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Overview

We will show that noncompact solutions to the Ricci flow

(RF)
∂

∂t
g = −2Rc(g)

on M × [0,T ) which converge locally smoothly to a cone on an
end as t ↗ T must be self-similar for t < T .

Thus, there is (effectively) at most one way in which a solution
may flow into a cone.

Motivation:

• Classification of asymptotically conical shrinkers/singularity
models.

• “Strong” backward uniqueness of solutions to (RF).
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Gradient Shrinking Solitons

(M,g) is a gradient shrinking soliton (shrinker) if

(SGRS) Rc(g) +∇∇f =
g
2

for some f ∈ C∞(M).

• A complete shrinker gives rise to a self-similar solution
g(t) = −tϕ∗

t g on M × (−∞,0), where

∂ϕ

∂t
= −1

t
∇f ◦ ϕ, ϕ−1 = Id .

• Arise as models of finite-time singularities.
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Gradient Shrinking Solitons

• Classified in dimensions n ≤ 3 (Hamilton, Ivey, Perelman,
Ni-Wallach, Cao-Chen-Zhu), and in the Kähler case in
n = 4 (Bamler-Cifarelli-Conlon-Deruelle).

• All known complete noncompact shrinkers are asymptotic
either to cones or to products at infinity.

• Work of Munteanu-Wang hints at possible dichotomy in
n = 4 for geometry of ends of shrinkers of bounded
curvature.

Question: What are the 4D asymptotically conical shrinkers?
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Asymptotically conical manifolds

For closed (Σ,gΣ), write CΣ = (CΣ
0 ,gC), where

CΣ
a = (a,∞)× Σ, gC = dr2 + r2gΣ,

and let ρ : C0 → C0 be the map ρλ(r , σ) = (λr , σ). Note

ρ∗λgC = λ2gC , λ > 0.

Definition
(M,g) is Ck -asymptotic to CΣ along E ⊂ M if there is an a > 0
and a diffeomorphism F : CΣ

a → E such that λ−2ρ∗λF ∗g −→ gC

in Ck
loc as λ → ∞.
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Asymptotically conical shrinking solitons

Fact: A shrinker (M,g, f ) with quadratic curvature decay on an
end E ⊂ M is Ck -asymptotic to some cone for all k ≥ 0.

• Munteanu-Wang (’16): In 4D, if R(x) → 0 at infinity on an
end, then |Rm |(x) ≤ Cr−2(x) on that end.

• For n ≥ 4, same is true if |Rc |(x) → 0.
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Examples of asymptotically conical shrinkers

1. Gaussian soliton (Rn,geuc, |x |2/4).
2. Feldman-Ilmanen-Knopf (’03)

• Kähler, U(m)-invariant, on tautological line bundle over
CPm−1, m ≥ 2.

3. Dancer-Wang (’11), Yang (’08)
• Kähler, generalizations of FIK on line bundles over products

of KE manifolds with positive scalar curvature.

4. Angenent-Knopf (’22)
• Doubly-warped products with fibers Sm1 , Sm2 where m1,

m2 ≥ 2, m1 + m2 ≤ 8.

• Various families of incomplete examples.
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The solution on an asymptotically conical end

If (M,g, f ) is asymptotic to CΣ along V , then (modulo gauge),

g(t) =

{
−tϕ∗

t g t ∈ [−1,0),
gC t = 0,

is a smooth solution to (RF) on W × [−1,0] for some W ⊂ V .

• Near infinity, g and gC are time slices of a common smooth
Ricci flow!

• The properties of the asymptotic cone which are inherited
by the shrinker are those which propagate backward in
time along the Ricci flow.
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Asymptotically conical shrinking solitons

Theorem (with L. Wang, (’13))
If two shrinkers are asymptotic to the same cone along some
ends of each, they are isometric near infinity on those ends.

Moreover:

• Isom(Σ) embeds in the isometry group of the end (with
Wang, (’18)).

• If (M,g) is complete and (CΣ
0 ,gC) is Kähler, (M,g) is

Kähler.

Corresponding statement for expanding solitons is false (e.g.,
Angenent-Knopf (’21)).

9



Prototype for linear parabolic inequalities

Model (Escauriaza-Seregin-Šverák (’03))
If u : (Rn \ Br )× [0,T ] → R satisfies

|(∂t −∆)u| ≤ N (|u|+ |∇u|) on (Rn \ Br )× [0,T ]

|u(x , t)| ≤ NeN|x |2 on (Rn \ Br )× [0,T ]

u(x ,T ) = 0 on Rn \ Br ,

then u ≡ 0.

Note discrepancy between forward and backward-time versions
of the statements!
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Solutions which terminate in cones

Stepping back: The solution g(t) coincides with a cone near
infinity at t = 0. What does this by itself tell us about
g = g(−1)?
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Solutions which terminate in cones

On one hand, a cone is a warped product. Warped products do
not propagate backward in time in general, but:

• Theorem: If (M,g, f ) is C2-asymptotic to CΣ along E
where Σ = Σ1 × · · · × Σk is a product of Einstein manifolds
(Σi ,gi), then, up to isometry,

g = dr2 + h2
1(r)g1 + · · ·+ h2

k (r)gk

on a neighborhood of infinity on E .
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Solutions which terminate in cones

On the other hand, a cone is a very particular warped product,
characterized by its scaling invariance

ρ∗λgC = λ2gC , λ > 0,

relative to the dilation map ρ(r , σ) = (λr , σ).

One would not expect a well-behaved solution to (RF) to simply
acquire this invariance in finite time.

13



Solutions which terminate in cones

Question
What restrictions are there on a solution g(t) to (RF) on
M × [0,T ) which converges to a cone locally smoothly on some
end E ⊂ M as t ↗ T?

• A question of backward uniqueness at the singular time.

• Unknown even whether every complete solution on
M × [0,T ] which coincides with Rn at t = T is static. (True
if sup |Rm | < ∞.)
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Main Theorem

Theorem (Global version)
Suppose g(t) is a solution to (RF) on M × [−1,0), and there is
a diffeomorphism F : CΣ

a → E onto some end E ⊂ M such that

• |Rm |(x , t) ≤ Kr−2(x) on E × [−1,0),

• F ∗g(t) converges locally smoothly to gC on CΣ
a as t ↗ 0.

Then there exists f ∈ C∞(M) such that g = g(−1) satisfies

Rc(g) +∇∇f =
g
2
.

Moreover, for t ∈ [−1,0), g(t) = −tΦ∗
t g, where

∂Φt

∂t
= −1

t
∇f ◦ Φt , Φ−1 = Id .
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Remarks

• We do not assume a priori the existence of a shrinker
asymptotic to CΣ

a .

• No assumption on g(t) made off of the end E ; solution may
elsewhere develop singularity at t = T .

• One consequence: a shrinking Ricci soliton

Rc(g) +
1
2
LX g =

g
2

that has an asymptotically conical end is gradient (cf.
Naber, Chan-Ma-Zhang).

• Corresponding forward-time statement is false: e.g.,
compact perturbation of Rn.
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A local version

Let us write τ = −t and work with the backward Ricci flow

(BRF)
∂

∂τ
g = 2Rc(g).

Thus we will be interested in solutions to (BRF) which emanate
from a cone at τ = 0.
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A local version of the main theorem

Theorem (Local version)
Suppose g(τ) is a solution to (BRF) on CΣ

a × [0,1] satisfying

g(0) = gC and |Rm |(x , τ) ≤ Kr−2(x).

Then there is f ∈ C∞(CΣ
a ) such that g = g(1) satisfies

Rc(g) +∇∇f =
g
2

and gradg f =
r
2
∂

∂r
.

Moreover, if Φτ (r , σ) = (r/
√
τ , σ), then

g(τ) = τΦ∗
τg for τ ∈ (0,1] and τ f ◦ Φτ −→ r2

4
as τ ↘ 0.
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Recasting as a problem of uniqueness

Key Observation: For each λ ≥ 1, the metrics

gλ(τ) = λ−2ρ∗λg(λ2τ)

solve (BRF) on CΣ
a × [0, λ−2] and satisfy

gλ(0) = λ−2ρ∗λgC = gC .

That is, the gλ all emanate from gC .
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Recasting as a problem of uniqueness

With an appropriate principle of backward uniqueness, we
could conclude g(τ) = gλ(τ), i.e.,

g(τ) = λ−2ρ∗λg(λ2τ)

on CΣ
a × [0, λ−2] for each λ ≥ 1.

Then
g(τ) = τΦ∗

τg on CΣ
a × (0,1],

where Φτ (r , σ) = (r/
√
τ , σ) and g = g(1), and

Rc(g) +
1
2
LX g =

g
2
, X =

r
2
∂

∂r
.

Would remain only to show that X is gradient with respect to g.
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Step 1: Uniqueness for Ricci flows which terminate in the
same cone

Main claim: Two solutions to (BRF) on CΣ
a × [0,T ] which

emanate from the same cone at τ = 0 and have quadratic
curvature decay are identical.

• No assumptions are imposed on inner spatial boundary.

• Generalizes earlier result with Wang to non-self-similar
solutions; gives agreement on entire domain.
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Step 2: A general backward uniqueness principle

Theorem
Suppose that g(τ) is a family of metrics on CΣ

a × [0,T ] which
emanates smoothly from gC . If X and Y are smooth families of
bounded sections over CΣ

a which vanish at τ = 0 and satisfy

|DτX +∆X| ≤ ε (|X|+ |∇X|+ |Y|)
|DτY| ≤ C (|X|+ |∇X|+ |Y|) ,

(1)

where ε(r) −→ 0 as r −→ ∞, then X and Y vanish identically
on CΣ

b × [0, cT ] for some b ≥ a and c = c(n).

• Proof uses method of Carleman estimates.
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Step 3: The soliton structure is gradient

• We apply this theorem with

X = ∇Rm−∇̃R̃m, Y = (g − g̃,∇g̃,∇(2)g̃).

From the vanishing of X and Y, we obtain gλ(τ) = g(τ) on
CΣ

a × [0, λ−2] for all λ ≥ 1.

• Hence
g(τ) = τΦ∗

τg on CΣ
a × (0,1]

and
Rc(g) +

1
2
LX g =

g
2
,

where g = g(1), Φτ (r , σ) = (r/
√
τ , σ), and X = r

2
∂
∂r .
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Step 3: The soliton structure is gradient

• The one-forms X ♭ = g(τ)(X , ·) satisfy

(Dτ +∆)X ♭ = 0, X ♭(0) = d(r2/4),

so W = dX ♭ satisfies

(Dτ +∆)W = Rm ∗W , W (0) = 0.

• Applying the general principle above with X = W and
Y = 0, we find that X ♭ is closed.
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Step 3: The soliton structure is gradient

The global exactness of X ♭ follows with a little more work.

• In fact, X = ∇f where

f (r , σ) =
r2

4

(
1 + 8

ˆ ∞

r
s−3R(s, σ,1)ds

)

This completes the proof of the local version.
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Step 4: Extending the soliton structure

For the global version, we apply the local statement to obtain
f̄ ∈ C∞(E) such that g = g(1) satisfies

Rc(g) +∇∇f̄ =
g
2

on E .

We claim that this extends to all of M.
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Step 4: Extending the soliton structure

We can pull back this structure to a connected component of
π−1(E) in the universal cover (M̃, g̃(1)). Our first task is to
extend the structure to all of M̃.

Since g̃(τ) = π∗g(τ) is real-analytic for τ ∈ (0,1], we have a
problem of analytic continuation.
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Step 4: Extending the soliton structure

Theorem

Suppose (M,g) is connected, simply-connected, and
real-analytic. If (U,g,XU , λ) is a soliton structure on a
connected open set U ⊂ M, then XU extends to a vector field X
on M such that (M,g,X , λ) is a Ricci soliton. If XU is gradient,
so is X.

• Here, (M,g,X , λ) is a soliton structure if

Rc(g) +
1
2
LX =

λ

2
g.
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Step 4: Extending the soliton structure

• When XU = ∇f and Rc : TM → TM is nonsingular, one can
simply argue that since W = (1

2 Rc−1(∇R))♭ coincides with
df on U, dW = 0 on all of M by analyticity.

• In general, one can define a continuation of soliton
structures along paths.

• As for Killing vectors, X and A = ∇X (·) are determined by
their values at a point: in fact, along any path γ,

∇γ̇X = A(γ̇),

∇γ̇A = Rm(γ̇,X ) + B(γ̇),

where Bk
ij = ∇kRij −∇iRk

j −∇jR i
k .
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Step 5: Descending from the universal cover

• Having found f̃ such that (M̃, g̃(1), f̃ ) is a shrinking soliton,
the last step is to argue that f̃ descends to a smooth
function f on M.

• Idea: If a deck transformation fails to preserve f̃ , then
(M̃, g̃) splits. This is incompatible with (M,g) having an
asymptotically conical end unless it is flat.
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Remarks

• It would be interesting to know whether the uniform
quadratic bound on the end can be relaxed.

• Unknown in general whether forward or backward
uniqueness holds for (RF) assuming only the
completeness of the solutions.
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Thank you!
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