
Clases 7-8: Métodos de reducción de varianza en

Monte Carlo *
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1. Variance reduction

As we have seen, a critical issue in MC method is the quality of estimation.
The question we face is: can we devise a method that produces, with the same
number n of variates, a more precise estimation? The answer is yes, and the

*Notas preparadas por E. Mordecki para el curso de Simulación en procesos estocásticos
2017.
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general idea is the following: If we want to estimate µ = EX, to find Y such
that

µ = EX = EY, varY < varX.

The way to produce a good Y usually departs from the knowledge that we can
have about X. There are several methods to reduce variance, however there
does not to exist a general method that always produce gain in the variance,
the case is that each problem has its own good method.

2. Antithetic variates

The method is simple, and consists in using a symmetrized variate in the

cases this is possible. For instance, if we want to compute µ =
∫ 1

0
f(x)dx, we

would have, with U uniform in [0, 1],

X = f(U), Y =
1

2
(f(U) + f(1− U)) .

We have

varY =
1

2
(varX + cov(f(U), f(1− U))) ≤ varX.

If cov(f(U), f(1− U)) < var(X) we have variance reduction.

Proposition 1 If f is not symmetric (i.e. if f(x) 6= f(1 − x) for some x in
case of continuity) then

varY < varX

Proof. As we have seen, varX < varY iff cov(f(U), f(1− U)) < varf(U), and
this holds iff ∫ 1

0

f(x)f(1− x) <

∫ 1

0

f(x)2dx,

that is equivalent to

2

∫ 1

0

f(x)f(1− x) <

∫ 1

0

f(x)2dx+

∫ 1

0

f(1− x)2dx,

that is equivalent to ∫ 1

0

(f(x)− f(1− x))2dx > 0.

This holds iff f is not symmetric.

Remark. For any r.v. with symmetric (w.r.t. µ) distribution, a similar argument
holds: the method reduces the variance in the case the function is not symmetric
w.r.t. µ.
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2.1. Example: Uniform random variables

We compute

π = 4

∫ 1

0

√
1− x2dx,

with n = 106 variates. Our results

Estimate Variance
Classical Estimate 3.141379 0.000553
Antithetic Variates 3.141536 0.000205

True value 3.141593

2.2. Example: Tail probabilities of normal random varia-
bles

We want to compute the probability that a standard normal variable is larger
than 3:

µ = P(Z > 3), µ̂ =
1

n

n∑
k=1

1{Zk > 3},

µ̂A =
1

2n

n∑
k=1

(1{Zk > 3}+ 1{−Zk > 3}).

Our results with n = 104 variates:

Estimate Variance
Classical Estimate 0.00121 0.00022
Antithetic Variates 0.00137 0.00016

True value 0.0013499

3. Importance sampling

The importance sampling method consists in changing the underlying distri-
bution of the variable used to simulate. It is specially suited for the estimation
of small probabilities (rare events). Assuming that X ∼ f and Y ∼ g, it is based
in the following identity

µ = Eh(X) =

∫
h(x)f(x)dx =

∫
h(x)f(x)

g(x)
g(x)dx = EH(Y ),

where we define H(x) = h(x)f(x)
g(x) . The main idea is to achieve that Y points

towards the set where h takes large values. If not correctly applied, the method
can enlarge the variance.
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3.1. Computation of the variance

The variance of the method is

varH(Y ) = E(H(Y )2)− (EH(Y ))2 = E(H(Y )2)− µ2.

As µ is fixed, we should minimize

E(H(Y )2) =

∫
(h(x)f(x))2

g(x)
dx.

3.2. Example: Tail probabilities of normal random varia-
bles

µ = P(Z > 3) =

∫ ∞
3

e−x
2/2

√
2π

e−(x−3)
2/2

e−(x−3)2/2
dx

=

∫ ∞
3

e−3x+9/2 e
−(x−3)2/2
√

2π
dx = Ee−3Y+9/21{Y >3},

where Y ∼ N(3, 1). Our results with n = 104 variates:

Estimate Variance
Classical Estimate 0.00121 2.2e-04
Antithetic Variates 0.00137 1.6e-04

Importance sampling 0.001340 1.5e-05
True value 0.0013499

4. Control variates

Given the problem of simulating µ = Eh(X) the idea is to “control” the
function h through a function g, close as posible to h, and such that we know
β = Eg(Y ). We can add a constant c to better adjustment. More concretely,
the equation is

µ = Eh(X) = Eh(X)− c(Eg(X)− β)

= E(h(X)− cg(X)) + cβ.

The coefficient c can be chosen in order to minimize the variance:

var(h(X)− cg(X)) =

varh(X) + c2varg(X)− 2ccov(h(X), g(X)).

This gives a minimum when

c∗ =
cov(h(X), g(X))

var(g(X))
.
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As this quantities are usually unknown, we can first run a MC to estimate c∗.
obtaining the following variance:

var(h(X)− cg(X)) = var(h(X))− cov(h(X), g(X))2

var(g(X))

= (1− ρ(h(X), g(X))2)var(h(X))

As ρ(h(X), g(X)) ≤ 1, we usually obtain a variance reduction.

4.1. Example: The computation of π

We choose g(x) = 1− x, that is close to
√

1− x2

We first estimate c. In this case we know β = E(1−U) = 1/2 and var(1−U) =
1/12. After simulation we obtiain

ĉ∗ ∼ 0,7

So we estimate
π = 4E(

√
1− U2 − 0,7(1− U − 1/2)).

Our results with n = 106:

Estimate Variance
Classical Estimate 3.141379 0.000553
Antithetic Variates 3.141536 0.000205

Control variates 3.141517 0.000215
True value 3.141593

5. Stratified sampling

The idea1 to reduce the variance that this method proposes is to produce
a partition of the probability space Ω, and distribute the effort of sampling in

1Adapted from Simulation 5ed.S. M. Ross, (2013) Elsevier
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each set of the partition. Suppose we want to estimate

µ = E(X),

and suppose there is some discrete random variable Y , with possible values
y1, . . . , yk, such that, for each i = 1, . . . , k:

(a) the probability pi = P(Y = yi), is known;

(b) we can simulate the value of X conditional on Y = yi.

The proposal is to estimate

E(X) =
k∑

i=1

E(X|Y = yi)pi,

by estimating the k quantities E(X|Y = yi), i = 1, . . . , k. So, rather than gene-
rating n independent replications of X, we do npi of the simulations conditional
on the event that Y = yi for each i = 1, . . . , k. If we let X̃i be the average of the
npi observed values of X|Y = yi, then we would have the unbiased estimator

µ̂ =

k∑
i=1

X̃ipi

that is called a stratified sampling estimator of E(X).
To compute the variance, we first have

var(X̃i) =
var(X|Y = yi)

npi

Consequently, using the preceding and that the X̃i, are independent, we see that

var(µ̂) =

k∑
i=1

p2i var(X̃i)

=
1

n

k∑
i=1

pivar(X|Y = yi) =
1

n
E(var(X|Y )).

Because the variance of the classical estimator is 1
nvar(X), and var(µ̂) = 1

nE(var(X|Y )),
we see from the conditional variance formula

var(X) = E(var(X|Y )) + var(E(X|Y )),

that the variance reduction is

1

n
var(X)− 1

n
E(var(X|Y )) =

1

n
varE(X|Y ),
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That is, the variance savings per run is varE(X|Y ) which can be substantial
when the value of Y strongly affects the conditional expectation of X. On the
contrary, if X and Y are independent, E(X|Y ) = EX and varE(X|Y ) = 0.

Observe that the variance of the stratified sampling estimator can be esti-
mated by ̂var(µ̂) =

1

n

k∑
i=1

p2i si,

if si is the usual estimator of the sample of X|Y = yi.

Remark: The simulation of npi variates for each i is called the proportional
sampling. Alternatively, one can choose n1, . . . , nk s.t. n1 + · · · + nk = n that
minimize the variance.

5.1. Example: Integrals in [0, 1]

Suppose that we want to estimate

µ = E(h(U)) =

∫ 1

0

h(x)dx.

We put

Y = j, if
j − 1

n
≤ U <

j

n
, for j = 1, . . . , n.

We have

µ = EE(h(U)|Y ) =
1

n

n∑
j=1

E(h(U(j))),

where U(j) is uniform in j − 1 ≤ U < j. In this example we have k = n, and we
use ni = 1 variates for each value of Y . As

U(j) ∼
U + j − 1

n
,

the resulting estimator is

µ̂ =
1

n

n∑
j=1

h

(
Uj + j − 1

n

)
.

To compute the variance, we have

var(µ̂) =
1

n2

n∑
j=1

varh

(
U + j − 1

n

)

=
1

n

n∑
j=1

∫ j
n

j−1
n

(h(x)− µj)
2dx,
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where µj =
∫ j

n
j−1
n

h(x)dx.

The reduction is obtained because µj is closer to h than µ:

var(µ̂C) =
1

n

∫ 1

0

(h(x)− µ)2dx,

where µ̂C stands for the classic MC estimator.

5.2. Example: computation of π

We return to

π = 4

∫ 1

0

√
1− x2dx.

Observing that
j − U
n
∼ U + j − 1

n
∼ U(j),

we combine stratified and antithetic sampling:

µ̂ =
2

n

n∑
j=1

√1−
(
Uj + j − 1

n

)2

+

√
1−

(
j − Uj

n

)2


For n = 105 we obtain an estimation

µ̂ = 3,1415926537 π = 3,14159265358979

with 10 correct digits.

6. Conditional sampling

Remember the telescopic (or “tower”) property of the conditional expecta-
tion:

E(X) = E(E(X|θ)).

where θ is an auxiliar random variable. In case we are able to simulate

Y = E(X|θ),

we have the following variance reduction:

var(Y ) = var(E(X|θ)) = var(X)−E(var(X|θ)).
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6.1. Example: Computing an expectation

Let U be uniform in [0, 1] and Z ∼ N(0, 1). We want to compute

µ = E(eUZ).

We first compute

E(eUZ |U = u) =

∫
R

eux
1√
2π
e−x

2/2dx = eu
2/2,

so Y = E(eUZ |U) = eU
2/2, and EY =

∫ 1

0
eu

2/2du.
Our results for two size samples.

n = 103 n = 106

Classical 1,2145± 0,020 1,1951± 0,00060
Conditional 1,1962± 0,004 1,1949± 0,00012

True 1.194958

Note that the classical method requires 2n samples.

7. Exercises

When not specified confidence level is 1−α = 0,95 and sample size n = 106.

The general purpose is to estimate using different methods of variance re-
duction the following quantities

µ1 = 4

∫ 1

0

√
1− x2dx = π,

µ2 =

∫ 1

0

√
− log xdx =

1

2

√
π,

µ3 = P(Z > 4), where Z ∼ N(0, 1)

µ4 = E(eZ − 5)+, where Z ∼ N(0, 1)

In all exercises use n = 106 samples, and compute the corresponding errors
with 0,95 % confidence:

ε =
1,96s√
n
.

where s = σ̂.

Exercise 1. Compute µ1 with the following methods:
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(a) Acceptance rejection on the square [0, 1]2.

(b) Sample mean method.

(c) Use antithetic variables.

(d) Use control variates, with g(x) = 1 − x. First find the optimal c∗ with a
small sample (103) and then run your algorithm with this estimation.

(e) Use the stratified method suggested in Lecture 3, i.e. using, for µ =
∫ 1

0
h(x)dx

the formula

µ̂ =
1

n

n∑
j=1

h

(
Uj + j − 1

n

)
.

You can combine with antithetic variates (In this case it is no direct to obtain
an error estimate).

(f) Do you know a deterministic method to compute this integral? .For instance,
compute a Riemann sum, or use the trapezoidal rule:

µ̂ =
1

2n
(f(0) + f(1)) +

1

n

n−1∑
j=1

f(j/n).

Exercise 2. Compute µ2 with the following methods:

(a) Can you use acceptance rejection method with uniform variables?

(b) Use the sample mean method.

(c) Use antithetic variables.

(d) Use control variates, with g(x) = − log x, taking into account that
∫ 1

0
− log(x)dx =

1. First find the optimal c∗ with a small sample (103) and then run your algo-
rithm with this estimation.

Exercise 3. Compute µ3 with the following methods:

(a) First use crude MC. As the probability is very small, a large n is necessary.

(b) Check if the antithetic variates method improves the situation.

(c) Use the importance sampling method, based in the following idenantity.

P(Z > 4) =

∫ ∞
4

1√
2π
e−x

2/2dx =

∫ ∞
4

1√
2π
e−x

2/2 e
−(x−4)2/2

e−(x−4)2/2
dx

=

∫ ∞
4

e−4x+8 e
−(x−4)2/2
√

2π
dx = Ee−4X+81{X>4}.

where X ∼ N(4, 1).

Exercise 4. Compute µ4 with the following methods:

(a) First use crude MC.

(b) Use antithetic variates.
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(c) Now we use control variates in the following way. Check the following iden-
tity:

E(eZ −K)+ = E(eZ)−K + E(K − eZ)+.

(here x+ = máx(0, x), and you can use that x = x+− (−x)+). Then, computing
EeZ = e1/2, we find the price of the put option, given by

P (K) = E(K − eZ)+.

You can use also antithetic variates in this situation.

(d) Importance sampling can be implemented in the following way. Check the
following identity:

E(eZ−K)+ =

∫
R

(ex−K)+
1√
2π
e−x

2/2dx = e1/2
∫
R

(1−Ke−x)+
1√
2π
e−(x−1)

2/2dx.

that is known as put-call duality.

P (K) = e1/2E(1−Ke−X)+.

where X ∼ N(1, 1). You can use also antithetic variates in this situation.

Exercise 5. We want to compute the integral by simulation:

µ =

∫ 1

0

(1− x)e−x
2

dx

In all cases provide the 95 % error of estimation.

(a) Estimate µ using the acceptance-rejection method on the square [0, 1]2.

(b) Estimate µ using uniform random variables, by the sample mean method.

(c) Estimate µ using random variables with density f(x) of exercise 1.

(d) Use antithetic variables.

(e) Use control variates, with g(x) = 1 − x. First find the optimal c∗ with a
small sample (103) and then run your algorithm with this estimation.

Exercise 6. We want to estimate by simulation:

µ =

∫ 1

0

1

2
√
x+ x2

dx =

∫ 1

0

1

2
√
x

1√
1 + x

dx.

In all cases provide the 95 % error of estimation.

(a) Estimate µ using uniform random variables, by the sample mean method.

(b) Estimate µ using random variables with density

f(x) =

{
1/(2
√
x), when 0 ≤ x ≤ 1,

0, in other case.
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(c) Use antithetic variables.

(d) Use control variates, with g(x) = 1 − x. First find the optimal c∗ with a
small sample (103) and then run your algorithm with this estimation.

Exercise 7. Volume of a sphere in R6.

1. Evaluate by the method of Monte Carlo the volume of a unit sphere in
dimension 6. (Compare with the true value π3/6).

2. We now use the method of Monte-Carlo with a different law Let Q be the
law in R6 with density

q(x) =
1

Z(α)
exp(−α

6∑
i=1

|xi|)

and Z(α) is the normalizing constant.

3. Compute Z(α).

4. Plot a code to simulate a point in R6 with law Q.

5. Devise a method to compute the volume of the sphere using the distribu-
tion Q using importance sampling. Compute the error of the method as a
function of α

6. Determine a reasonable interval for α and propose a value to minimize the
error.
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