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Free Boundary
Minimal Surfaces

Definition
Consider a Riemannian manifold with boundary (N, g) and a
compact surface ¥2. Let ® : ¥ — N be an immersion such that

®(X) NON = d(IT).

® O is a free boundary minimal immersion if:

() H=0;
(i) ®(X) meets ON orthogonally along ®(9X) (i.e., v L ON).

Remark: If 9 = 0 we say ® is a closed minimal immersion.

Figure: (N, g) = Euclidean 3-ball and (%) = equatorial disc.
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Critical Points of the Area Functional with Free

Free Boundry Boundary

Minimal Surfaces

® let d,: Y — A be a smooth one parameter family of
immersions for t € (—e¢, €) such that ®,(0X) C N

® Denote X = 22 (X|yx is tangent to ON).

X

The first variation formula gives:

qa
dt

o) :—/Z<H,X> dA+/8 (v, X) dL.

>

Critical point <= H=0and v L ON.
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® (M, g) - closed Riemannian surface;
® Laplacian of (M, g): Ag =divg(Vyg) : C®°(M) — C>*(M);
® The spectrum of —A, is discrete:
0=2Xo(g) < Ai(g) <X(g) <...2(g) <... = +o0;
® n-dimensional round sphere: S" = {X e R+l Z},:O sz = 1};

® (Takahashi, 1966): A isometric immersion ¢ : (M, g) — S" is
minimal if, and only if, the coordinate functions ¢; = x; o ¢
satisfy

—Ag @5 = 2¢;,

i.e., ¢; is a eigenfunction of —A, with eigenvalue 2.




Eigenvalue shape
optimization

The normalized first Laplacian eigenvalue




Eigenvalue shape
optimization

The normalized first Laplacian eigenvalue
In a closed surface M we can consider:

AL(M) = sup Ai(g) Mg
g




Eigenvalue shape
optimization

The normalized first Laplacian eigenvalue
In a closed surface M we can consider:

AL(M) = sup Ai(g) Mg
g

® (Hersch, Yang-Yau, Karpukhin): A7(M) < oo




The normalized first Laplacian eigenvalue

Eigenvalue shape In a closed surface M we can consider:

optimization

AL(M) = sup Ai(g) Mg
g

® (Hersch, Yang-Yau, Karpukhin): A7(M) < oco.

® (Nadirashvili, 1996): metrics maximizing A1(g)|M|g are induced
by branched minimal immersions ¢ : M — S", for some n.




The normalized first Laplacian eigenvalue

Eigenvalue shape In a closed surface M we can consider:

optimization

AL(M) = sup Ai(g) Mg
g

® (Hersch, Yang-Yau, Karpukhin): A7(M) < oco.

® (Nadirashvili, 1996): metrics maximizing A1(g)|M|g are induced
by branched minimal immersions ¢ : M — S", for some n.

® (Petrides, 2014): a maximizing metric (possibly with conical
singularities) for sup, ¢ A1(g)|M|g exists on each conformal
class C.




The normalized first Laplacian eigenvalue

Eigenvalue shape In a closed surface M we can consider:

optimization

AL(M) = sup Ai(g) Mg
g

® (Hersch, Yang-Yau, Karpukhin): A7(M) < oco.

® (Nadirashvili, 1996): metrics maximizing A1(g)|M|g are induced
by branched minimal immersions ¢ : M — S", for some n.

® (Petrides, 2014): a maximizing metric (possibly with conical
singularities) for sup, ¢ A1(g)|M|g exists on each conformal
class C.
The maximizer induces a harmonic map ¢ : (M,C) — S".




The normalized first Laplacian eigenvalue

Eigenvalue shape In a closed surface M we can consider:

optimization

AL(M) = sup Ai(g) Mg
g

® (Hersch, Yang-Yau, Karpukhin): A7(M) < oco.

® (Nadirashvili, 1996): metrics maximizing A1(g)|M|g are induced
by branched minimal immersions ¢ : M — S", for some n.

® (Petrides, 2014): a maximizing metric (possibly with conical
singularities) for sup, ¢ A1(g)|M|g exists on each conformal
class C.
The maximizer induces a harmonic map ¢ : (M,C) — S".

® (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): Let M,
be the closed orientable surface of genus v. Then \j(M,) or
A1 (My41) admits a maximizing metric, for each ~.
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Eigenvalue shape
optimization

® 2-sphere (Hersch, 1970): round metric, Id : S — §?, \j = 8r;

® Projective plane (Li-Yau, 1982): round metric, Veronese
immersion RP? — S°, \¥ = 127;

e 2-torus (Nadirashvili, 1996): flat equilateral metric, unique
8r? .

immersion by first eigenfunctions, T? — S°, \} = 7

e Klein bottle (El Soufi-Giacomini-Jazar,
Jakobson-Nadirashvili-Polterovich, 2006): there is a unique

immersion by first eigenfunctions K — S*, \; = 1271'E(¥);

® Orientable surface of genus 2 (Nayatani-Shoda, 2019): induced
by a certain branched cover M — S2, \} = 16m7.
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Free-boundary minimal immersions and Steklov
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Eigenvalue shape
optimization

® (X, g) - compact Riemannian surface, with non-empty boundary;
® v - outward pointing g-unit conormal vector field on O¥.
® Dirichlet-to-Neumann map of (X, g): Sp : C*(0X) — C>(9X%),

)

%59 ov’

where ¢ is the harmonic extension of ¢ (Ag$: 0).
® The spectrum of S, is discrete (Steklov eigenvalues):
0=o00(g) <o1(g) < o2(g) < -+ — 4o0.

e (Fraser-Schoen, 2011): Let ¢ : (X, g) — B" C R" be an
isometric immersion, such that ®(X) C 9B". Then, ¢ is
minimal and free-boundary if, and only if, ¢; = xj 0 ¢ are

eigenfunctions of S, with eigenvalue 1 (quﬁj =0, % = ¢j).
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In a compact surface ¥ with non-empty boundary we can consider:
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optimization

o (X) = sgp o1(g)|0%],.

® (Weinstock, Fraser-Schoen, Medvedev): o7 (X) < 0.

e (Fraser-Schoen, 2012): metrics maximizing o1(g)|0%|, are
induced by branched conformal minimal immersions ¢ : ¥ — B".

® (Petrides, 2019): A maximizer for sup,cc 01(g)|0Z|g exists if

supo1(g)|0x|g > 2.
gec

The maximizer induces a free-boundary harmonic map
¢:(X,C)— B"

® (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): each
compact oriented surface with boundary, of genus zero or one,
admits a oj-maximizing metric.
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Known Cases of Maximizers

* Disk (Weinstock, 1954): Flat metric with c.g.c, Id : B — B?,

. *
Eigenvalue shape o] = 2.

optimization

® Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique

~ 107

immersion by first eigenfunctions [0,1] x S* — B?, o} ~ .
® Mobius Band (Fraser-Schoen, 2012): Induced by the unique
immersion by first eigenfunctions in B*, o} = 274/3.

® Orientable surface of genus 0 and ¢ boundary components
(Fraser-Schoen, 2012 + Karpukhin-Stern, 2021): o7 is realized

by an embedded FBMS ¥, C B3, such that ¥, — S? as ¢ — .

Figure: Picture by M. Schulz.
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Main results

Free-boundary minimal immersions in spherical
caps

/ \\ B ={x€8S", xo >cosr}:

geodesic ball of S” of center p = (1,0,...,0)

o \ / and radius 0 < r < /2.

® ¢:(X,g) — B} is minimal and free boundary if, and only if,
¢; = x; o ® satisfy:

—Dg i = 2¢;, inXE, i=0,1,...,n,
0
% = _(tan r)¢07 on 62,
o6 | -
0 = (cotr)p;, ondx, i=1,...,n.

® o =2 is not an eigenvalue of —A, with Dirichlet boundary
condition:

—Agw =2w, inX, = w = 0.
w =0, on 0%,
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Steklov eingenvalue problem with frequency

® Fix oo € R which is not on the spectrum of —A, with Dirichlet
boundary condition;

® given u € C*(JX), there is a unique & € C*°(X), such that

Main results

Agi+au = 0, inX,
U = u, in0XL.

® Dirichlet-to-Neumann map at frequency a:

Do : CX(0E) — C¥(I%)

3
Dodp = a_f'

® The spectrum of D, is discrete (Steklov eigenvalues with
frequency «)

oo(g, @) < o1(g, ) < o2(g, ) < -+ — +o0.

® The case a = 0 corresponds to the usual Steklov spectrum.
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The eigenvalue oo(g, @) is simple and is given by

Jo(g, a) =

/z|vgﬁ|§ dAg—a/zﬁ2 dAg
inf
/ v dl,
[
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Variational characterization of eigenvalues

The eigenvalue oo(g, @) is simple and is given by

/Z|vga|§ dAg—a/zﬁ2 dAg

oo(g, @) = inf ; u € dom(D,) \ {0}
/ u-dL
ox

Denote by ¢¢ a first eigenfunction, which we can choose to be
positive. Then,

/lvgu|gdA —a/u dAg
oi(g,a) = mf{ r

; u € dom(D,) \ {0}
/ u?dL
ox

and/ upo dly = O}.
ox
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Defining a functional via eigenvalues

® Y - compact orientable surface of genus v and ¢ boundary
Main results COmpOnentS;

M(X) - space of smooth Riemannian metrics g on X such that
2 is not an eigenvalue of —A, with Dirichlet boundary condition;

® There is a proper conformal branched cover u: (I, g) — B? of
the degree v + ¢,

Along 0% it holds

up =cosr, w2+ u3=sin’r.

By using conformal diffeomorphisms of B2, we can assume

/ ujpodl =0, j=1,2,
ox

where ¢ is a positive eigenfunction associated to oo(g, 2).
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By the variational characterization of the eigenvalues, we have
ao(g,2)/ Bdl, < / [VETo |2 dAg — 2/ ug¢ dA,
ox b b
< /|Vguo|§ dAg—2/ ud dA,,
b b
and for j = 1,2,

al(g,2)/ ujzdLg
o

IN

[iveson—2 [

/Z|vguj|§dAg—2/zuj?dAg.

IN

We obtain

(00(g,2) cos® r + o1(g, 2) sin’ r) |0Z | +2|Z|, < 47m(1—cos r)(y+Y).

We define

0,(X,g) = (d0(g,2) cos® r + o1(g, 2) sin r) |0X|g + 2|X |-
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Theorem A (L., Menezes, 2023)

Vi s Let ¥ be a compact orientable surface of genus ~y and ¢ boundary
components. Then, for any g € M(X), we have

©,(X,g) < 4n(1 —cosr)(y + 0).

Moreover, if ¥ is a disk, the equality holds if, and only if, (¥, g) is
isometric to B2.

Therefore ©7(X) = supycq(x) ©4(X, g) is finite.
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Theorem A (L., Menezes, 2023)

Vi ez Let ¥ be a compact orientable surface of genus v and £ boundary
components. Then, for any g € M(X), we have

©,(X,g) < 4n(1 —cosr)(y + 0).

Moreover, if ¥ is a disk, the equality holds if, and only if, (¥, g) is
isometric to B2.

Therefore ©7(X) = supycq(x) ©4(X, g) is finite.

Theorem B (L., Menezes, 2023)

Let ¥ be a compact surface with boundary. If g € M(X) satisfies
©,(X,g) = OF(X), then there exist a oo(g,2)-eigenfunction ¢o and
independent o1(g, 2)-eigenfunctions ¢1, . .., d,, which induce a free
boundary minimal isometric immersion

¢ = (¢0a¢)17"'7¢n) . (Z,g) _>B?
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Free-boundary minimal rotational annuli

Otsuki (1970) and do Carmo-Dajczer (1983), described the
parametrization of the family of rotational minimal surfaces in S3:
®,:R xS —§3,

®,(s,0) = (\/ % — acos(2s) cos ¢(s), 1/ % — acos(2s) sin p(s),
1/ % + acos(2s) cos b, 4/ % + acos(2s)sin 0) ,

where —1 < a < 0 is a constant and ¢(s) is given by
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wls) = \/47/0 (i - acos(2t))\/mdt
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Otsuki (1970) and do Carmo-Dajczer (1983), described the
parametrization of the family of rotational minimal surfaces in S3:
Main results ¢a : R X Sl — 83’

(\/ % — acos(2s) cos ¢(s), 1/ % — acos(2s) sin ¢(s)
1/ % + acos(2s) cos b, 4/ % + acos(2s)sin 0) ,

where —1 < a < 0 is a constant and ¢(s) is given by

4 32/ acos(2t))1 % + acos(2t) o
\/ \/7

Prop05|t|on (Li-Xiong, 2018): For any 0 < r < 7, there exist
—1<a<o0and s € R such that ¢, : [— so,so] x S — B3 is a free
boundary minimal immersion.
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Theorem C (L., Menezes, 2023)

Let ¥ be an annulus and consider a free boundary minimal immersion
& = (¢o,...,¢n): (X,8) = B]. Suppose ¢; is a

o1(g, 2)-eigenfunction, for j =1,...,n. Then n=3 and ® is one of
the rotational immersions described previously.
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Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-llias which characterize the Clifford torus and the flat
equilateral torus.
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Theorem C (L., Menezes, 2023)

Let ¥ be an annulus and consider a free boundary minimal immersion
& = (¢o,...,¢n): (X,8) = B]. Suppose ¢; is a

o1(g, 2)-eigenfunction, for j =1,...,n. Then n=3 and ® is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-llias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving ©%(X) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let ¥ be a compact orientable surface. Prove that there is
g € M(X) realizing ©}(X).



Main results

Main results Il

Theorem C (L., Menezes, 2023)

Let ¥ be an annulus and consider a free boundary minimal immersion
& = (¢o,...,¢n): (X,8) = B]. Suppose ¢; is a

o1(g, 2)-eigenfunction, for j =1,...,n. Then n=3 and ® is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-llias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving ©%(X) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let ¥ be a compact orientable surface. Prove that there is
g € M(X) realizing ©}(X).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in H".
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Ag¢i+2¢i:0 inZ, i2071,2737

0

% + (tanr)po =0 on 0%,

0pi B .

B (cotr)¢p; =0 on 9%, i=1,23.

Since ¥ ~ [0,1] x S, then g = Agcy1, for some positive function
A= A(s,0). In particular, A, = A" Aqy and vz = )\*%chl.
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Lemma: The multiplicity of 01(g,?2) is at most 3. Hence n = 3.
Recall that

Main results

Ag¢i+2¢i:0 inZ, i2071,2737

% + (tanr)gp =0 on 9%,
8¢, (cotr)p; =0 ondxL, i=1,2,3.

Since ¥ ~ [0,1] x S, then g = Agcy1, for some positive function
A= A(s,0). In particular, A, = A" Aqy and vz = )\*%chl.

Ag oi+2¢0;=0 = Acyl ¢i +2X¢p; =0

545, d9;
:>Acy1 89 ¢I+2>\ 20 =0
= A 6¢+2A 18)‘¢+28¢ 0.

€00 00 00
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Claim: The condition o¢(g,2) = —tanr and o1(g,2) = cot r implies
0 = O0in X.
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Claim: The condition o¢(g,2) = —tanr and o1(g,2) = cot r implies

% %—Oin):.

Ag 00 80

+2

The idea is to use % as test-functions for oy.

® Combining this with the previous equation we conclude that

o
@:0,

i.e, the metric g is rotationally symmetric.

® An O.D.E analysis implies that @ is rotational in the sense of do
Carmo-Dajczer-Otsuki, so ®(X) is one of the annuli described
before.
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