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Fractional convexity

is there a notion of convexity in the fractional setting?



Fractional convexity
Convexity

A function u : Ω → R is said to be convex in Ω if, for any two points x , y ∈ Ω
such that the segment [x , y ] := {tx + (1 − t)y : t ∈ (0, 1)} is contained in Ω, it

holds that

u(tx + (1 − t)y) ≤ tu(x) + (1 − t)u(y), ∀t ∈ (0, 1).

Notice that v(tx + (1 − t)y) := tu(x) + (1 − t)u(y) is just the solution to the

equation

v ′′ = 0 in the segment [x , y ]

that verifies v(x) = u(x) and v(y) = u(y).
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Fractional convexity
Definition

Given s ∈ (0, 1),

Ls(R) :=
{

f ∈ L1
loc(R) :

∫
RN

|f (τ)|
(1 + |τ |)1+2s dτ < ∞

}
.

A function u ∈ L∞
loc(RN) is said to be s−convex in Ω if

- t → u(x + tz) ∈ Ls(R) for any x ∈ Ω and z ∈ RN with |z | = 1;
- For any two points x , y ∈ Ω, such that the segment [x , y ] is contained in Ω,

it holds that

u(tx + (1 − t)y) ≤ v(tx + (1 − t)y), ∀t ∈ (0, 1) (1)

where v is a viscosity solution of∆s
1v(tx + (1 − t)y) := Cs

∫
R

v(rx + (1 − r)y) − v(tx + (1 − t)y)
|r − t|1+2s dr = 0, ∀t ∈ (0, 1),

v(tx + (1 − t)y) = u(tx + (1 − t)y) ∀t ̸∈ (0, 1).

As usual, the integral is to be understood in the principal value sense.



Fractional convexity
Definition

Is there a fractional convex function?



Fractional convexity
Example

Let u : R → R

u(t) :=

−(1 − t2)s if t ∈ [−1, 1],

0 if |t| > 1.
t

y

u(t)

2012, B. Dyda proved that

∆s
1u(t) = Γ(2s + 1) ≥ 0 in (−1, 1)

Then, given two points in x , y ∈ (−1, 1),

∆s
1u(tx + (1 − t)y) = |x − y |2sΓ(2s + 1) for t ∈ (0, 1).
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Fractional convexity
Example

Thus, by the maximum principle, if v is the viscosity solution of{
∆s

1v(tx + (1 − t)y) = 0 t ∈ (0, 1),

v(tx + (1 − t)y) = u(tx + (1 − t)y) t ∈ R \ (0, 1),

then

u(tx + (1 − t)y) ≤ v(tx + (1 − t)y) ∀t ∈ (0, 1).

We conclude that u is s−convex in (−1, 1).
The same argument shows that if u is a viscosity solution to

∆s
1u(t) ≥ 0 in (a, b)

then u is s−convex in (a, b).



Fractional convexity
Example

Thus, by the maximum principle, if v is the viscosity solution of{
∆s

1v(tx + (1 − t)y) = 0 t ∈ (0, 1),

v(tx + (1 − t)y) = u(tx + (1 − t)y) t ∈ R \ (0, 1),

then

u(tx + (1 − t)y) ≤ v(tx + (1 − t)y) ∀t ∈ (0, 1).

We conclude that u is s−convex in (−1, 1).

The same argument shows that if u is a viscosity solution to

∆s
1u(t) ≥ 0 in (a, b)

then u is s−convex in (a, b).



Fractional convexity
Example

Thus, by the maximum principle, if v is the viscosity solution of{
∆s

1v(tx + (1 − t)y) = 0 t ∈ (0, 1),

v(tx + (1 − t)y) = u(tx + (1 − t)y) t ∈ R \ (0, 1),

then

u(tx + (1 − t)y) ≤ v(tx + (1 − t)y) ∀t ∈ (0, 1).

We conclude that u is s−convex in (−1, 1).
The same argument shows that if u is a viscosity solution to

∆s
1u(t) ≥ 0 in (a, b)

then u is s−convex in (a, b).



Fractional convexity
Definition

Is there a fractional convex function? Yes! ©

is there a notion of convexity in the fractional setting? Yes! ©



Fractional convexity
Definition

Is there a fractional convex function? Yes! ©

is there a notion of convexity in the fractional setting? Yes! ©



Outline

•1 Fractional convexity

•2 Fractional Convexity vs Convexity

•3 The first fractional eigenvalue

•4 The fractional convex envelope

•5 Open problem



Fractional Convexity vs Convexity

u is a convex function
?=⇒ u is a s−convex function.



Fractional Convexity vs Convexity
Example

Let u : R → R be given by

u(t) :=

(t − 3)2 if t ∈ [2, 4],

1 if |t − 3| > 1. t

y
u(t)

2 4

Observe that u is a convex function in [−1, 1].
On the other hand, for any x , y ∈ [−1, 1], if v is the viscosity solution of{

∆s
1v(tx + (1 − t)y) = 0 ∀t ∈ (0, 1),

v(tx + (1 − t)y) = u(tx + (1 − t)y) ∀t ∈ R \ (0, 1),

by the strong maximum principle, we have that

1 > v(tx + (1 − t)y) ∀t ∈ (0, 1).

Therefore u is not s−convex.
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Fractional Convexity vs Convexity
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Fractional Convexity vs Convexity

Let s > 1
2 , and u be a convex function in RN such that t 7→ u(x +tz) ∈ Ls(R)

for any x ∈ RN and any z ∈ RN with |z | = 1. Then u is s−convex in RN .

Proposition (LMDP, A. Quaas and J. Rossi).



Fractional Convexity vs Convexity
Idea of the proof

Let u : RN → R be a convex function.

u(x)

u(y)

u(t0x + (1 − t0)y)

ξ · (x − y)(t − t0 ) + u(t0 x + (1 − t0 )y)

Then, since s > 1
2 ,

w(tx + (1 − t)y) = ξ · (x − y)(t − t0) + u(t0x + (1 − t0)y) is a solution of

∆s
1w = 0 if t ∈ (0, 1) and w ≤ u(tx + (1 − t)y) if t ̸∈ (0, 1)

If v is the solution of

∆s
1v = 0 if t ∈ (0, 1) and v = u(tx + (1 − t)y) if t ̸∈ (0, 1).

Then

w(tx + (1 − t)y) ≤ v(tx + (1 − t)y) ∀t ∈ R.

Therefore

u(t0x + (1 − t0)y) = w(t0x + (1 − t0)y)
≤ v(t0x + (1 − t0)y).
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Fractional Convexity vs Convexity
Example

Let u : R → R be the solution to{
∆s

1u(x) = 0 ∀x ∈ (0, 1),
u(x) = f (x) ∀x ∈ R \ (0, 1)

where f is a bounded smooth function such that f (0) = f (1) = 1, f ≥ 1 with at

least one x such that f (x) > 1.

Observe that u is a s−convex function in (0, 1).
On the other hand, u is smooth, continuous up to the boundary and, by the

strong maximum principle, it holds that

1 < u(x) ∀x ∈ (0, 1)

together with u(0) = u(1) = 1.
Therefore, u is not convex in (0, 1).
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The first fractional eigenvalue
Local case

Let u ∈ C2(Ω). Then u is convex in Ω if only if D2u(x) is positive semidefinite in

Ω, that is

⟨D2u(x)z , z⟩ ≥ 0 ∀z ∈ RN , x ∈ Ω. (⋆)

In terms of the eigenvalue of D2u, (⋆) can be written as

Λ1(D2u(x)) := min
{

λ : λ is an eigenvalue of D2u(x)
}

= inf
θ∈SN−1

⟨D2u(x)θ, θ⟩ ≥ 0

A continuous function u is convex if only if u is a viscosity solution of

Λ1(D2u(x)) ≥ 0.

Theorem (A. Oberman).
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The first fractional eigenvalue
We define the first fractional egienvalue of u as

Λs
1u(x) = inf

{
Cs

∫
R

u(x + tz) − u(x)
|t|1+2s dt : z ∈ SN−1

}

A function u : RN → R is a viscosity solution of

Λs
1u(x) ≥ 0 in Ω.

if for any x ∈ Ω, any z ∈ SN−1, any ϕ ∈ C2(RN) such that ϕ(x) = w(x) and

ϕ(y) ≥ w(y) in Bδ(x) we have that t → w(x + tz) ∈ Ls(R) and

Cs

(∫ δ

−δ

ϕ(x + tz) − ϕ(x)
|t|1+2s dt +

∫
R\(−δ,δ)

w(x + tz) − w(x)
|t|1+2s dt

)
≥ 0,

where w is the upper semicontinuous envelope of u in RN .
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The first fractional eigenvalue

Let Ω be a bounded strictly convex C2 domain (that is, a bounded domain

with C2-boundary such that all the principal curvatures of the surface

∂Ω are positive everywhere). Then u is s−convex in Ω if only if u is a

viscosity solution of

Λs
1u(x) ≥ 0 in Ω.

Theorem (LMDP, A. Quaas, and J. Rossi).



The first fractional eigenvalue
Fractional truncated laplacian

2022, Birindelli, Galise, and Topp studied the following operator

I−
n u(x) := inf

{ n∑
i=1

CS

∫
R

u(x + tzi) − u(x)
|t|1+2s dt : {zi}n

i+1 ∈ Vn

}

where Vn is the family of n−dimensional orthonormal set in RN .

Observe that

I−
1 u(x) = Λs

1u(x).

They show

I−
n u(x) → P−

n u(x) =
n∑

j=1
Λj(D2u(x)) as s → 1−.
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The fractional convex envelope
Local case

Given a function g : ∂Ω → R, the convex envelope of the boundary datum g in

Ω is

u⋆(x) := sup{u(x) : u is convex in Ω and u ≤ g on ∂Ω}

That is, u⋆ is the largest convex function in Ω that is below g on ∂Ω.
Moreover u⋆ is the largest viscosity solution of the{

Λ1(D2u(x)) = 0 in Ω,

u(x) ≤ g(x) on ∂Ω.



The convex envelope
Local case

If Ω is strictly convex and g is continuous then u∗ is the unique viscosity

solution of {
Λ1(D2u(x)) = 0 in Ω,

u(x) = g(x) on ∂Ω.

Theorem (A. Oberman and L. Silvestre).



The fractional convex envelope
Let s ∈ (0, 1) and g : RN \ Ω → R. Let us call H(g) the set of s−convex functions

that are below g outside Ω,

H(g) :=
{

u : u is s−convex in Ω and verifies u|RN \Ω ≤ g
}

.

Let u ∈ L∞
loc(RN) be such that t → u(x + tz) ∈ Ls(R) for any x ∈ Ω and any

z ∈ RN with |z | = 1. Then, u ∈ H(g) if only if u is a viscosity solution to

Λs
1u(x) ≥ 0 in Ω,

u(x) ≤ g(x) in RN \ Ω.

Lemma (LMDP, A. Quaas, and J. Rossi).



The fractional convex envelope

The s−convex envelope of an exterior datum g : RN \ Ω → R is given by

u∗
s (x) = sup

{
u(x) : u ∈ H(g)

}
.

Observe that u∗
s is s−convex.

Is u∗ a viscosity solution of

Λs
1u(x) = 0 in Ω, u(x) = g(x) in RN \ Ω?
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The fractional convex envelope
Viscosity solution

A bounded upper semicontinuous function u : RN → R is a viscosity subsolution

to the Dirichlet problem

Λs
1u(x) = f (x) in Ω, u(x) = g(x) in RN \ Ω,

if u ≤ g in RN \ Ω and for each δ > 0 and ϕ ∈ C2(RN) such that x0 is a maximum

point of u − ϕ in Bδ(x0), then

−Eδ(ug , ϕ, x0) ≤ 0 in Ω, min {−Eδ(ug , ϕ, x0), u(x0) − g(x0)} ≤ 0 on ∂Ω.

where

Eδ(ug , ϕ, x0) := Cs inf
z∈SN−1

{∫ δ

−δ

ϕ(x0 + tz) − ϕ(x0)
|t|1+2s dt +

∫
R\(−δ,δ)

ug (x0 + tz) − u(x0)
|t|1+2s dt − f (x0)

}

ug (x) :=


u(x) if x ∈ Ω,

g(x) if x ∈ RN \ Ω,

max{u(x), g(x)} if x ∈ ∂Ω.



The fractional convex envelope
Attainability of the exterior datum

Let Ω be a bounded strictly convex C2−domain, f ∈ C(Ω), g ∈ C(RN \ Ω)
be bounded, and u, v : RN → R be viscosity sub and supersolution of{

Λs
1w(x) = f (x) in Ω,

w(x) = g(x) in RN \ Ω.

Then

u ≤ g on ∂Ω and v ≥ g on ∂Ω.

Theorem (LMDP, A. Quaas, and J. Rossi).



The fractional convex envelope
Comparison principle

Let Ω be a bounded strictly convex C2−domain, f ∈ C(Ω), g ∈ C(RN \ Ω)
be bounded and u, v : RN → R be viscosity sub and supersolution of{

Λs
1w(x) = f (x) in Ω,

w(x) = g(x) in RN \ Ω.

Then

u ≤ v in RN .

Theorem (LMDP, A. Quaas, and J. Rossi).



The fractional convex envelope
Existence and uniqueness of solution

Let Ω be a bounded strictly convex C2−domain, f ∈ C(Ω) and g ∈ C(RN \Ω)
be bounded. Then, there is a unique viscosity solution u to{

Λs
1u(x) = f (x) in Ω,

u(x) = g(x) in RN \ Ω.

This solution is continuous in Ω and the datum g is taken with conti-

nuity, that is, u|∂Ω = g |∂Ω .

Theorem (LMDP, A. Quaas, and J. Rossi).



The fractional convex envelope
Existence and uniqueness of solution

Let Ω be a bounded strictly convex C2−domain and g ∈ C(RN \ Ω) be

bounded. Then, u∗
s is the unique viscosity solution to{

Λs
1u(x) = 0 in Ω,

u(x) = g(x) in RN \ Ω.

Moreover u∗
s ∈ C(Ω) and the datum g is taken with continuity, that is,

u∗
s |∂Ω = g |∂Ω .

Corollary (LMDP, A. Quaas, and J. Rossi).



The fractional convex envelope
A regularity result

Let Ω be a bounded strictly convex C2−domain and u be a viscosity

solution of

Λs
1u(x) = f (x) in Ω, u(x) = g(x) in RN \ Ω.

Assume that s > 1/2, f , g are bounded functions and g satisfies a Hölder

bound, so that there exist Mg and β ∈ (s, 2s) such that

|g(x) − g(y)| ≤ Mg |x − y |β , x , y ∈ RN \ Ω.

Then u ∈ Cγ(Ω) where

γ ∈

{
(0, 2s − 1) if g ≡ 0,

(0, β − s) if g ̸≡ 0.

Theorem (B. Barrios, LMDP, A. Quaas, J. Rossi).



The fractional convex envelope
A regularity result

To prove the lasts result we have to take into account the geometry

properties of our domain. In particular we use that,

Ω =
⋂

z∈∂Ω
BR(z − Rν(z)),

for some R > 0 whose value it is related with the principal curvatures of ∂Ω
and ν(z) denotes the outward normal unit vector of Ω in z ∈ ∂Ω.

2021 I. Birindelli, G. Galise and H. Ishii.

2022 I. Birindelli, G. Galise and D. Schiera.
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The fractional convex envelope
The limit as s ↗ 1

Given a continuous and bounded exterior datum g : RN \ Ω 7→ R, let u∗
s

be the sequence of s−convex enevelopes of g and u∗ be the convex

envelope of g . Then, u∗
s converges uniformly in Ω to u∗ as s ↗ 1.

Theorem (B. Barrios, LMDP, A. Quaas, J. Rossi).



The fractional convex envelope
The limit as s ↗ 1

Idea of the proof. Our strategy to show that u∗
s converge to the usual

convex envelope as s ↗ 1, is to use the well known half relaxed limits. These

are given by

u□(x) := sup
{

lim sup
k→∞,s↗1

u∗
s (xk) : xk → x

}
and u□(x) := inf

{
lim inf

k→∞,s↗1
u∗

s (xk) : xk → x
}

.

We show that u□ is a subsolution of

Λs
1u(x) = 0 in Ω, u(x) = g(x) in RN \ Ω.

and u□ is a supersolution. From the comparison principle, we obtain u□ ≤ u□

(notice that the reverse inequality trivially holds) and hence we conclude that

u□ = u□ = u∗ proving the desired convergence result.
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Open problem

What is a fractional convex set?



Open problem
Our idea

Any closed convex set C is the intersection of all halfspaces that contain it:

C = ∩{H : H halfspace s.t. C ⊆ H}.

What is a nonlocal halfspace?



Open problem
Our idea

Any closed convex set C is the intersection of all halfspaces that contain it:

C = ∩{H : H halfspace s.t. C ⊆ H}.

What is a nonlocal halfspace?



Thank you!
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