Fractional Convexity

Leandro M. Del Pezzo
FCEA-IESTA-UDELAR
March 2O, 2024

Outline

- Fractional convexity
- Fractional Convexity vs Convexity
- The first fractional eigenvalue
- The fractional convex envelope
- Open problem


## Fractional convexity

is there a notion of convexity in the fractional setting?

## Fractional convexity

## Convexity

A function $u: \Omega \rightarrow \mathbb{R}$ is said to Be convex in $\Omega$ if, for any two points $x, y \in \Omega$ such that the segment $[x, y]:=\{t x+(1-t) y: t \in(0,1)\}$ is contained in $\Omega$, it holds that

$$
u(t x+(1-t) y) \leq t u(x)+(1-t) u(y), \quad \forall t \in(0,1)
$$

Fractional convexity
Convexity

A function $u: \Omega \rightarrow \mathbb{R}$ is said to Be convex in $\Omega$ if, for any two points $x, y \in \Omega$ such that the segment $[x, y]:=\{t x+(1-t) y: t \in(0,1)\}$ is contained in $\Omega$, it holds that

$$
u(t x+(1-t) y) \leq t u(x)+(1-t) u(y), \quad \forall t \in(0,1)
$$

Notice that $v(t x+(1-t) y):=t u(x)+(1-t) u(y)$ is just the solution to the equation

$$
v^{\prime \prime}=0 \text { in the segment }[x, y]
$$

that verifies $v(x)=u(x)$ and $v(y)=u(y)$.

## Fractional convexity

## Definition

Given $s \in(0,1)$,

$$
L_{s}(\mathbb{R}):=\left\{f \in L_{l o c}^{1}(\mathbb{R}): \int_{\mathbb{R}^{N}} \frac{|f(\tau)|}{(1+|\tau|)^{1+2 s}} d \tau<\infty\right\} .
$$

A function $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ is said to Be s-convex in $\Omega$ if

- $t \rightarrow u(x+t z) \in L_{s}(\mathbb{R})$ for any $x \in \Omega$ and $z \in \mathbb{R}^{N}$ with $|z|=1$;
- For any two points $x, y \in \Omega$, such that the segment $[x, y]$ is contained in $\Omega$, it holds that

$$
\begin{equation*}
u(t x+(1-t) y) \leq v(t x+(1-t) y), \quad \forall t \in(0,1) \tag{1}
\end{equation*}
$$

where $v$ is a viscosity solution of

$$
\begin{cases}\Delta_{1}^{s} v(t x+(1-t) y):=C_{s} \int_{\mathbb{R}} \frac{v(r x+(1-r) y)-v(t x+(1-t) y)}{|r-t|^{1+2 s}} d r=0, & \forall t \in(0,1), \\ v(t x+(1-t) y)=u(t x+(1-t) y) & \forall t \notin(0,1) .\end{cases}
$$

As usual, the integral is to Be understood in the principal value sense.

Fractional convexity
Definition

Is there a fractional convex function?

## Fractional convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$

$$
u(t):= \begin{cases}-\left(1-t^{2}\right)^{s} & \text { if } t \in[-1,1] \\ 0 & \text { if }|t|>1\end{cases}
$$



## Fractional convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$

$$
u(t):= \begin{cases}-\left(1-t^{2}\right)^{s} & \text { if } t \in[-1,1] \\ 0 & \text { if }|t|>1\end{cases}
$$

2O12, B. Dyda proved that

$$
\Delta_{1}^{s} u(t)=\Gamma(2 s+1) \geq 0 \text { in }(-1,1)
$$

## Fractional convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$

$$
u(t):= \begin{cases}-\left(1-t^{2}\right)^{s} & \text { if } t \in[-1,1] \\ 0 & \text { if }|t|>1\end{cases}
$$



2O12, B. Dyda proved that

$$
\Delta_{1}^{s} u(t)=\Gamma(2 s+1) \geq 0 \text { in }(-1,1)
$$

Then, given two points in $x, y \in(-1,1)$,

$$
\Delta_{1}^{s} u(t x+(1-t) y)=|x-y|^{2 s} \Gamma(2 s+1) \quad \text { for } t \in(0,1) .
$$

Fractional convexity
Example
Thus, By the maximum principle, if $v$ is the viscosity solution of

$$
\begin{cases}\Delta_{1}^{s} v(t x+(1-t) y)=0 & t \in(0,1), \\ v(t x+(1-t) y)=u(t x+(1-t) y) & t \in \mathbb{R} \backslash(0,1)\end{cases}
$$

then

$$
u(t x+(1-t) y) \leq v(t x+(1-t) y) \quad \forall t \in(0,1)
$$

Fractional convexity
Example
Thus, By the maximum principle, if $v$ is the viscosity solution of

$$
\begin{cases}\Delta_{1}^{s} v(t x+(1-t) y)=0 & t \in(0,1), \\ v(t x+(1-t) y)=u(t x+(1-t) y) & t \in \mathbb{R} \backslash(0,1)\end{cases}
$$

then

$$
u(t x+(1-t) y) \leq v(t x+(1-t) y) \quad \forall t \in(0,1)
$$

We conclude that $u$ is $s$-convex in $(-1,1)$.

Fractional convexity
Example
Thus, By the maximum principle, if $v$ is the viscosity solution of

$$
\begin{cases}\Delta_{1}^{s} v(t x+(1-t) y)=0 & t \in(0,1) \\ v(t x+(1-t) y)=u(t x+(1-t) y) & t \in \mathbb{R} \backslash(0,1)\end{cases}
$$

then

$$
u(t x+(1-t) y) \leq v(t x+(1-t) y) \quad \forall t \in(0,1)
$$

We conclude that $u$ is $s$-convex in $(-1,1)$.
The same argument shows that if $u$ is a viscosity solution to

$$
\Delta_{1}^{s} u(t) \geq 0 \quad \text { in }(a, b)
$$

then $u$ is $s$-convex in $(a, b)$.

Fractional convexity
Definition

Is there a fractional convex function? Yes! ;)

Fractional convexity
Definition

Is there a fractional convex function? Yes! ;) is there a notion of convexity in the fractional setting? Yes! ;)

Outline

- Fractional convexity
- Fractional Convexity vs Convexity
- The first fractional eigenvalue
- The fractional convex envelope
- Open problem

Fractional Convexity vs Convexity
$u$ is a convex function $\stackrel{?}{\Longrightarrow} u$ is a $s$-convex function.

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ Be Given By

$$
u(t):= \begin{cases}(t-3)^{2} & \text { if } t \in[2,4] \\ 1 & \text { if }|t-3|>1\end{cases}
$$



## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ Be Given By

$$
u(t):= \begin{cases}(t-3)^{2} & \text { if } t \in[2,4] \\ 1 & \text { if }|t-3|>1\end{cases}
$$



Observe that $u$ is a convex function in $[-1,1]$.

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ Be Given By

$$
u(t):= \begin{cases}(t-3)^{2} & \text { if } t \in[2,4] \\ 1 & \text { if }|t-3|>1\end{cases}
$$



Observe that $u$ is a convex function in $[-1,1]$.
On the other hand, for any $x, y \in[-1,1]$, if $v$ is the viscosity solution of

$$
\begin{cases}\Delta_{1}^{s} v(t x+(1-t) y)=0 & \forall t \in(0,1) \\ v(t x+(1-t) y)=u(t x+(1-t) y) & \forall t \in \mathbb{R} \backslash(0,1)\end{cases}
$$

By the strong maximum principle, we have that

$$
1>v(t x+(1-t) y) \quad \forall t \in(0,1)
$$

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ Be Given By

$$
u(t):= \begin{cases}(t-3)^{2} & \text { if } t \in[2,4] \\ 1 & \text { if }|t-3|>1\end{cases}
$$



Observe that $u$ is a convex function in $[-1,1]$.
On the other hand, for any $x, y \in[-1,1]$, if $v$ is the viscosity solution of

$$
\begin{cases}\Delta_{1}^{s} v(t x+(1-t) y)=0 & \forall t \in(0,1) \\ v(t x+(1-t) y)=u(t x+(1-t) y) & \forall t \in \mathbb{R} \backslash(0,1)\end{cases}
$$

By the strong maximum principle, we have that

$$
1>v(t x+(1-t) y) \quad \forall t \in(0,1)
$$

Therefore $u$ is not s-convex.

Fractional Convexity vs Convexity
$u$ is a convex function $\nRightarrow u$ is a $s$-convex function.

## Fractional Convexity vs Convexity

Proposition (LMDP, A. Quaas and J. Rossi).

Let $s>\frac{1}{2}$, and $u$ Be a convex function in $\mathbb{R}^{N}$ such that $t \mapsto u(x+t z) \in L_{s}(\mathbb{R})$ for any $x \in \mathbb{R}^{N}$ and any $z \in \mathbb{R}^{N}$ with $|z|=1$. Then $u$ is s-convex in $\mathbb{R}^{N}$.

Fractional Convexity vs Convexity
Idea of the proof


## Fractional Convexity vs Convexity

Idea of the proof


Fractional Convexity vs Convexity
Idea of the proof

$$
\begin{gathered}
\text { Let } u: \mathbb{R}^{N} \rightarrow \mathbb{R} \text { Be a convex function. Then, since } s>\frac{1}{2}, \\
w(t x+(1-t) y)=\xi \cdot(x-y)\left(t-t_{0}\right)+u\left(t_{0} x+\left(1-t_{0}\right) y\right) \text { is a solution of } \\
\Delta_{1}^{s} w=0 \text { if } t \in(0,1) \text { and } w \leq u(t x+(1-t) y) \text { if } t \notin(0,1) \\
\text { If } v \text { is the solution of }
\end{gathered}
$$

$\Delta_{1}^{s} v=0$ if $t \in(0,1)$ and $v=u(t x+(1-t) y)$ if $t \notin(0,1)$.
Then

$$
w(t x+(1-t) y) \leq v(t x+(1-t) y) \quad \forall t \in \mathbb{R}
$$

Therefore

$$
\begin{aligned}
u\left(t_{0} x+\left(1-t_{0}\right) y\right) & =w\left(t_{0} x+\left(1-t_{0}\right) y\right) \\
& \leq v\left(t_{0} x+\left(1-t_{0}\right) y\right)
\end{aligned}
$$

Fractional Convexity vs Convexity
$u$ is a convex function $\stackrel{?}{\rightleftharpoons} u$ is a $s$-convex function.

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ Be the solution to

$$
\begin{cases}\Delta_{1}^{s} u(x)=0 & \forall x \in(0,1), \\ u(x)=f(x) & \forall x \in \mathbb{R} \backslash(0,1)\end{cases}
$$

where $f$ is a bounded smooth function such that $f(0)=f(1)=1, f \geq 1$ with at least one $x$ such that $f(x)>1$.

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be the solution to

$$
\begin{cases}\Delta_{1}^{s} u(x)=0 & \forall x \in(0,1) \\ u(x)=f(x) & \forall x \in \mathbb{R} \backslash(0,1)\end{cases}
$$

where $f$ is a bounded smooth function such that $f(0)=f(1)=1, f \geq 1$ with at least one $x$ such that $f(x)>1$.
Observe that $u$ is a $s$-convex function in $(0,1)$.

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be the solution to

$$
\begin{cases}\Delta_{1}^{s} u(x)=0 & \forall x \in(0,1), \\ u(x)=f(x) & \forall x \in \mathbb{R} \backslash(0,1)\end{cases}
$$

where $f$ is a Bounded smooth function such that $f(0)=f(1)=1, f \geq 1$ with at least one $x$ such that $f(x)>1$.
Observe that $u$ is a s-convex function in $(0,1)$.
On the other hand, $u$ is smooth, continuous up to the Boundary and, By the strong maximum principle, it holds that

$$
1<u(x) \quad \forall x \in(0,1)
$$

together with $u(0)=u(1)=1$.

## Fractional Convexity vs Convexity

## Example

Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be the solution to

$$
\begin{cases}\Delta_{1}^{s} u(x)=0 & \forall x \in(0,1), \\ u(x)=f(x) & \forall x \in \mathbb{R} \backslash(0,1)\end{cases}
$$

where $f$ is a Bounded smooth function such that $f(0)=f(1)=1, f \geq 1$ with at least one $x$ such that $f(x)>1$.
Observe that $u$ is a $s$-convex function in $(0,1)$.
On the other hand, $u$ is smooth, continuous up to the Boundary and, By the strong maximum principle, it holds that

$$
1<u(x) \quad \forall x \in(0,1)
$$

together with $u(0)=u(1)=1$.
Therefore, $u$ is not convex in $(0,1)$.

Fractional Convexity vs Convexity
$u$ is a convex function $\psi u$ is a s-convex function.

Outline

- Fractional convexity
- Fractional Convexity vs Convexity
- The first fractional eigenvalue
- The fractional convex envelope
- Open problem

The first fractional eigenvalue
Local case
Let $u \in C^{2}(\Omega)$. Then $u$ is convex in $\Omega$ if only if $D^{2} u(x)$ is positive semidefinite in $\Omega$, that is

$$
\left\langle D^{2} u(x) z, z\right\rangle \geq 0 \quad \forall z \in \mathbb{R}^{N}, x \in \Omega
$$

The first fractional eigenvalue
Local case
Let $u \in C^{2}(\Omega)$. Then $u$ is convex in $\Omega$ if only if $D^{2} u(x)$ is positive semidefinite in $\Omega$, that is

$$
\left\langle D^{2} u(x) z, z\right\rangle \geq 0 \quad \forall z \in \mathbb{R}^{N}, x \in \Omega
$$

In terms of the eigenvalue of $D^{2} u,(\star)$ can Be written as

$$
\begin{aligned}
\Lambda_{1}\left(D^{2} u(x)\right) & :=\min \left\{\lambda: \lambda \text { is an eigenvalue of } D^{2} u(x)\right\} \\
& =\inf _{\theta \in \mathbb{S}^{N-1}}\left\langle D^{2} u(x) \theta, \theta\right\rangle \geq 0
\end{aligned}
$$

The first fractional eigenvalue
Local case
Let $u \in C^{2}(\Omega)$. Then $u$ is convex in $\Omega$ if only if $D^{2} u(x)$ is positive semidefinite in $\Omega$, that is

$$
\left\langle D^{2} u(x) z, z\right\rangle \geq 0 \quad \forall z \in \mathbb{R}^{N}, x \in \Omega
$$

In terms of the eigenvalue of $D^{2} u,(\star)$ can Be written as

$$
\begin{aligned}
\Lambda_{1}\left(D^{2} u(x)\right) & :=\min \left\{\lambda: \lambda \text { is an eigenvalue of } D^{2} u(x)\right\} \\
& =\inf _{\theta \in \mathbb{S}^{N}-1}\left\langle D^{2} u(x) \theta, \theta\right\rangle \geq 0
\end{aligned}
$$

Theorem (A. Oberman).
A continuous function $u$ is convex if only if $u$ is a viscosity solution of

$$
\Lambda_{1}\left(D^{2} u(x)\right) \geq 0
$$

The first fractional eigenvalue
We define the first fractional egienvalue of $u$ as

$$
\Lambda_{1}^{s} u(x)=\inf \left\{C_{s} \int_{\mathbb{R}} \frac{u(x+t z)-u(x)}{|t|^{1+2 s}} d t: z \in \mathbb{S}^{N-1}\right\}
$$

The first fractional eigenvalue
We define the first fractional egienvalue of $u$ as

$$
\Lambda_{1}^{s} u(x)=\inf \left\{C_{s} \int_{\mathbb{R}} \frac{u(x+t z)-u(x)}{|t|^{1+2 s}} d t: z \in \mathbb{S}^{N-1}\right\}
$$

A function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a viscosity solution of

$$
\Lambda_{1}^{s} u(x) \geq 0 \quad \text { in } \Omega
$$

if for any $x \in \Omega$, any $z \in \mathbb{S}^{N-1}$, any $\phi \in C^{2}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $\phi(x)=w(x)$ and $\phi(y) \geq w(y)$ in $B_{\delta}(x)$ we have that $t \rightarrow w(x+t z) \in L_{s}(\mathbb{R})$ and

$$
C_{s}\left(\int_{-\delta}^{\delta} \frac{\phi(x+t z)-\phi(x)}{|t|^{1+2 s}} d t+\int_{\mathbb{R} \backslash(-\delta, \delta)} \frac{w(x+t z)-w(x)}{|t|^{1+2 s}} d t\right) \geq 0
$$

where $w$ is the upper semicontinuous envelope of $u$ in $\mathbb{R}^{N}$.

The first fractional eigenvalue

Theorem (LMDP, A. Quaas, and J. Rossi).

Let $\Omega$ Be a Bounded strictly convex $\mathcal{C}^{2}$ domain (that is, a Bounded domain with $\mathcal{C}^{2}$-Boundary such that all the principal curvatures of the surface $\partial \Omega$ are positive everywhere). Then $u$ is s-convex in $\Omega$ if only if $u$ is a viscosity solution of

$$
\Lambda_{1}^{s} u(x) \geq 0 \quad \text { in } \Omega
$$

## The first fractional eigenvalue

 Fractional truncated laplacian2022, Birindelli, Galise, and Topp studied the following operator

$$
\mathcal{I}_{n}^{-} u(x):=\inf \left\{\sum_{i=1}^{n} C_{S} \int_{\mathbb{R}} \frac{u\left(x+t z_{i}\right)-u(x)}{|t|^{1+2 s}} d t:\left\{z_{i}\right\}_{i+1}^{n} \in \mathcal{V}_{n}\right\}
$$

where $\mathcal{V}_{n}$ is the family of $n$-dimensional orthonormal set in $\mathbb{R}^{N}$.

## The first fractional eigenvalue

 Fractional truncated laplacian2022, Birindelli, Galise, and Topp studied the following operator

$$
\mathcal{I}_{n}^{-} u(x):=\inf \left\{\sum_{i=1}^{n} C_{S} \int_{\mathbb{R}} \frac{u\left(x+t z_{i}\right)-u(x)}{|t|^{1+2 s}} d t:\left\{z_{i}\right\}_{i+1}^{n} \in \mathcal{V}_{n}\right\}
$$

where $\mathcal{V}_{n}$ is the family of $n$-dimensional orthonormal set in $\mathbb{R}^{N}$. Observe that

$$
\mathcal{I}_{1}^{-} u(x)=\Lambda_{1}^{s} u(x) .
$$

## The first fractional eigenvalue

 Fractional truncated laplacian2022, Birindelli, Galise, and Topp studied the following operator

$$
\mathcal{I}_{n}^{-} u(x):=\inf \left\{\sum_{i=1}^{n} C_{S} \int_{\mathbb{R}} \frac{u\left(x+t z_{i}\right)-u(x)}{|t|^{1+2 s}} d t:\left\{z_{i}\right\}_{i+1}^{n} \in \mathcal{V}_{n}\right\}
$$

where $\mathcal{V}_{n}$ is the family of $n$-dimensional orthonormal set in $\mathbb{R}^{N}$. Observe that

$$
\mathcal{I}_{1}^{-} u(x)=\Lambda_{1}^{s} u(x) .
$$

They show

$$
\mathcal{I}_{n}^{-} u(x) \rightarrow \mathcal{P}_{n}^{-} u(x)=\sum_{j=1}^{n} \Lambda_{j}\left(D^{2} u(x)\right) \text { as } s \rightarrow 1^{-} .
$$

Outline

- Fractional convexity
- Fractional Convexity vs Convexity
- The first fractional eigenvalue
- The fractional convex envelope
- Open problem

The fractional convex envelope
Local case

Given a function $g: \partial \Omega \rightarrow \mathbb{R}$, the convex envelope of the Boundary datum $g$ in $\Omega$ is

$$
u^{\star}(x):=\sup \{u(x): u \text { is convex in } \bar{\Omega} \text { and } u \leq g \text { on } \partial \Omega\}
$$

That is, $u^{\star}$ is the largest convex function in $\Omega$ that is Below $g$ on $\partial \Omega$. Moreover $u^{\star}$ is the largest viscosity solution of the

$$
\begin{cases}\Lambda_{1}\left(D^{2} u(x)\right)=0 & \text { in } \Omega \\ u(x) \leq g(x) & \text { on } \partial \Omega\end{cases}
$$

## The convex envelope

Local case

Theorem (A. Oberman and L. Silvestre).
If $\Omega$ is strictly convex and $g$ is continuous then $u^{*}$ is the unique viscosity solution of

$$
\begin{cases}\Lambda_{1}\left(D^{2} u(x)\right)=0 & \text { in } \Omega, \\ u(x)=g(x) & \text { on } \partial \Omega .\end{cases}
$$

## The fractional convex envelope

Let $s \in(0,1)$ and $g: \mathbb{R}^{N} \backslash \Omega \rightarrow \mathbb{R}$. Let us call $H(g)$ the set of $s$-convex functions that are Below $g$ outside $\Omega$,

$$
H(g):=\left\{u: u \text { is } s \text {-convex in } \bar{\Omega} \text { and verifies }\left.u\right|_{\mathbb{R}^{N} \backslash \Omega} \leq g\right\} .
$$

Lemma (LMDP, A. Quaas, and J. Rossi).
Let $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ Be such that $t \rightarrow u(x+t z) \in L_{s}(\mathbb{R})$ for any $x \in \Omega$ and any $z \in \mathbb{R}^{N}$ with $|z|=1$. Then, $u \in H(g)$ if only if $u$ is a viscosity solution to

$$
\begin{array}{ll}
\Lambda_{1}^{s} u(x) \geq 0 & \text { in } \Omega, \\
u(x) \leq g(x) & \text { in } \mathbb{R}^{N} \backslash \Omega .
\end{array}
$$

## The fractional convex envelope

The s-convex envelope of an exterior datum $g: \mathbb{R}^{N} \backslash \Omega \rightarrow \mathbb{R}$ is Given by

$$
u_{s}^{*}(x)=\sup \{u(x): u \in H(g)\} .
$$

Observe that $u_{s}^{*}$ is $s$-convex.

## The fractional convex envelope

The s-convex envelope of an exterior datum $g: \mathbb{R}^{N} \backslash \Omega \rightarrow \mathbb{R}$ is Given By

$$
u_{s}^{*}(x)=\sup \{u(x): u \in H(g)\} .
$$

Observe that $u_{s}^{*}$ is $s$-convex.
Is $u^{*}$ a viscosity solution of

$$
\Lambda_{1}^{s} u(x)=0 \text { in } \Omega, \quad u(x)=g(x) \text { in } \mathbb{R}^{N} \backslash \Omega ?
$$

The fractional convex envelope
Viscosity solution
A bounded upper semicontinuous function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a viscosity subsolution to the Dirichlet problem

$$
\Lambda_{1}^{s} u(x)=f(x) \text { in } \Omega, \quad u(x)=g(x) \text { in } \mathbb{R}^{N} \backslash \Omega,
$$

if $u \leq g$ in $\mathbb{R}^{N} \backslash \bar{\Omega}$ and for each $\delta>0$ and $\phi \in C^{2}\left(\mathbb{R}^{N}\right)$ such that $x_{0}$ is a maximum point of $u-\phi$ in $B_{\delta}\left(x_{0}\right)$, then

$$
-E_{\delta}\left(u^{g}, \phi, x_{0}\right) \leq 0 \text { in } \Omega, \quad \min \left\{-E_{\delta}\left(u^{g}, \phi, x_{0}\right), u\left(x_{0}\right)-g\left(x_{0}\right)\right\} \leq 0 \quad \text { on } \partial \Omega .
$$

where

$$
\begin{aligned}
E_{\delta}\left(u^{g}, \phi, x_{0}\right):=C_{s} \inf _{z \in \mathbb{S}^{N-1}}\left\{\int_{-\delta}^{\delta} \frac{\phi\left(x_{0}+t z\right)-\phi\left(x_{0}\right)}{|t|^{1+2 s} d t}+\int_{\mathbb{R} \backslash(-\delta, \delta)} \frac{u^{g}\left(x_{0}+t z\right)-u\left(x_{0}\right)}{\left.|t|^{1+2 s} d t-f\left(x_{0}\right)\right\}}\right. \\
u^{g}(x):= \begin{cases}u(x) & \text { if } x \in \Omega, \\
g(x) & \text { if } x \in \mathbb{R}^{N} \backslash \bar{\Omega}, \\
\max \{u(x), g(x)\} & \text { if } x \in \partial \Omega .\end{cases}
\end{aligned}
$$

## The fractional convex envelope

 Attainability of the exterior datumTheorem (LMDP, A. Quaas, and J. Rossi)

Let $\Omega$ Be a Bounded strictly convex $C^{2}$-domain, $f \in C(\Omega), g \in C\left(\mathbb{R}^{N} \backslash \Omega\right)$ Be Bounded, and $u, v: \mathbb{R}^{N} \rightarrow \mathbb{R}$ Be viscosity suB and supersolution of

$$
\begin{cases}\Lambda_{1}^{s} w(x)=f(x) & \text { in } \Omega, \\ w(x)=g(x) & \text { in } \mathbb{R}^{N} \backslash \Omega .\end{cases}
$$

Then

$$
u \leq g \text { on } \partial \Omega \text { and } v \geq g \text { on } \partial \Omega .
$$

The fractional convex envelope
comparison principle

Theorem (LMDP, A. Quaas, and J. Rossi).
Let $\Omega$ be a Bounded strictly convex $C^{2}$-domain, $f \in C(\bar{\Omega}), g \in C\left(\mathbb{R}^{N} \backslash \Omega\right)$ Be Bounded and $u, v: \mathbb{R}^{N} \rightarrow \mathbb{R}$ Be viscosity sub and supersolution of

$$
\begin{cases}\Lambda_{1}^{s} w(x)=f(x) & \text { in } \Omega \\ w(x)=g(x) & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

Then

$$
u \leq v \text { in } \mathbb{R}^{N}
$$

## The fractional convex envelope

Existence and uniqueness of solution

Theorem (LMDP, A. Quaas, and J. Rossi).

Let $\Omega$ Be a Bounded strictly convex $C^{2}$-domain, $f \in C(\bar{\Omega})$ and $g \in C\left(\mathbb{R}^{N} \backslash \Omega\right)$ be Bounded. Then, there is a unique viscosity solution $u$ to

$$
\begin{cases}\Lambda_{1}^{s} u(x)=f(x) & \text { in } \Omega \\ u(x)=g(x) & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

This solution is continuous in $\bar{\Omega}$ and the datum $g$ is taken with continuity, that is, $\left.u\right|_{\partial \Omega}=\left.g\right|_{\partial \Omega}$.

The fractional convex envelope
Existence and uniqueness of solution

Corollary (LMDP, A. Quaas, and J. Rossi).
Let $\Omega$ Be a Bounded strictly convex $C^{2}$-domain and $g \in C\left(\mathbb{R}^{N} \backslash \Omega\right)$ Be Bounded. Then, $u_{s}^{*}$ is the unique viscosity solution to

$$
\begin{cases}\Lambda_{1}^{s} u(x)=0 & \text { in } \Omega \\ u(x)=g(x) & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

Moreover $u_{s}^{*} \in C(\bar{\Omega})$ and the datum $g$ is taken with continuity, that is, $\left.u_{s}^{*}\right|_{\partial \Omega}=\left.g\right|_{\partial \Omega}$.

The fractional convex envelope
A regularity result
Theorem (B. Barrios, LMDP, A. Quaas, J. Rossi).
Let $\Omega$ be a Bounded strictly convex $C^{2}$-domain and $u$ be a viscosity solution of

$$
\Lambda_{1}^{s} u(x)=f(x) \text { in } \Omega, \quad u(x)=g(x) \text { in } \mathbb{R}^{N} \backslash \Omega
$$

Assume that $s>1 / 2, f, g$ are Bounded functions and $g$ satisfies a Hölder Bound, so that there exist $M_{g}$ and $\beta \in(s, 2 s)$ such that

$$
|g(x)-g(y)| \leq M_{g}|x-y|^{\beta}, x, y \in \mathbb{R}^{N} \backslash \Omega
$$

Then $u \in C^{\gamma}(\bar{\Omega})$ where

$$
\gamma \in \begin{cases}(0,2 s-1) & \text { if } g \equiv 0 \\ (0, \beta-s) & \text { if } g \not \equiv 0\end{cases}
$$

## The fractional convex envelope A regularity result

To prove the lasts result we have to take into account the Geometry properties of our domain. In particular we use that,

$$
\Omega=\bigcap_{z \in \partial \Omega} B_{R}(z-R \nu(z)),
$$

for some $R>0$ whose value it is related with the principal curvatures of $\partial \Omega$ and $\nu(z)$ denotes the outward normal unit vector of $\Omega$ in $z \in \partial \Omega$.

The fractional convex envelope
A regularity result

To prove the lasts result we have to take into account the Geometry properties of our domain. In particular we use that,

$$
\Omega=\bigcap_{z \in \partial \Omega} B_{R}(z-R \nu(z))
$$

for some $R>0$ whose value it is related with the principal curvatures of $\partial \Omega$ and $\nu(z)$ denotes the outward normal unit vector of $\Omega$ in $z \in \partial \Omega$.
2021 I. Birindelli, G. Galise and $H$. Ishii.
2022 I. Birindelli, G. Galise and D. Schiera.

The fractional convex envelope
The limit as s $\nearrow 1$

Theorem (B. Barrios, LMDP, A. Quaas, J. Rossi).
Given a continuous and Bounded exterior datum $g: \mathbb{R}^{N} \backslash \Omega \mapsto \mathbb{R}$, let $u_{s}^{*}$ Be the sequence of s-convex enevelopes of $g$ and $u^{*}$ Be the convex envelope of $g$. Then, $u_{s}^{*}$ converges uniformly in $\bar{\Omega}$ to $u^{*}$ as $s ~ \nearrow 1$.

## The fractional convex envelope

 The limit as $s \nearrow 1$Idea of the proof. Our strategy to show that $u_{s}^{*}$ converge to the usual convex envelope as $s \nearrow 1$, is to use the well known half relaxed limits. These are Given by

$$
u^{\square}(x):=\sup \left\{\limsup _{k \rightarrow \infty, s \nearrow 1} u_{s}^{*}\left(x_{k}\right): x_{k} \rightarrow x\right\} \text { and } u_{\square}(x):=\inf \left\{\liminf _{k \rightarrow \infty, s \nmid 1} u_{s}^{*}\left(x_{k}\right): x_{k} \rightarrow x\right\} .
$$

We show that $u^{\square}$ is a subsolution of

$$
\Lambda_{1}^{s} u(x)=0 \quad \text { in } \quad \Omega, \quad u(x)=g(x) \text { in } \mathbb{R}^{N} \backslash \Omega .
$$

and $u_{\square}$ is a supersolution. From the comparison principle, we obtain $u^{\square} \leq u_{\square}$ (notice that the reverse inequality trivially holds) and hence we conclude that $u^{\square}=u_{\square}=u^{*}$ proving the desired convergence result.

Outline

- Fractional convexity
- Fractional Convexity vs Convexity
- The first fractional eigenvalue
- The fractional convex envelope
- Open problem


## Open problem

What is a fractional convex set?

Open problem
Our idea
Any closed convex set $C$ is the intersection of all halfspaces that contain it:

$$
C=\cap\{H: H \text { halfspace s.t. } C \subseteq H\}
$$



Open problem
Our idea
Any closed convex set $C$ is the intersection of all halfspaces that contain it:

$$
C=\cap\{H: H \text { halfspace s.t. } C \subseteq H\}
$$



What is a nonlocal halfspace?

Thank you!

