Eigenvalue shap optimization

Main results

EIGENVALUE PROBLEMS AND FREE BOUNDARY MINIMAL SURFACES IN SPHERICAL CAPS

Vanderson Lima

Universidade Federal do Rio Grande do Sul (Brazil)

(Joint work with Ana Menezes - Princeton University)

Geometric Flows and Relativity Punta del Este (Uruguay), March 18, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

Definition

Consider a Riemannian manifold with boundary $(\mathcal{N}^n, \mathbf{g})$ and a compact surface Σ^2 . Let $\Phi : \Sigma \to \mathcal{N}$ be an immersion such that $\Phi(\Sigma) \cap \partial \mathcal{N} = \Phi(\partial \Sigma)$.

• Φ is a free boundary minimal immersion if: (i) $\vec{H} = 0$;

(ii) $\Phi(\Sigma)$ meets $\partial \mathcal{N}$ orthogonally along $\Phi(\partial \Sigma)$ (i.e., $\nu \perp \partial \mathcal{N}$).

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

Definition

Consider a Riemannian manifold with boundary $(\mathcal{N}^n, \mathbf{g})$ and a compact surface Σ^2 . Let $\Phi : \Sigma \to \mathcal{N}$ be an immersion such that $\Phi(\Sigma) \cap \partial \mathcal{N} = \Phi(\partial \Sigma)$.

• Φ is a free boundary minimal immersion if: (i) $\vec{H} = 0$;

(ii) $\Phi(\Sigma)$ meets $\partial \mathcal{N}$ orthogonally along $\Phi(\partial \Sigma)$ (i.e., $\nu \perp \partial \mathcal{N}$).

Remark: If $\partial \Sigma = \emptyset$ we say Φ is a closed minimal immersion.

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

Definition

Consider a Riemannian manifold with boundary $(\mathcal{N}^n, \mathbf{g})$ and a compact surface Σ^2 . Let $\Phi : \Sigma \to \mathcal{N}$ be an immersion such that $\Phi(\Sigma) \cap \partial \mathcal{N} = \Phi(\partial \Sigma)$.

• Φ is a free boundary minimal immersion if: (i) $\vec{H} = 0$;

(ii) $\Phi(\Sigma)$ meets $\partial \mathcal{N}$ orthogonally along $\Phi(\partial \Sigma)$ (i.e., $\nu \perp \partial \mathcal{N}$).

Remark: If $\partial \Sigma = \emptyset$ we say Φ is a closed minimal immersion.

Figure: $(\mathcal{N}, \mathbf{g}) =$ Euclidean 3-ball and $\Phi(\Sigma) =$ equatorial disc.

Eigenvalue shape optimization

Main results

Critical Points of the Area Functional with Free Boundary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Critical Points of the Area Functional with Free Boundary

- Let Φ_t : Σ → N be a smooth one parameter family of immersions for t ∈ (-ε, ε) such that Φ_t(∂Σ) ⊂ ∂N.
- Denote $X = \frac{\partial \Phi}{\partial t} (X|_{\partial \Sigma}$ is tangent to $\partial \mathcal{N}$).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Free Boundary Minimal Sur<u>faces</u>

Eigenvalue shape optimization

Critical Points of the Area Functional with Free Boundary

- Let Φ_t : Σ → N be a smooth one parameter family of immersions for t ∈ (-ε, ε) such that Φ_t(∂Σ) ⊂ ∂N.
- Denote $X = \frac{\partial \Phi}{\partial t} (X|_{\partial \Sigma}$ is tangent to $\partial \mathcal{N}$).

The first variation formula gives:

$$\frac{d}{dt}\Big|_{t=0} |\Phi_t(\Sigma)| = -\int_{\Sigma} \langle \vec{H}, X \rangle \, dA + \int_{\partial \Sigma} \langle \nu, X \rangle \, dL.$$

Critical point $\iff \vec{H} = 0$ and $\nu \perp \partial \mathcal{N}.$

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Free Boundary Minimal Surface

Eigenvalue shape optimization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- (*M*, *g*) closed Riemannian surface;
- Laplacian of (M,g): $\Delta_g = \operatorname{div}_g(\nabla_g) : C^\infty(M) \to C^\infty(M);$

ee Boundary inimal Surfaces

Eigenvalue shape optimization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (*M*, *g*) closed Riemannian surface;
- Laplacian of (M,g): $\Delta_g = \operatorname{div}_g(\nabla_g) : C^\infty(M) \to C^\infty(M);$
- The spectrum of $-\Delta_g$ is discrete:

 $0=\lambda_0(g)<\lambda_1(g)\leq\lambda_2(g)\leq\ldots\lambda_j(g)\leq\ldots
ightarrow+\infty;$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- (*M*, *g*) closed Riemannian surface;
- Laplacian of (M,g): $\Delta_g = \operatorname{div}_g(\nabla_g) : C^\infty(M) \to C^\infty(M);$
- The spectrum of $-\Delta_g$ is discrete:

 $0=\lambda_0(g)<\lambda_1(g)\leq\lambda_2(g)\leq\ldots\lambda_j(g)\leq\ldots
ightarrow+\infty;$

• *n*-dimensional round sphere: $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}; \sum_{j=0}^n x_j^2 = 1\};$

Eigenvalue shape optimization

- (*M*, *g*) closed Riemannian surface;
- Laplacian of (M,g): $\Delta_g = \operatorname{div}_g(\nabla_g) : C^\infty(M) \to C^\infty(M);$
- The spectrum of $-\Delta_g$ is discrete:

 $0=\lambda_0(g)<\lambda_1(g)\leq\lambda_2(g)\leq\ldots\lambda_j(g)\leq\ldots
ightarrow+\infty;$

- *n*-dimensional round sphere: $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}; \sum_{j=0}^n x_j^2 = 1\};$
- (Takahashi, 1966): A isometric immersion φ : (M, g) → Sⁿ is minimal if, and only if, the coordinate functions φ_j = x_j ◦ φ satisfy

$$-\Delta_g \phi_j = 2\phi_j,$$

linimal Surfaces

Eigenvalue shape optimization

- (*M*, *g*) closed Riemannian surface;
- Laplacian of (M,g): $\Delta_g = \operatorname{div}_g(\nabla_g) : C^\infty(M) \to C^\infty(M);$
- The spectrum of $-\Delta_g$ is discrete:

 $0=\lambda_0(g)<\lambda_1(g)\leq\lambda_2(g)\leq\ldots\lambda_j(g)\leq\ldots
ightarrow+\infty;$

- *n*-dimensional round sphere: $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1}; \sum_{j=0}^n x_j^2 = 1\};$
- (Takahashi, 1966): A isometric immersion φ : (M, g) → Sⁿ is minimal if, and only if, the coordinate functions φ_j = x_j ◦ φ satisfy

$$-\Delta_g \phi_j = 2\phi_j,$$

i.e., ϕ_j is a eigenfunction of $-\Delta_g$ with eigenvalue 2.

ree Boundary Ainimal Surfaces

Eigenvalue shape optimization

The normalized first Laplacian eigenvalue

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Eigenvalue shap optimization

Main results

The normalized first Laplacian eigenvalue

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

In a closed surface M we can consider:

$$\lambda_1^*(M) = \sup_g \lambda_1(g) |M|_g.$$

Eigenvalue shap optimization

Main results

The normalized first Laplacian eigenvalue

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

In a closed surface M we can consider:

$$\lambda_1^*(M) = \sup_g \lambda_1(g)|M|_g.$$

• (Hersch, Yang-Yau, Karpukhin): $\lambda_1^*(M) < \infty$.

Eigenvalue shap optimization

Main results

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$\lambda_1^*(M) = \sup_g \lambda_1(g) |M|_g.$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_1^*(M) < \infty$.
- (Nadirashvili, 1996): metrics maximizing λ₁(g)|M|_g are induced by branched minimal immersions φ : M → Sⁿ, for some n.

Eigenvalue shape optimization

Main results

The normalized first Laplacian eigenvalue

A D N A 目 N A E N A E N A B N A C N

In a closed surface M we can consider:

$$\lambda_1^*(M) = \sup_g \lambda_1(g) |M|_g.$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_1^*(M) < \infty$.
- (Nadirashvili, 1996): metrics maximizing λ₁(g)|M|_g are induced by branched minimal immersions φ : M → Sⁿ, for some n.
- (Petrides, 2014): a maximizing metric (possibly with conical singularities) for sup_{g∈C} λ₁(g)|M|_g exists on each conformal class C.

Eigenvalue shape optimization

Main results

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$\lambda_1^*(M) = \sup_g \lambda_1(g) |M|_g.$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_1^*(M) < \infty$.
- (Nadirashvili, 1996): metrics maximizing λ₁(g)|M|_g are induced by branched minimal immersions φ : M → Sⁿ, for some n.
- (Petrides, 2014): a maximizing metric (possibly with conical singularities) for sup_{g∈C} λ₁(g)|M|_g exists on each conformal class C.

The maximizer induces a harmonic map $\phi : (M, \mathcal{C}) \to \mathbb{S}^n$.

Eigenvalue shape optimization

Main results

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$\lambda_1^*(M) = \sup_g \lambda_1(g) |M|_g.$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_1^*(M) < \infty$.
- (Nadirashvili, 1996): metrics maximizing λ₁(g)|M|_g are induced by branched minimal immersions φ : M → Sⁿ, for some n.
- (Petrides, 2014): a maximizing metric (possibly with conical singularities) for sup_{g∈C} λ₁(g)|M|_g exists on each conformal class C.

The maximizer induces a harmonic map $\phi : (M, \mathcal{C}) \to \mathbb{S}^n$.

• (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): Let M_{γ} be the closed orientable surface of genus γ . Then $\lambda_1^*(M_{\gamma})$ or $\lambda_1^*(M_{\gamma+1})$ admits a maximizing metric, for each γ .

Free Boundary Minimal Surface

Eigenvalue shape optimization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

• 2-sphere (Hersch, 1970): round metric, $\mathrm{Id}: \mathbb{S}^2 \to \mathbb{S}^2$, $\lambda_1^* = 8\pi$;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

- 2-sphere (Hersch, 1970): round metric, $\mathrm{Id}: \mathbb{S}^2 \to \mathbb{S}^2$, $\lambda_1^* = 8\pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion ℝP² → S⁵, λ₁^{*} = 12π;

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

- 2-sphere (Hersch, 1970): round metric, $\mathrm{Id}: \mathbb{S}^2 \to \mathbb{S}^2$, $\lambda_1^* = 8\pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion ℝP² → S⁵, λ₁^{*} = 12π;
- 2-torus (Nadirashvili, 1996): flat equilateral metric, unique immersion by first eigenfunctions, T² → S⁵, λ₁^{*} = ^{8π²}/_{√3};

A D N A 目 N A E N A E N A B N A C N

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

- 2-sphere (Hersch, 1970): round metric, $\mathrm{Id}: \mathbb{S}^2 \to \mathbb{S}^2$, $\lambda_1^* = 8\pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion ℝP² → S⁵, λ₁^{*} = 12π;
- 2-torus (Nadirashvili, 1996): flat equilateral metric, unique immersion by first eigenfunctions, T² → S⁵, λ₁^{*} = ^{8π²}/_{√3};
- Klein bottle (El Soufi-Giacomini-Jazar, Jakobson-Nadirashvili-Polterovich, 2006): there is a unique immersion by first eigenfunctions K → S⁴, λ₁^{*} = 12πE(^{2√2}/₃);

A D N A 目 N A E N A E N A B N A C N

Minimal Surfaces

Eigenvalue shape optimization

- 2-sphere (Hersch, 1970): round metric, $\mathrm{Id}: \mathbb{S}^2 \to \mathbb{S}^2$, $\lambda_1^* = 8\pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion ℝP² → S⁵, λ₁^{*} = 12π;
- 2-torus (Nadirashvili, 1996): flat equilateral metric, unique immersion by first eigenfunctions, T² → S⁵, λ₁^{*} = ^{8π²}/_{√3};
- Klein bottle (El Soufi-Giacomini-Jazar, Jakobson-Nadirashvili-Polterovich, 2006): there is a unique immersion by first eigenfunctions K→ S⁴, λ₁^{*} = 12πE(^{2√2}/₃);
- Orientable surface of genus 2 (Nayatani-Shoda, 2019): induced by a certain branched cover M → S², λ₁^{*} = 16π.

Free-boundary minimal immersions and Steklov eigenvalues

Free Boundary Minimal Surface

Eigenvalue shape optimization

Eigenvalue shape optimization

Main results

Free-boundary minimal immersions and Steklov eigenvalues

• (Σ, g) - compact Riemannian surface, with non-empty boundary;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• ν - outward pointing *g*-unit conormal vector field on $\partial \Sigma$.

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) compact Riemannian surface, with non-empty boundary;
- ν outward pointing g-unit conormal vector field on $\partial \Sigma$.

Eigenvalue shape

• Dirichlet-to-Neumann map of (Σ, g) : $S_g : C^{\infty}(\partial \Sigma) \to C^{\infty}(\partial \Sigma)$,

$$S_{g}\phi = \frac{\partial \widehat{\phi}}{\partial \nu},$$

where $\hat{\phi}$ is the harmonic extension of ϕ ($\Delta_g \hat{\phi} = 0$).

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) compact Riemannian surface, with non-empty boundary;
- ν outward pointing g-unit conormal vector field on $\partial \Sigma$.
- Dirichlet-to-Neumann map of (Σ, g) : $S_g : C^{\infty}(\partial \Sigma) \to C^{\infty}(\partial \Sigma)$,

$$S_{g}\phi = \frac{\partial \widehat{\phi}}{\partial \nu},$$

where $\hat{\phi}$ is the harmonic extension of ϕ ($\Delta_g \hat{\phi} = 0$).

• The spectrum of S_g is discrete (Steklov eigenvalues):

$$0 = \sigma_0(g) < \sigma_1(g) \le \sigma_2(g) \le \cdots \to +\infty.$$

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) compact Riemannian surface, with non-empty boundary;
- ν outward pointing g-unit conormal vector field on $\partial \Sigma$.
- Dirichlet-to-Neumann map of (Σ, g) : $S_g : C^{\infty}(\partial \Sigma) \to C^{\infty}(\partial \Sigma)$,

$$S_{g}\phi = \frac{\partial \widehat{\phi}}{\partial \nu},$$

where $\hat{\phi}$ is the harmonic extension of ϕ ($\Delta_g \hat{\phi} = 0$).

• The spectrum of S_g is discrete (Steklov eigenvalues):

$$0=\sigma_0(g)<\sigma_1(g)\leq\sigma_2(g)\leq\cdots
ightarrow+\infty.$$

• (Fraser-Schoen, 2011): Let $\Phi : (\Sigma, g) \to B^n \subset \mathbb{R}^n$ be an isometric immersion, such that $\Phi(\Sigma) \subset \partial B^n$. Then, Φ is minimal and free-boundary if, and only if, $\phi_j = x_j \circ \phi$ are eigenfunctions of S_g with eigenvalue $1\left(\Delta_g \phi_j = 0, \frac{\partial \phi_j}{\partial \nu} = \phi_j\right)$.

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

The normalized first Steklov eigenvalue

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

The normalized first Steklov eigenvalue

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

In a compact surface $\boldsymbol{\Sigma}$ with non-empty boundary we can consider:

$$\sigma_1^*(\Sigma) = \sup_g \sigma_1(g) |\partial \Sigma|_g.$$

Eigenvalue shape optimization

Main results

The normalized first Steklov eigenvalue

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

In a compact surface $\boldsymbol{\Sigma}$ with non-empty boundary we can consider:

$$\sigma_1^*(\Sigma) = \sup_g \sigma_1(g) |\partial \Sigma|_g.$$

• (Weinstock, Fraser-Schoen, Medvedev): $\sigma_1^*(\Sigma) < \infty$.

The normalized first Steklov eigenvalue

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

In a compact surface $\boldsymbol{\Sigma}$ with non-empty boundary we can consider:

$$\sigma_1^*(\Sigma) = \sup_g \sigma_1(g) |\partial \Sigma|_g.$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_1^*(\Sigma) < \infty$.
- (Fraser-Schoen, 2012): metrics maximizing σ₁(g)|∂Σ|_g are induced by branched conformal minimal immersions φ : Σ → Bⁿ.
The normalized first Steklov eigenvalue

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

In a compact surface $\boldsymbol{\Sigma}$ with non-empty boundary we can consider:

$$\sigma_1^*(\Sigma) = \sup_g \sigma_1(g) |\partial \Sigma|_g.$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_1^*(\Sigma) < \infty$.
- (Fraser-Schoen, 2012): metrics maximizing σ₁(g)|∂Σ|_g are induced by branched conformal minimal immersions φ : Σ → Bⁿ.
- (Petrides, 2019): A maximizer for $\sup_{g \in C} \sigma_1(g) |\partial \Sigma|_g$ exists if

$$\sup_{g\in\mathcal{C}}\sigma_1(g)|\partial\Sigma|_g>2\pi.$$

A D N A 目 N A E N A E N A B N A C N

The normalized first Steklov eigenvalue

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

In a compact surface $\boldsymbol{\Sigma}$ with non-empty boundary we can consider:

$$\sigma_1^*(\Sigma) = \sup_g \sigma_1(g) |\partial \Sigma|_g.$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_1^*(\Sigma) < \infty$.
- (Fraser-Schoen, 2012): metrics maximizing σ₁(g)|∂Σ|_g are induced by branched conformal minimal immersions φ : Σ → Bⁿ.
- (Petrides, 2019): A maximizer for $\sup_{g \in C} \sigma_1(g) |\partial \Sigma|_g$ exists if

$$\sup_{g\in\mathcal{C}}\sigma_1(g)|\partial\Sigma|_g>2\pi.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The maximizer induces a free-boundary harmonic map $\phi : (\Sigma, \mathcal{C}) \to B^n$.

The normalized first Steklov eigenvalue

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

In a compact surface $\boldsymbol{\Sigma}$ with non-empty boundary we can consider:

$$\sigma_1^*(\Sigma) = \sup_g \sigma_1(g) |\partial \Sigma|_g.$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_1^*(\Sigma) < \infty$.
- (Fraser-Schoen, 2012): metrics maximizing σ₁(g)|∂Σ|_g are induced by branched conformal minimal immersions φ : Σ → Bⁿ.
- (Petrides, 2019): A maximizer for $\sup_{g \in C} \sigma_1(g) |\partial \Sigma|_g$ exists if

$$\sup_{g\in\mathcal{C}}\sigma_1(g)|\partial\Sigma|_g>2\pi.$$

The maximizer induces a free-boundary harmonic map $\phi: (\Sigma, \mathcal{C}) \to B^n$.

 (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): each compact oriented surface with boundary, of genus zero or one, admits a σ₁^{*}-maximizing metric.

Free Boundary Minimal Surface

Eigenvalue shape optimization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

• Disk (Weinstock, 1954): Flat metric with c.g.c, $\mathrm{Id}: \mathsf{B}^2 \to \mathsf{B}^2$, $\sigma_1^* = 2\pi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free Boundary Minimal Surface

Eigenvalue shape optimization

- Disk (Weinstock, 1954): Flat metric with c.g.c, $\mathrm{Id}: \mathsf{B}^2 \to \mathsf{B}^2$, $\sigma_1^* = 2\pi$.
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions [0, 1] × S¹ → B³, σ₁^{*} ≃ ^{10π}/_{√2}.

Free Boundary Minimal Surface

Eigenvalue shape optimization

- Disk (Weinstock, 1954): Flat metric with c.g.c, $\mathrm{Id}: \mathsf{B}^2 \to \mathsf{B}^2$, $\sigma_1^* = 2\pi$.
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions [0, 1] × S¹ → B³, σ₁^{*} ≃ ^{10π}/_{√3}.
- Mobius Band (Fraser-Schoen, 2012): Induced by the unique immersion by first eigenfunctions in B⁴, $\sigma_1^* = 2\pi\sqrt{3}$.

Free Boundary Minimal Surface

Eigenvalue shape optimization

- Disk (Weinstock, 1954): Flat metric with c.g.c, $\mathrm{Id}:\mathsf{B}^2\to\mathsf{B}^2,$ $\sigma_1^*=2\pi.$
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions [0, 1] × S¹ → B³, σ₁^{*} ≃ ^{10π}/_{√3}.
- Mobius Band (Fraser-Schoen, 2012): Induced by the unique immersion by first eigenfunctions in B⁴, $\sigma_1^* = 2\pi\sqrt{3}$.
- Orientable surface of genus 0 and ℓ boundary components (Fraser-Schoen, 2012 + Karpukhin-Stern, 2021): σ₁^{*} is realized by an embedded FBMS Σ_ℓ ⊂ B³, such that Σ_ℓ → S² as ℓ → ∞.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

- Disk (Weinstock, 1954): Flat metric with c.g.c, $\mathrm{Id}:\mathsf{B}^2\to\mathsf{B}^2,$ $\sigma_1^*=2\pi.$
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions [0, 1] × S¹ → B³, σ₁^{*} ≃ ^{10π}/_{√3}.
- Mobius Band (Fraser-Schoen, 2012): Induced by the unique immersion by first eigenfunctions in B⁴, $\sigma_1^* = 2\pi\sqrt{3}$.
- Orientable surface of genus 0 and ℓ boundary components (Fraser-Schoen, 2012 + Karpukhin-Stern, 2021): σ_1^* is realized by an embedded FBMS $\Sigma_\ell \subset B^3$, such that $\Sigma_\ell \to \mathbb{S}^2$ as $\ell \to \infty$.

Figure: Picture by M. Schulz.

Minimal Surface

Eigenvalue shap optimization

Main results

 $\mathbb{B}_r^n = \{ x \in \mathbb{S}^n; x_0 \ge \cos r \} :$ geodesic ball of \mathbb{S}^n of center $p = (1, 0, \dots, 0)$ and radius $0 < r < \pi/2.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $\Phi : (\Sigma, g) \to \mathbb{B}^n_r$ is minimal and free boundary if, and only if, $\phi_i = x_i \circ \Phi$ satisfy:

$$\begin{aligned} -\Delta_g \phi_i &= 2\phi_i, \quad \text{in } \Sigma, \ i = 0, 1, \dots, n, \\ \frac{\partial \phi_0}{\partial \nu} &= -(\tan r)\phi_0, \quad \text{on } \partial \Sigma, \\ \frac{\partial \phi_i}{\partial \nu} &= (\cot r)\phi_i, \quad \text{on } \partial \Sigma, \ i = 1, \dots, n. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Free Boundary Minimal Surface

Eigenvalue shap optimization

 x_1^{\leftarrow}

• $\sigma = 2$ is not an eigenvalue of $-\Delta_g$ with Dirichlet boundary condition:

$$\begin{cases} -\Delta_g w = 2w, & \text{in } \Sigma, \Rightarrow w \equiv 0. \\ w = 0, & \text{on } \partial \Sigma, \end{cases}$$

Free Boundary Minimal Surface

Eigenvalue shape optimization

Free Boundary Minimal Surface

Eigenvalue shape optimization

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

- Fix $\alpha \in \mathbb{R}$ which is not on the spectrum of $-\Delta_g$ with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$\Delta_{g} \widehat{u} + \alpha \widehat{u} = 0, \quad \text{in } \Sigma,$$
$$\widehat{u} = u, \quad \text{in } \partial \Sigma.$$

- Free Boundary Minimal Surfaces
- Eigenvalue shape optimization
- Main results

- Fix $\alpha \in \mathbb{R}$ which is not on the spectrum of $-\Delta_g$ with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$\Delta_{g}\widehat{u} + \alpha \widehat{u} = 0, \quad \text{in } \Sigma,$$
$$\widehat{u} = u, \quad \text{in } \partial \Sigma.$$

• Dirichlet-to-Neumann map at frequency α :

$$egin{array}{rcl} {\mathcal D}_lpha: {\mathcal C}^\infty(\partial\Sigma) & o & {\mathcal C}^\infty(\partial\Sigma) \ & \ {\mathcal D}_lpha\phi & = & {\partial \widehat\phi\over\partial
u}. \end{array}$$

- Fix α ∈ ℝ which is not on the spectrum of −Δ_g with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$\Delta_{g}\widehat{u} + \alpha \widehat{u} = 0, \quad \text{in } \Sigma,$$
$$\widehat{u} = u, \quad \text{in } \partial \Sigma.$$

• Dirichlet-to-Neumann map at frequency α :

$$egin{array}{rcl} \mathcal{D}_lpha:\mathcal{C}^\infty(\partial\Sigma)& o&\mathcal{C}^\infty(\partial\Sigma)\ &&\mathcal{D}_lpha\phi&=&rac{\partial\widehat\phi}{\partial
u}. \end{array}$$

• The spectrum of \mathcal{D}_{α} is discrete (Steklov eigenvalues with frequency α)

$$\sigma_0(g, \alpha) < \sigma_1(g, \alpha) \leq \sigma_2(g, \alpha) \leq \cdots \rightarrow +\infty.$$

Free Boundary Minimal Surface

Eigenvalue shape optimization

- Fix α ∈ ℝ which is not on the spectrum of −Δ_g with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$\Delta_{g}\widehat{u} + \alpha \widehat{u} = 0, \quad \text{in } \Sigma,$$
$$\widehat{u} = u, \quad \text{in } \partial \Sigma.$$

• Dirichlet-to-Neumann map at frequency α :

$$egin{array}{rcl} \mathcal{D}_lpha:\mathcal{C}^\infty(\partial\Sigma)& o&\mathcal{C}^\infty(\partial\Sigma)\ &&\mathcal{D}_lpha\phi&=&rac{\partial\widehat\phi}{\partial
u}. \end{array}$$

• The spectrum of \mathcal{D}_{α} is discrete (Steklov eigenvalues with frequency α)

$$\sigma_0(g, \alpha) < \sigma_1(g, \alpha) \leq \sigma_2(g, \alpha) \leq \cdots \rightarrow +\infty.$$

• The case $\alpha = 0$ corresponds to the usual Steklov spectrum.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Variational characterization of eigenvalues

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Variational characterization of eigenvalues

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

The eigenvalue $\sigma_0(g, \alpha)$ is simple and is given by

$$\sigma_{0}(g,\alpha) = \inf \left\{ \frac{\int_{\Sigma} |\nabla^{g} \widehat{u}|_{g}^{2} dA_{g} - \alpha \int_{\Sigma} \widehat{u}^{2} dA_{g}}{\int_{\partial \Sigma} u^{2} dL_{g}}; u \in \operatorname{dom}(\mathcal{D}_{\alpha}) \setminus \{0\} \right\}.$$

Variational characterization of eigenvalues

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

The eigenvalue $\sigma_0(g, \alpha)$ is simple and is given by

$$\sigma_{0}(g,\alpha) = \inf \left\{ \frac{\int_{\Sigma} |\nabla^{g} \widehat{u}|_{g}^{2} dA_{g} - \alpha \int_{\Sigma} \widehat{u}^{2} dA_{g}}{\int_{\partial \Sigma} u^{2} dL_{g}}; u \in \operatorname{dom}(\mathcal{D}_{\alpha}) \setminus \{0\} \right\}.$$

Denote by ϕ_{0} a first eigenfunction, which we can choose to be positive. Then,

$$\sigma_{1}(g,\alpha) = \inf \left\{ \frac{\int_{\Sigma} |\nabla^{g} \widehat{u}|_{g}^{2} dA_{g} - \alpha \int_{\Sigma} \widehat{u}^{2} dA_{g}}{\int_{\partial \Sigma} u^{2} dL_{g}}; u \in \operatorname{dom}(\mathcal{D}_{\alpha}) \setminus \{0\} \right.$$

and
$$\int_{\partial \Sigma} u\phi_{0} dL_{g} = 0 \left. \right\}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Free Boundary Minimal Surface

Eigenvalue shape optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

• Σ - compact orientable surface of genus γ and ℓ boundary components;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

- Σ compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_g$ with Dirichlet boundary condition;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

- Σ compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_g$ with Dirichlet boundary condition;
- There is a proper conformal branched cover $u : (\Sigma, g) \to \mathbb{B}^2_r$ of the degree $\gamma + \ell$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

- Σ compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_g$ with Dirichlet boundary condition;
- There is a proper conformal branched cover $u : (\Sigma, g) \to \mathbb{B}^2_r$ of the degree $\gamma + \ell$;
- Along $\partial \Sigma$ it holds

$$u_0 = \cos r$$
, $u_1^2 + u_2^2 = \sin^2 r$.

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

- Σ compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_g$ with Dirichlet boundary condition;
- There is a proper conformal branched cover $u : (\Sigma, g) \to \mathbb{B}^2_r$ of the degree $\gamma + \ell$;
- Along $\partial \Sigma$ it holds

$$u_0 = \cos r$$
, $u_1^2 + u_2^2 = \sin^2 r$.

• By using conformal diffeomorphisms of \mathbb{B}^2_r , we can assume

÷

$$\int_{\partial \Sigma} u_j \phi_0 \, dL = 0, \quad j = 1, 2,$$

where ϕ_0 is a positive eigenfunction associated to $\sigma_0(g, 2)$.

$$\begin{split} \sigma_0(g,2)\int_{\partial\Sigma} u_0^2\,dL_g &\leq \int_{\Sigma} |\nabla^g\,\widehat{u}_0|_g^2\,dA_g - 2\int_{\Sigma} \widehat{u}_0^2\,dA_g \\ &\leq \int_{\Sigma} |\nabla^g\,u_0|_g^2\,dA_g - 2\int_{\Sigma} u_0^2\,dA_g, \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Free Boundary Minimal Surface

Eigenvalue shape optimization

$$\begin{split} \sigma_0(g,2) \int_{\partial \Sigma} u_0^2 \, dL_g &\leq \int_{\Sigma} |\nabla^g \widehat{u}_0|_g^2 \, dA_g - 2 \int_{\Sigma} \widehat{u}_0^2 \, dA_g \\ &\leq \int_{\Sigma} |\nabla^g u_0|_g^2 \, dA_g - 2 \int_{\Sigma} u_0^2 \, dA_g, \end{split}$$

and for
$$j = 1, 2,$$

$$\begin{aligned} \sigma_1(g,2) \int_{\partial \Sigma} u_j^2 \, dL_g &\leq \int_{\Sigma} |\nabla^g \, \widehat{u}_j|_g^2 \, dA_g - 2 \int_{\Sigma} \widehat{u}_j^2 \, dA_g \\ &\leq \int_{\Sigma} |\nabla^g \, u_j|_g^2 \, dA_g - 2 \int_{\Sigma} u_j^2 \, dA_g. \end{aligned}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Free Boundary Minimal Surface

Eigenvalue shape optimization

$$\sigma_0(g,2)\int_{\partial\Sigma} u_0^2 dL_g \leq \int_{\Sigma} |\nabla^g \widehat{u}_0|_g^2 dA_g - 2\int_{\Sigma} \widehat{u}_0^2 dA_g$$
$$\leq \int_{\Sigma} |\nabla^g u_0|_g^2 dA_g - 2\int_{\Sigma} u_0^2 dA_g,$$

and for j = 1, 2,

$$\begin{split} \sigma_1(g,2) \int_{\partial \Sigma} u_j^2 \, dL_g &\leq \int_{\Sigma} |\nabla^g \widehat{u}_j|_g^2 \, dA_g - 2 \int_{\Sigma} \widehat{u}_j^2 \, dA_g \\ &\leq \int_{\Sigma} |\nabla^g u_j|_g^2 \, dA_g - 2 \int_{\Sigma} u_j^2 \, dA_g. \end{split}$$

We obtain

 $\left(\sigma_0(g,2)\cos^2 r + \sigma_1(g,2)\sin^2 r\right)|\partial\Sigma|_g + 2|\Sigma|_g \leq 4\pi(1-\cos r)(\gamma+\ell).$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

ree Boundary 1inimal Surface

Eigenvalue shape optimization

$$\begin{aligned} \sigma_0(g,2) \int_{\partial \Sigma} u_0^2 \, dL_g &\leq \int_{\Sigma} |\nabla^g \widehat{u}_0|_g^2 \, dA_g - 2 \int_{\Sigma} \widehat{u}_0^2 \, dA_g \\ &\leq \int_{\Sigma} |\nabla^g u_0|_g^2 \, dA_g - 2 \int_{\Sigma} u_0^2 \, dA_g, \end{aligned}$$

and for j = 1, 2,

$$\begin{split} \sigma_1(g,2) \int_{\partial \Sigma} u_j^2 \, dL_g &\leq \int_{\Sigma} |\nabla^g \widehat{u}_j|_g^2 \, dA_g - 2 \int_{\Sigma} \widehat{u}_j^2 \, dA_g \\ &\leq \int_{\Sigma} |\nabla^g u_j|_g^2 \, dA_g - 2 \int_{\Sigma} u_j^2 \, dA_g. \end{split}$$

We obtain

$$\left(\sigma_0(g,2)\cos^2 r + \sigma_1(g,2)\sin^2 r\right)|\partial\Sigma|_g + 2|\Sigma|_g \leq 4\pi(1-\cos r)(\gamma+\ell).$$

We define

 $\Theta_r(\Sigma,g) = \left(\sigma_0(g,2)\cos^2 r + \sigma_1(g,2)\sin^2 r\right)|\partial\Sigma|_g + 2|\Sigma|_g.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ee Boundary inimal Surfac

Eigenvalue shape optimization

Main results I

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results I

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem A (L., Menezes, 2023)

Let Σ be a compact orientable surface of genus γ and ℓ boundary components. Then, for any $g \in \mathcal{M}(\Sigma)$, we have

$$\Theta_r(\Sigma,g) \leq 4\pi(1-\cos r)(\gamma+\ell).$$

Moreover, if Σ is a disk, the equality holds if, and only if, (Σ, g) is isometric to \mathbb{B}^2_r .

Therefore $\Theta_r^*(\Sigma) = \sup_{g \in \mathcal{M}(\Sigma)} \Theta_r(\Sigma, g)$ is finite.

Main results I

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem A (L., Menezes, 2023)

Let Σ be a compact orientable surface of genus γ and ℓ boundary components. Then, for any $g \in \mathcal{M}(\Sigma)$, we have

$$\Theta_r(\Sigma,g) \leq 4\pi(1-\cos r)(\gamma+\ell).$$

Moreover, if Σ is a disk, the equality holds if, and only if, (Σ, g) is isometric to \mathbb{B}^2_r .

Therefore $\Theta_r^*(\Sigma) = \sup_{g \in \mathcal{M}(\Sigma)} \Theta_r(\Sigma, g)$ is finite.

Theorem B (L., Menezes, 2023)

Let Σ be a compact surface with boundary. If $g \in \mathcal{M}(\Sigma)$ satisfies $\Theta_r(\Sigma, g) = \Theta_r^*(\Sigma)$, then there exist a $\sigma_0(g, 2)$ -eigenfunction ϕ_0 and independent $\sigma_1(g, 2)$ -eigenfunctions ϕ_1, \ldots, ϕ_n , which induce a free boundary minimal isometric immersion $\Phi = (\phi_0, \phi_1, \ldots, \phi_n) : (\Sigma, g) \to \mathbb{B}_r^n$.

Free-boundary minimal rotational annuli

Free Boundary Minimal Surface

Eigenvalue shap optimization

Free Boundary Minimal Surfaces

Eigenvalue shape optimization

Main results

Free-boundary minimal rotational annuli

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Otsuki (1970) and do Carmo-Dajczer (1983), described the parametrization of the family of rotational minimal surfaces in \mathbb{S}^3 :
Free-boundary minimal rotational annuli

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Otsuki (1970) and do Carmo-Dajczer (1983), described the parametrization of the family of rotational minimal surfaces in \mathbb{S}^3 : $\Phi_a : \mathbb{R} \times \mathbb{S}^1 \to \mathbb{S}^3$,

$$\Phi_{a}(s,\theta) = \left(\sqrt{\frac{1}{2} - a\cos(2s)}\cos\varphi(s), \sqrt{\frac{1}{2} - a\cos(2s)}\sin\varphi(s), \sqrt{\frac{1}{2} + a\cos(2s)}\sin\varphi(s), \sqrt{\frac{1}{2} + a\cos(2s)}\sin\theta\right),$$

where $-rac{1}{2} < a \leq 0$ is a constant and arphi(s) is given by

$$arphi(s) = \sqrt{rac{1}{4} - a^2} \int_0^s rac{1}{(rac{1}{2} - a\cos(2t))\sqrt{rac{1}{2} + a\cos(2t)}} dt.$$

Free-boundary minimal rotational annuli

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Otsuki (1970) and do Carmo-Dajczer (1983), described the parametrization of the family of rotational minimal surfaces in \mathbb{S}^3 : $\Phi_a : \mathbb{R} \times \mathbb{S}^1 \to \mathbb{S}^3$,

$$\Phi_{a}(s,\theta) = \left(\sqrt{\frac{1}{2} - a\cos(2s)}\cos\varphi(s), \sqrt{\frac{1}{2} - a\cos(2s)}\sin\varphi(s), \sqrt{\frac{1}{2} + a\cos(2s)}\sin\varphi(s), \sqrt{\frac{1}{2} + a\cos(2s)}\sin\theta\right),$$

where $-rac{1}{2} < a \leq 0$ is a constant and arphi(s) is given by

$$arphi(s) = \sqrt{rac{1}{4} - a^2} \int_0^s rac{1}{(rac{1}{2} - a\cos(2t))\sqrt{rac{1}{2} + a\cos(2t)}} dt.$$

Proposition (Li-Xiong, 2018): For any $0 < r \le \frac{\pi}{2}$, there exist $-\frac{1}{2} < a \le 0$ and $s_0 \in \mathbb{R}$ such that $\Phi_a : [-s_0, s_0] \times \mathbb{S}^1 \to \mathbb{B}^3_r$ is a free boundary minimal immersion.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi = (\phi_0, \dots, \phi_n) : (\Sigma, g) \to \mathbb{B}^n_r$. Suppose ϕ_j is a $\sigma_1(g, 2)$ -eigenfunction, for $j = 1, \dots, n$. Then n = 3 and Φ is one of the rotational immersions described previously.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi = (\phi_0, \ldots, \phi_n) : (\Sigma, g) \to \mathbb{B}_r^n$. Suppose ϕ_j is a $\sigma_1(g, 2)$ -eigenfunction, for $j = 1, \ldots, n$. Then n = 3 and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-Ilias which characterize the Clifford torus and the flat equilateral torus.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi = (\phi_0, \ldots, \phi_n) : (\Sigma, g) \to \mathbb{B}^n_r$. Suppose ϕ_j is a $\sigma_1(g, 2)$ -eigenfunction, for $j = 1, \ldots, n$. Then n = 3 and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-Ilias which characterize the Clifford torus and the flat equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric achieving $\Theta_r^*(\Sigma)$ in the case of an annulus, then the metric is induced by the immersion of a rotational free boundary minimal annulus.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi = (\phi_0, \ldots, \phi_n) : (\Sigma, g) \to \mathbb{B}^n_r$. Suppose ϕ_j is a $\sigma_1(g, 2)$ -eigenfunction, for $j = 1, \ldots, n$. Then n = 3 and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-Ilias which characterize the Clifford torus and the flat equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric achieving $\Theta_r^*(\Sigma)$ in the case of an annulus, then the metric is induced by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is $g \in \mathcal{M}(\Sigma)$ realizing $\Theta_r^*(\Sigma)$.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi = (\phi_0, \ldots, \phi_n) : (\Sigma, g) \to \mathbb{B}_r^n$. Suppose ϕ_j is a $\sigma_1(g, 2)$ -eigenfunction, for $j = 1, \ldots, n$. Then n = 3 and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-Ilias which characterize the Clifford torus and the flat equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric achieving $\Theta_r^*(\Sigma)$ in the case of an annulus, then the metric is induced by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is $g \in \mathcal{M}(\Sigma)$ realizing $\Theta_r^*(\Sigma)$.

Remark 3: Inspired by our work, Medvedev (2023) obtained analogous results for geodesics balls in \mathbb{H}^n , \mathbb{H}^n

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Lemma: The multiplicity of $\sigma_1(g, 2)$ is at most 3. Hence n = 3.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Lemma: The multiplicity of $\sigma_1(g, 2)$ is at most 3. Hence n = 3. Recall that

$$\begin{split} & \Delta_g \, \phi_i + 2\phi_i = 0 \quad \text{in } \Sigma, \ i = 0, 1, 2, 3, \\ & \frac{\partial \phi_0}{\partial \nu} + (\tan r) \phi_0 = 0 \quad \text{on } \partial \Sigma, \\ & \frac{\partial \phi_i}{\partial \nu} - (\cot r) \phi_i = 0 \quad \text{on } \partial \Sigma, \ i = 1, 2, 3. \end{split}$$

Since $\Sigma \simeq [0,1] \times \mathbb{S}^1$, then $g = \lambda g_{\mathrm{cyl}}$, for some positive function $\lambda = \lambda(s,\theta)$. In particular, $\Delta_g = \lambda^{-1} \Delta_{\mathrm{cyl}}$ and $\nu_g = \lambda^{-\frac{1}{2}} \nu_{\mathrm{cyl}}$.

Free Boundary Minimal Surface

Eigenvalue shape optimization

Main results

Lemma: The multiplicity of $\sigma_1(g, 2)$ is at most 3. Hence n = 3. Recall that

$$\begin{split} &\Delta_g \,\phi_i + 2\phi_i = 0 \quad \text{in } \Sigma, \ i = 0, 1, 2, 3, \\ &\frac{\partial \phi_0}{\partial \nu} + (\tan r)\phi_0 = 0 \quad \text{on } \partial \Sigma, \\ &\frac{\partial \phi_i}{\partial \nu} - (\cot r)\phi_i = 0 \quad \text{on } \partial \Sigma, \ i = 1, 2, 3. \end{split}$$

Since $\Sigma \simeq [0,1] \times \mathbb{S}^1$, then $g = \lambda g_{\mathrm{cyl}}$, for some positive function $\lambda = \lambda(s, \theta)$. In particular, $\Delta_g = \lambda^{-1} \Delta_{\mathrm{cyl}}$ and $\nu_g = \lambda^{-\frac{1}{2}} \nu_{\mathrm{cyl}}$.

$$\begin{split} \Delta_{g} \phi_{i} + 2\phi_{i} &= 0 \implies \Delta_{cyl} \phi_{i} + 2\lambda \phi_{i} = 0 \\ \Rightarrow \Delta_{cyl} \frac{\partial \phi_{i}}{\partial \theta} + 2 \frac{\partial \lambda}{\partial \theta} \phi_{i} + 2\lambda \frac{\partial \phi_{i}}{\partial \theta} = 0 \\ \Rightarrow \Delta_{g} \frac{\partial \Phi}{\partial \theta} + 2\lambda^{-1} \frac{\partial \lambda}{\partial \theta} \Phi + 2 \frac{\partial \Phi}{\partial \theta} = 0. \end{split}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Eigenvalue shape optimization

Main results

Claim: The condition $\sigma_0(g,2) = -\tan r$ and $\sigma_1(g,2) = \cot r$ implies

$$\Delta_g \frac{\partial \phi_j}{\partial \theta} + 2 \frac{\partial \phi_j}{\partial \theta} = 0 \text{ in } \Sigma.$$

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

Eigenvalue shape optimization

Main results

Claim: The condition $\sigma_0(g,2) = -\tan r$ and $\sigma_1(g,2) = \cot r$ implies

$$\Delta_g \frac{\partial \phi_j}{\partial \theta} + 2 \frac{\partial \phi_j}{\partial \theta} = 0 \text{ in } \Sigma.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

The idea is to use $\frac{\partial \phi_i}{\partial \theta}$ as test-functions for σ_1 .

Eigenvalue shape optimization

Main results

Claim: The condition $\sigma_0(g,2) = -\tan r$ and $\sigma_1(g,2) = \cot r$ implies

$$\Delta_{g} \frac{\partial \phi_{j}}{\partial \theta} + 2 \frac{\partial \phi_{j}}{\partial \theta} = 0 \text{ in } \Sigma.$$

The idea is to use $\frac{\partial \phi_j}{\partial \theta}$ as test-functions for σ_1 .

• Combining this with the previous equation we conclude that

$$\frac{\partial \lambda}{\partial \theta} \equiv \mathbf{0},$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

i.e, the metric g is rotationally symmetric.

Eigenvalue shape optimization

Main results

Claim: The condition $\sigma_0(g,2) = -\tan r$ and $\sigma_1(g,2) = \cot r$ implies

$$\Delta_g \frac{\partial \phi_j}{\partial \theta} + 2 \frac{\partial \phi_j}{\partial \theta} = 0 \text{ in } \Sigma.$$

The idea is to use $\frac{\partial \phi_j}{\partial \theta}$ as test-functions for σ_1 .

Combining this with the previous equation we conclude that

$$\frac{\partial \lambda}{\partial \theta} \equiv \mathbf{0},$$

i.e, the metric g is rotationally symmetric.

 An O.D.E analysis implies that Φ is rotational in the sense of do Carmo-Dajczer-Otsuki, so Φ(Σ) is one of the annuli described before.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Eigenvalue shape optimization

Main results

Thank you!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @