices: Black-Scholes model The price of a Call option
written on an asset S is computed through the formula

C = C(r, σ,K, T ) = e−rTE(ST −K)+,

where ST = S0 exp(σN(0, T ) + (r− σ2/2)T ). Black and Scholes (1973) gave
a formula to compute this value:

C(r, σ, T,K) = S0Φ(d1)−Ke−rTΦ(d2),

d1,2 =
log(S0/K) + (r ± σ2/2)T

σ
√
T

.

where Φ is the cumulative normal standard distribution.

(a) Write a code to compute the price of a call option according to Black-
Scholes formula.

(b) Consider the corresponding values:

S0 = 4930, r = 0,01, T = 1/12, σ = 0,20.

and plot the option values as a function of K in an interval [4000, 6000]

1Solved by L. Euler in 1734. This is Riemann zeta function ζ(s) :=
∑∞

n=1 1/ns evalua-
ted at s = 2.
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(c) Compute the option value with the formula and with simulation when
K = S0 (option at the money), and check if the true value lies in the
corresponding confidence interval.

Exercise 7. Probabilities. In the quarter-finals of a football competition take
part 8 teams, named A,B,C,D,E,F,G,H, according to the following schedule:

First round: A vs. B, C vs. D, E vs. F, G vs. H. We have four winners.

Semi-finals: Winner of A,B vs winner of C,D; winner of E,F vs winner
of G,H. We have two winners

Final: between the two winners of the semi-finals.

The probabilities of winning matches of each couple are given in the following
matrix:

win\loose A B C D E F G H

A - 1/3 1/2 3/5 1/2 1/3 2/3 1/2

B - 2/3 1/2 3/5 1/2 2/3 1/2

C - 1/2 1/3 1/2 1/2 2/5

D - 1/3 1/2 2/3 2/5

E - 1/2 3/5 1/3

F - 3/5 2/5

G - 2/5

H -

Cuadro 1: Probabilities of winning: P(A wins B) = 1/3.

Compute the probabilities of winning for each team with its respective
confidence intervals through MC. Present your results in a list of teams
ordered w.r.t. winning probability in descending order.

Note: To declare a matrix
prob<-matrix(0,nrow=8,ncol=8) # matrix of probabilities

To enter an element
prob[1,2]<-1/3
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