Fractional Convexity

Leandro M. Del Pezzo

FCEA-IESTA-UDELAR

March 20, 2024

Outline

- · Fractional convexity
- · Fractional Convexity vs Convexity
- The first fractional eigenvalue
- · The fractional convex envelope
- Open problem

Fractional convexity

is there a notion of convexity in the fractional setting?

Fractional convexity

A function $u: \Omega \to \mathbb{R}$ is said to be convex in Ω if, for any two points $x, y \in \Omega$ such that the segment $[x, y] := \{tx + (1 - t)y : t \in (0, 1)\}$ is contained in Ω , it holds that

$$u(tx+(1-t)y)\leq tu(x)+(1-t)u(y),\qquad orall t\in(0,1).$$

Fractional convexity

A function $u: \Omega \to \mathbb{R}$ is said to be convex in Ω if, for any two points $x, y \in \Omega$ such that the segment $[x, y] := \{tx + (1 - t)y : t \in (0, 1)\}$ is contained in Ω , it holds that

$$u(tx+(1-t)y) \leq tu(x)+(1-t)u(y), \qquad \forall t \in (0,1).$$

Notice that v(tx + (1 - t)y) := tu(x) + (1 - t)u(y) is just the solution to the equation

$$v''=0$$
 in the segment $[x,y]$

that verifies v(x) = u(x) and v(y) = u(y).

Fractional convexity Definition

Given $s \in (0, 1)$,

$$\mathcal{L}_s(\mathbb{R}) \coloneqq \left\{ f \in \mathcal{L}^1_{loc}(\mathbb{R}) \colon \int_{\mathbb{R}^N} rac{|f(au)|}{(1+| au|)^{1+2s}} d au < \infty
ight\}.$$

A function $u \in L^{\infty}_{loc}(\mathbb{R}^N)$ is said to be s-convex in Ω if

- $t
 ightarrow u(x+tz) \in L_s(\mathbb{R})$ for any $x \in \Omega$ and $z \in \mathbb{R}^N$ with |z|=1;
- For any two points $x, y \in \Omega$, such that the segment [x, y] is contained in Ω , it holds that

$$u(tx + (1 - t)y) \le v(tx + (1 - t)y), \quad \forall t \in (0, 1)$$
 (1)

where v is a viscosity solution of

$$\begin{cases} \Delta_1^s v(tx+(1-t)y) \coloneqq C_s \int_{\mathbb{R}} \frac{v(rx+(1-r)y) - v(tx+(1-t)y)}{|r-t|^{1+2s}} \, dr = 0, & \forall t \in (0,1), \\ v(tx+(1-t)y) = u(tx+(1-t)y) & \forall t \notin (0,1). \end{cases}$$

As usual, the integral is to be understood in the principal value sense.

Fractional convexity Definition

Is there a fractional convex function?

Let $u \colon \mathbb{R} \to \mathbb{R}$

$$u(t) := egin{cases} -(1-t^2)^s & ext{if} \ t \in [-1,1], \ 0 & ext{if} \ |t| > 1. \end{cases}$$

Let $u \colon \mathbb{R} \to \mathbb{R}$

$$u(t) := egin{cases} -(1-t^2)^s & ext{if} \ t \in [-1,1], \ 0 & ext{if} \ |t| > 1. \end{cases}$$

2012, B. Dyda proved that

$$\Delta_1^s u(t) = \Gamma(2s+1) \geq 0$$
 in $(-1,1)$

Let $u \colon \mathbb{R} \to \mathbb{R}$

$$u(t) := egin{cases} -(1-t^2)^s & ext{if} \ t \in [-1,1], \ 0 & ext{if} \ |t| > 1. \end{cases}$$

2012, B. Dyda proved that

$$\Delta_1^s u(t) = \Gamma(2s+1) \geq 0$$
 in $(-1,1)$

Then, given two points in $x, y \in (-1, 1)$,

$$\Delta_1^s u(tx+(1-t)y) = |x-y|^{2s} \Gamma(2s+1) \quad \text{ for } t \in (0,1).$$

Thus, by the maximum principle, if v is the viscosity solution of

$$\left\{egin{array}{ll} \Delta_1^s v(tx+(1-t)y)=0 & t\in(0,1),\ v(tx+(1-t)y)=u(tx+(1-t)y) & t\in\mathbb{R}\setminus(0,1) \end{array}
ight.$$

then

$$u(tx+(1-t)y) \leq v(tx+(1-t)y) \quad \forall t \in (0,1).$$

Thus, by the maximum principle, if v is the viscosity solution of

$$\left\{ egin{array}{ll} \Delta_1^s
u(tx+(1-t)y)=0 & t\in(0,1), \ v(tx+(1-t)y)=u(tx+(1-t)y) & t\in\mathbb{R}\setminus(0,1), \end{array}
ight.$$

then

$$u(tx+(1-t)y) \leq v(tx+(1-t)y) \quad \forall t \in (0,1).$$

We conclude that u is s-convex in (-1, 1).

Thus, by the maximum principle, if v is the viscosity solution of

$$\left\{ egin{array}{ll} \Delta_1^s
u(tx+(1-t)y)=0 & t\in(0,1), \ v(tx+(1-t)y)=u(tx+(1-t)y) & t\in\mathbb{R}\setminus(0,1), \end{array}
ight.$$

then

$$u(tx+(1-t)y)\leq v(tx+(1-t)y)\quad \forall t\in(0,1).$$

We conclude that u is s-convex in (-1,1). The same argument shows that if u is a viscosity solution to

```
\Delta_1^s u(t) \geq 0 in (a, b)
```

then u is s-convex in (a, b).

Fractional convexity Definition

Is there a fractional convex function? Yes! ©

Fractional convexity Definition

Is there a fractional convex function? Yes! ©

is there a notion of convexity in the fractional setting? Yes! ©

Outline

- · Fractional convexity
- · Fractional Convexity vs Convexity
- The first fractional eigenvalue
- · The fractional convex envelope
- Open problem

u is a convex function $\stackrel{?}{\Longrightarrow} u$ is a s-convex function.

Let $u \colon \mathbb{R} \to \mathbb{R}$ be given by

$$u(t) := egin{cases} (t-3)^2 & ext{if} \ t \in [2,4], \ 1 & ext{if} \ |t-3| > 1 \end{cases}$$

Let $u: \mathbb{R} \to \mathbb{R}$ be given by

$$u(t) := egin{cases} (t-3)^2 & ext{if} \ t \in [2,4], \ 1 & ext{if} \ |t-3| > 1. \end{cases}$$

Observe that u is a convex function in [-1,1].

Let $u: \mathbb{R} \to \mathbb{R}$ be given by

$$u(t) := egin{cases} (t-3)^2 & ext{if} \ t \in [2,4], \ 1 & ext{if} \ |t-3| > 1. \end{cases}$$

Observe that u is a convex function in [-1,1].

On the other hand, for any $x, y \in [-1, 1]$, if v is the viscosity solution of

$$\left\{egin{array}{ll} \Delta_1^s v(tx+(1-t)y)=0 & orall t\in (0,1), \ v(tx+(1-t)y)=u(tx+(1-t)y) & orall t\in \mathbb{R}\setminus (0,1). \end{array}
ight.$$

By the strong maximum principle, we have that

$$1 > v(tx + (1-t)y) \quad \forall t \in (0,1).$$

Let $u: \mathbb{R} \to \mathbb{R}$ be given by

$$u(t) := egin{cases} (t-3)^2 & ext{if} \ t \in [2,4], \ 1 & ext{if} \ |t-3| > 1. \end{cases}$$

Observe that u is a convex function in [-1,1].

On the other hand, for any $x, y \in [-1, 1]$, if v is the viscosity solution of

$$\left\{egin{array}{ll} \Delta_1^s v(tx+(1-t)y)=0 & orall t\in (0,1), \ v(tx+(1-t)y)=u(tx+(1-t)y) & orall t\in \mathbb{R}\setminus (0,1). \end{array}
ight.$$

By the strong maximum principle, we have that

$$1 > v(tx + (1-t)y) \quad \forall t \in (0,1).$$

Therefore u is not s-convex.

u is a convex function \Rightarrow *u* is a *s*-convex function.

Proposition (LMDP, A. Quaas and J. Rossi).

Let $s > \frac{1}{2}$, and u be a convex function in \mathbb{R}^N such that $t \mapsto u(x+tz) \in L_s(\mathbb{R})$ for any $x \in \mathbb{R}^N$ and any $z \in \mathbb{R}^N$ with |z| = 1. Then u is s-convex in \mathbb{R}^N .

Let
$$u: \mathbb{R}^{N} \to \mathbb{R}$$
 be a convex function. Then, since $s > \frac{1}{2}$,
 $w(tx + (1 - t)y) = \xi \cdot (x - y)(t - t_{0}) + u(t_{0}x + (1 - t_{0})y)$ is a solution of
 $\Delta_{1}^{s}w = 0$ if $t \in (0, 1)$ and $w \le u(tx + (1 - t)y)$ if $t \notin (0, 1)$
if v is the solution of
 $u(x)$
 $\Delta_{1}^{s}v = 0$ if $t \in (0, 1)$ and $v = u(tx + (1 - t)y)$ if $t \notin (0, 1)$.
Then
 $w(tx + (1 - t_{0})y)$
 $\forall t \in \mathbb{R}$.
Therefore
 $u(y)$
 $u(t_{0}x + (1 - t_{0})y) = w(t_{0}x + (1 - t_{0})y)$
 $\le v(t_{0}x + (1 - t_{0})y)$.

u is a convex function $\stackrel{?}{\Leftarrow} u$ is a s-convex function.

Let $u \colon \mathbb{R} \to \mathbb{R}$ be the solution to

$$\left\{ egin{array}{ll} \Delta_1^s u(x) = 0 & orall x \in (0,1), \ u(x) = f(x) & orall x \in \mathbb{R} \setminus (0,1) \end{array}
ight.$$

where f is a Bounded smooth function such that f(0) = f(1) = 1, $f \ge 1$ with at least one x such that f(x) > 1.

Let $u \colon \mathbb{R} \to \mathbb{R}$ be the solution to

$$\left\{ egin{array}{ll} \Delta_1^s u(x) = 0 & orall x \in (0,1), \ u(x) = f(x) & orall x \in \mathbb{R} \setminus (0,1) \end{array}
ight.$$

where f is a Bounded smooth function such that f(0) = f(1) = 1, $f \ge 1$ with at least one x such that f(x) > 1. Observe that u is a s-convex function in (0, 1).

Let $u \colon \mathbb{R} \to \mathbb{R}$ be the solution to

$$\left\{ egin{array}{ll} \Delta_1^s u(x) = 0 & orall x \in (0,1), \ u(x) = f(x) & orall x \in \mathbb{R} \setminus (0,1) \end{array}
ight.$$

where f is a Bounded smooth function such that f(0) = f(1) = 1, $f \ge 1$ with at least one x such that f(x) > 1.

Observe that u is a s-convex function in (0,1).

On the other hand, u is smooth, continuous up to the Boundary and, by the strong maximum principle, it holds that

$$1 < u(x) \quad \forall x \in (0,1)$$

together with u(0) = u(1) = 1.

Let $u \colon \mathbb{R} \to \mathbb{R}$ be the solution to

$$\left\{ egin{array}{ll} \Delta_1^s u(x) = 0 & orall x \in (0,1), \ u(x) = f(x) & orall x \in \mathbb{R} \setminus (0,1) \end{array}
ight.$$

where f is a Bounded smooth function such that f(0) = f(1) = 1, $f \ge 1$ with at least one x such that f(x) > 1.

Observe that u is a s-convex function in (0,1).

On the other hand, u is smooth, continuous up to the Boundary and, by the strong maximum principle, it holds that

$$1 < u(x) \quad \forall x \in (0,1)$$

together with u(0) = u(1) = 1. Therefore, u is not convex in (0,1).

u is a convex function \notin u is a s-convex function.

Outline

- · Fractional convexity
- · Fractional Convexity vs Convexity
- The first fractional eigenvalue
- · The fractional convex envelope
- Open problem

Let $u \in C^2(\Omega)$. Then u is convex in Ω if only if $D^2u(x)$ is positive semidefinite in Ω , that is

$$\langle D^2 u(x)z, z \rangle \ge 0 \quad \forall z \in \mathbb{R}^N, x \in \Omega.$$
 (*)

Let $u \in C^2(\Omega)$. Then u is convex in Ω if only if $D^2u(x)$ is positive semidefinite in Ω , that is

$$\langle D^2 u(x)z, z \rangle \ge 0 \quad \forall z \in \mathbb{R}^N, x \in \Omega.$$
 (*)

In terms of the eigenvalue of D^2u , (\star) can be written as

$$egin{aligned} &\Lambda_1(D^2u(x))\coloneqq\minig\{\lambda\colon\lambda ext{ is an eigenvalue of }D^2u(x)ig\}\ &=\inf_{ heta\in\mathbb{S}^{N-1}}\langle D^2u(x) heta, heta
angle\geq0 \end{aligned}$$

Let $u \in C^2(\Omega)$. Then u is convex in Ω if only if $D^2u(x)$ is positive semidefinite in Ω , that is

$$\langle D^2 u(x)z, z \rangle \ge 0 \quad \forall z \in \mathbb{R}^N, x \in \Omega.$$
 (*)

In terms of the eigenvalue of D^2u , (*) can be written as

$$egin{aligned} &\Lambda_1(D^2u(x))\coloneqq\minig\{\lambda\colon\lambda ext{ is an eigenvalue of }D^2u(x)ig\}\ &=\inf_{ heta\in\mathbb{S}^{N-1}}\langle D^2u(x) heta, heta
angle\geq0 \end{aligned}$$

Theorem (A. Oberman).

A continuous function u is convex if only if u is a viscosity solution of

 $\Lambda_1(D^2u(x))\geq 0.$

We define the first fractional egienvalue of u as

$$\Lambda_1^s u(x) = \inf\left\{C_s\int_{\mathbb{R}}rac{u(x+tz)-u(x)}{|t|^{1+2s}}\,dt\colon z\in\mathbb{S}^{N-1}
ight\}$$

We define the first fractional egienvalue of u as

$$\Lambda_1^s u(x) = \inf \left\{ C_s \int_{\mathbb{R}} \frac{u(x+tz) - u(x)}{|t|^{1+2s}} \, dt \colon z \in \mathbb{S}^{N-1} \right\}$$

A function $u: \mathbb{R}^N \to \mathbb{R}$ is a viscosity solution of

 $\Lambda_1^s u(x) \ge 0$ in Ω .

if for any $x \in \Omega$, any $z \in \mathbb{S}^{N-1}$, any $\phi \in C^2(\mathbb{R}^N)$ such that $\phi(x) = w(x)$ and $\phi(y) \ge w(y)$ in $B_{\delta}(x)$ we have that $t \to w(x + tz) \in L_s(\mathbb{R})$ and

$$C_{s}\left(\int_{-\delta}^{\delta}\frac{\phi(x+tz)-\phi(x)}{|t|^{1+2s}}dt+\int_{\mathbb{R}\setminus(-\delta,\delta)}\frac{w(x+tz)-w(x)}{|t|^{1+2s}}dt\right)\geq0,$$

where w is the upper semicontinuous envelope of u in \mathbb{R}^N .

Theorem (LMDP, A. Quaas, and J. Rossi).

Let Ω be a bounded strictly convex C^2 domain (that is, a bounded domain with C^2 -boundary such that all the principal curvatures of the surface $\partial\Omega$ are positive everywhere). Then u is s-convex in Ω if only if u is a viscosity solution of

 $\Lambda_1^s u(x) \ge 0$ in Ω .

The first fractional eigenvalue Fractional truncated laplacian

2022, Birindelli, Galise, and Topp studied the following operator

$$\mathcal{I}_n^-u(x)\coloneqq \inf\left\{\sum_{i=1}^n C_S\int_{\mathbb{R}}rac{u(x+tz_i)-u(x)}{|t|^{1+2s}}\,dt\colon\{z_i\}_{i+1}^n\in\mathcal{V}_n
ight\}$$

where \mathcal{V}_n is the family of *n*-dimensional orthonormal set in \mathbb{R}^N .

The first fractional eigenvalue Fractional truncated laplacian

2022, Birindelli, Galise, and Topp studied the following operator

$$\mathcal{I}_n^-u(x)\coloneqq\inf\left\{\sum_{i=1}^nC_S\int_{\mathbb{R}}rac{u(x+tz_i)-u(x)}{|t|^{1+2s}}\,dt\colon\{z_i\}_{i+1}^n\in\mathcal{V}_n
ight\}$$

where \mathcal{V}_n is the family of *n*-dimensional orthonormal set in \mathbb{R}^N . Observe that

 $\mathcal{I}_1^- u(x) = \Lambda_1^s u(x).$

The first fractional eigenvalue Fractional truncated laplacian

2022, Birindelli, Galise, and Topp studied the following operator

$$\mathcal{I}_n^-u(x) \coloneqq \inf\left\{\sum_{i=1}^n C_S \int_{\mathbb{R}} \frac{u(x+tz_i)-u(x)}{|t|^{1+2s}} dt \colon \{z_i\}_{i+1}^n \in \mathcal{V}_n\right\}$$

where \mathcal{V}_n is the family of *n*-dimensional orthonormal set in \mathbb{R}^N . Observe that

$$\mathcal{I}_1^-u(x)=\Lambda_1^su(x).$$

They show

$${\mathcal I}_n^-u(x) o {\mathcal P}_n^-u(x)=\sum_{j=1}^n \Lambda_j(D^2u(x)) ext{ as } s o 1^-.$$

Outline

- · Fractional convexity
- · Fractional Convexity vs Convexity
- The first fractional eigenvalue
- · The fractional convex envelope
- Open problem

The fractional convex envelope Local case

Given a function $g:\partial\Omega\to\mathbb{R},$ the convex envelope of the boundary datum g in Ω is

$$u^{\star}(x) \coloneqq \sup\{u(x) \colon u \text{ is convex in } \overline{\Omega} \text{ and } u \leq g \text{ on } \partial\Omega\}$$

That is, u^* is the largest convex function in Ω that is below g on $\partial\Omega$. Moreover u^* is the largest viscosity solution of the

$$\begin{cases} \Lambda_1(D^2u(x)) = 0 & \text{ in } \Omega, \\ u(x) \le g(x) & \text{ on } \partial\Omega. \end{cases}$$

The convex envelope Local case

Theorem (A. Oberman and L. Silvestre).

If Ω is strictly convex and g is continuous then u^* is the unique viscosity solution of

$$\begin{cases} \Lambda_1(D^2u(x)) = 0 & \text{ in } \Omega, \\ u(x) = g(x) & \text{ on } \partial\Omega \end{cases}$$

Let $s \in (0,1)$ and $g: \mathbb{R}^N \setminus \Omega \to \mathbb{R}$. Let us call H(g) the set of s-convex functions that are below g outside Ω ,

$$H(g) \coloneqq \Big\{ u \colon u \text{ is } s - ext{convex in } \overline{\Omega} ext{ and verifies } u|_{\mathbb{R}^N \setminus \Omega} \leq g \Big\}.$$

- Lemma (LMDP, A. Quaas, and J. Rossi). -

Let $u \in L^{\infty}_{loc}(\mathbb{R}^N)$ be such that $t \to u(x + tz) \in L_s(\mathbb{R})$ for any $x \in \Omega$ and any $z \in \mathbb{R}^N$ with |z| = 1. Then, $u \in H(g)$ if only if u is a viscosity solution to

 $egin{aligned} &\Lambda_1^s u(x) \geq 0 & ext{ in } \Omega, \ &u(x) \leq g(x) & ext{ in } \mathbb{R}^N \setminus \Omega. \end{aligned}$

The s-convex envelope of an exterior datum $g: \mathbb{R}^N \setminus \Omega \to \mathbb{R}$ is given by

$$u_s^*(x) = \sup \Big\{ u(x) \colon u \in H(g) \Big\}.$$

Observe that u_s^* is s-convex.

The s-convex envelope of an exterior datum $g: \mathbb{R}^N \setminus \Omega \to \mathbb{R}$ is given by

$$u_s^*(x) = \sup \Big\{ u(x) \colon u \in H(g) \Big\}.$$

Observe that u_s^* is s-convex. Is u^* a viscosity solution of

$$\Lambda_1^s u(x) = 0$$
 in Ω , $u(x) = g(x)$ in $\mathbb{R}^N \setminus \Omega$?

The fractional convex envelope Viscosity solution

A bounded upper semicontinuous function $u: \mathbb{R}^N \to \mathbb{R}$ is a viscosity subsolution to the Dirichlet problem

 $\Lambda_1^s u(x) = f(x)$ in Ω , u(x) = g(x) in $\mathbb{R}^N \setminus \Omega$,

if $u \leq g$ in $\mathbb{R}^N \setminus \overline{\Omega}$ and for each $\delta > 0$ and $\phi \in C^2(\mathbb{R}^N)$ such that x_0 is a maximum point of $u - \phi$ in $B_{\delta}(x_0)$, then

 $-E_{\delta}(u^g,\phi,x_0)\leq 0 \text{ in }\Omega, \quad \min\left\{-E_{\delta}(u^g,\phi,x_0),u(x_0)-g(x_0)\right\}\leq 0 \quad \text{ on }\partial\Omega.$

where

$$\begin{split} E_{\delta}(u^{g},\phi,x_{0}) &\coloneqq C_{s} \inf_{z \in \mathbb{S}^{N-1}} \left\{ \int_{-\delta}^{\delta} \frac{\phi(x_{0}+tz) - \phi(x_{0})}{|t|^{1+2s}} dt + \int_{\mathbb{R} \setminus (-\delta,\delta)} \frac{u^{g}(x_{0}+tz) - u(x_{0})}{|t|^{1+2s}} dt - f(x_{0}) \right\} \\ u^{g}(x) &\coloneqq \begin{cases} u(x) & \text{if } x \in \Omega, \\ g(x) & \text{if } x \in \mathbb{R}^{N} \setminus \overline{\Omega}, \\ \max\{u(x),g(x)\} & \text{if } x \in \partial\Omega. \end{cases} \end{split}$$

Attainability of the exterior datum

Theorem (LMDP, A. Quaas, and J. Rossi). -

Let Ω be a bounded strictly convex C^2 -domain, $f \in C(\overline{\Omega})$, $g \in C(\mathbb{R}^N \setminus \Omega)$ be bounded, and $u, v \colon \mathbb{R}^N \to \mathbb{R}$ be viscosity sub and supersolution of

$$\begin{cases} \Lambda_1^s w(x) = f(x) & \text{ in } \Omega, \\ w(x) = g(x) & \text{ in } \mathbb{R}^N \setminus \Omega \end{cases}$$

Then

 $u \leq g$ on $\partial \Omega$ and $v \geq g$ on $\partial \Omega$.

The fractional convex envelope Comparison principle

Theorem (LMDP, A. Quaas, and J. Rossi). -

Let Ω be a bounded strictly convex C^2 -domain, $f \in C(\overline{\Omega})$, $g \in C(\mathbb{R}^N \setminus \Omega)$ be bounded and $u, v : \mathbb{R}^N \to \mathbb{R}$ be viscosity sub and supersolution of

$$\begin{cases} \Lambda_1^s w(x) = f(x) & \text{ in } \Omega, \\ w(x) = g(x) & \text{ in } \mathbb{R}^N \setminus \Omega \end{cases}$$

Then

 $u \leq v$ in \mathbb{R}^N .

The fractional convex envelope Existence and uniqueness of solution

Theorem (LMDP, A. Quaas, and J. Rossi).

Let Ω be a bounded strictly convex C^2 -domain, $f \in C(\overline{\Omega})$ and $g \in C(\mathbb{R}^N \setminus \Omega)$ be bounded. Then, there is a unique viscosity solution u to

 $\begin{cases} \Lambda_1^s u(x) = f(x) & \text{ in } \Omega, \\ u(x) = g(x) & \text{ in } \mathbb{R}^N \setminus \Omega. \end{cases}$

This solution is continuous in $\overline{\Omega}$ and the datum g is taken with continuity, that is, $u|_{\partial\Omega} = g|_{\partial\Omega}$.

The fractional convex envelope Existence and uniqueness of solution

Corollary (LMDP, A. Quaas, and J. Rossi).

Let Ω be a bounded strictly convex C^2 -domain and $g \in C(\mathbb{R}^N \setminus \Omega)$ be bounded. Then, u_s^* is the unique viscosity solution to

 $\begin{cases} \Lambda_1^s u(x) = 0 & \text{ in } \Omega, \\ u(x) = g(x) & \text{ in } \mathbb{R}^N \setminus \Omega. \end{cases}$

Moreover $u_s^* \in C(\overline{\Omega})$ and the datum g is taken with continuity, that is, $u_s^*|_{\partial\Omega} = g|_{\partial\Omega}$.

The fractional convex envelope A regularity result

Theorem (B. Barrios, LMDP, A. Quaas, J. Rossi).

Let Ω be a bounded strictly convex $C^2-{\rm domain}$ and u be a viscosity solution of

 $\Lambda_1^s u(x) = f(x)$ in Ω , u(x) = g(x) in $\mathbb{R}^N \setminus \Omega$.

Assume that s > 1/2, f, g are bounded functions and g satisfies a Hölder bound, so that there exist M_g and $\beta \in (s, 2s)$ such that

$$|g(x) - g(y)| \leq M_g |x - y|^{\beta}, x, y \in \mathbb{R}^N \setminus \Omega.$$

Then $u \in C^{\gamma}(\overline{\Omega})$ where

$$\gamma \in egin{cases} (0,2s-1) & ext{if } g\equiv 0, \ (0,eta-s) & ext{if } g
ot\equiv 0. \end{cases}$$

The fractional convex envelope A regularity result

To prove the lasts result we have to take into account the geometry properties of our domain. In particular we use that,

$$\Omega = \bigcap_{z \in \partial \Omega} B_R(z - R\nu(z)),$$

for some R > 0 whose value it is related with the principal curvatures of $\partial \Omega$ and $\nu(z)$ denotes the outward normal unit vector of Ω in $z \in \partial \Omega$.

The fractional convex envelope A regularity result

To prove the lasts result we have to take into account the geometry properties of our domain. In particular we use that,

$$\Omega = \bigcap_{z \in \partial \Omega} B_R(z - R\nu(z)),$$

for some R > 0 whose value it is related with the principal curvatures of $\partial \Omega$ and $\nu(z)$ denotes the outward normal unit vector of Ω in $z \in \partial \Omega$.

2021 I. Birindelli, G. Galise and H. Ishii.

2022 I. Birindelli, G. Galise and D. Schiera.

The fractional convex envelope The limit as s > 1

Theorem (B. Barrios, LMDP, A. Quaas, J. Rossi).

Given a continuous and bounded exterior datum $g: \mathbb{R}^N \setminus \Omega \mapsto \mathbb{R}$, let u_s^* be the sequence of s-convex envelopes of g and u^* be the convex envelope of g. Then, u_s^* converges uniformly in $\overline{\Omega}$ to u^* as $s \nearrow 1$.

The fractional convex envelope The limit as s > 1

Idea of the proof. Our strategy to show that u_s^* converge to the usual convex envelope as $s \nearrow 1$, is to use the well known half relaxed limits. These are given by

$$u^{\square}(x) \coloneqq \sup \left\{ \limsup_{k \to \infty, s
earrow 1} u^*_s(x_k) \colon x_k \to x
ight\}$$
 and $u_{\square}(x) \coloneqq \inf \left\{ \liminf_{k \to \infty, s
earrow 1} u^*_s(x_k) \colon x_k \to x
ight\}.$

We show that u^{\Box} is a subsolution of

$$\Lambda_1^s u(x) = 0$$
 in Ω , $u(x) = g(x)$ in $\mathbb{R}^N \setminus \Omega$.

and u_{\Box} is a supersolution. From the comparison principle, we obtain $u^{\Box} \leq u_{\Box}$ (notice that the reverse inequality trivially holds) and hence we conclude that $u^{\Box} = u_{\Box} = u^*$ proving the desired convergence result.

Outline

- · Fractional convexity
- · Fractional Convexity vs Convexity
- The first fractional eigenvalue
- · The fractional convex envelope
- Open problem

What is a fractional convex set?

Open problem Our idea

Any closed convex set C is the intersection of all halfspaces that contain it:

 $C = \cap \{H : H \text{ halfspace s.t. } C \subseteq H\}.$

Open problem Our idea

Any closed convex set C is the intersection of all halfspaces that contain it:

 $C = \cap \{H : H \text{ halfspace s.t. } C \subseteq H\}.$

What is a nonlocal halfspace?

Thank you!