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Free Boundary Minimal Immersions

Definition
Consider a Riemannian manifold with boundary (N n, g) and a
compact surface Σ2. Let Φ : Σ → N be an immersion such that
Φ(Σ) ∩ ∂N = Φ(∂Σ).

• Φ is a free boundary minimal immersion if:

(i) H⃗ = 0;

(ii) Φ(Σ) meets ∂N orthogonally along Φ(∂Σ) (i.e., ν ⊥ ∂N ).

Remark: If ∂Σ = ∅ we say Φ is a closed minimal immersion.

Figure: (N , g) = Euclidean 3-ball and Φ(Σ) = equatorial disc.
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Critical Points of the Area Functional with Free
Boundary

• Let Φt : Σ → N be a smooth one parameter family of
immersions for t ∈ (−ϵ, ϵ) such that Φt(∂Σ) ⊂ ∂N .

• Denote X = ∂Φ
∂t (X |∂Σ is tangent to ∂N ).

The first variation formula gives:

d

dt

∣∣∣∣
t=0

∣∣Φt(Σ)
∣∣ = −

∫
Σ

⟨H⃗,X ⟩ dA+

∫
∂Σ

⟨ν,X ⟩ dL.

Critical point ⇐⇒ H⃗ = 0 and ν ⊥ ∂N .
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Closed minimal immersions and Laplacian
eigenvalues

• (M, g) - closed Riemannian surface;

• Laplacian of (M, g): ∆g = divg (∇g ) : C
∞(M) → C∞(M);

• The spectrum of −∆g is discrete:

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ . . . λj(g) ≤ . . . → +∞;

• n-dimensional round sphere: Sn =
{
x ∈ Rn+1;

∑n
j=0 x

2
j = 1

}
;

• (Takahashi, 1966): A isometric immersion ϕ : (M, g) → Sn is
minimal if, and only if, the coordinate functions ϕj = xj ◦ ϕ
satisfy

−∆g ϕj = 2ϕj ,

i.e., ϕj is a eigenfunction of −∆g with eigenvalue 2.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Closed minimal immersions and Laplacian
eigenvalues

• (M, g) - closed Riemannian surface;

• Laplacian of (M, g): ∆g = divg (∇g ) : C
∞(M) → C∞(M);

• The spectrum of −∆g is discrete:

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ . . . λj(g) ≤ . . . → +∞;

• n-dimensional round sphere: Sn =
{
x ∈ Rn+1;

∑n
j=0 x

2
j = 1

}
;

• (Takahashi, 1966): A isometric immersion ϕ : (M, g) → Sn is
minimal if, and only if, the coordinate functions ϕj = xj ◦ ϕ
satisfy

−∆g ϕj = 2ϕj ,

i.e., ϕj is a eigenfunction of −∆g with eigenvalue 2.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Closed minimal immersions and Laplacian
eigenvalues

• (M, g) - closed Riemannian surface;

• Laplacian of (M, g): ∆g = divg (∇g ) : C
∞(M) → C∞(M);

• The spectrum of −∆g is discrete:

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ . . . λj(g) ≤ . . . → +∞;

• n-dimensional round sphere: Sn =
{
x ∈ Rn+1;

∑n
j=0 x

2
j = 1

}
;

• (Takahashi, 1966): A isometric immersion ϕ : (M, g) → Sn is
minimal if, and only if, the coordinate functions ϕj = xj ◦ ϕ
satisfy

−∆g ϕj = 2ϕj ,

i.e., ϕj is a eigenfunction of −∆g with eigenvalue 2.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Closed minimal immersions and Laplacian
eigenvalues

• (M, g) - closed Riemannian surface;

• Laplacian of (M, g): ∆g = divg (∇g ) : C
∞(M) → C∞(M);

• The spectrum of −∆g is discrete:

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ . . . λj(g) ≤ . . . → +∞;

• n-dimensional round sphere: Sn =
{
x ∈ Rn+1;

∑n
j=0 x

2
j = 1

}
;

• (Takahashi, 1966): A isometric immersion ϕ : (M, g) → Sn is
minimal if, and only if, the coordinate functions ϕj = xj ◦ ϕ
satisfy

−∆g ϕj = 2ϕj ,

i.e., ϕj is a eigenfunction of −∆g with eigenvalue 2.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Closed minimal immersions and Laplacian
eigenvalues

• (M, g) - closed Riemannian surface;

• Laplacian of (M, g): ∆g = divg (∇g ) : C
∞(M) → C∞(M);

• The spectrum of −∆g is discrete:

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ . . . λj(g) ≤ . . . → +∞;

• n-dimensional round sphere: Sn =
{
x ∈ Rn+1;

∑n
j=0 x

2
j = 1

}
;

• (Takahashi, 1966): A isometric immersion ϕ : (M, g) → Sn is
minimal if, and only if, the coordinate functions ϕj = xj ◦ ϕ
satisfy

−∆g ϕj = 2ϕj ,

i.e., ϕj is a eigenfunction of −∆g with eigenvalue 2.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Closed minimal immersions and Laplacian
eigenvalues

• (M, g) - closed Riemannian surface;

• Laplacian of (M, g): ∆g = divg (∇g ) : C
∞(M) → C∞(M);

• The spectrum of −∆g is discrete:

0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ . . . λj(g) ≤ . . . → +∞;

• n-dimensional round sphere: Sn =
{
x ∈ Rn+1;

∑n
j=0 x

2
j = 1

}
;

• (Takahashi, 1966): A isometric immersion ϕ : (M, g) → Sn is
minimal if, and only if, the coordinate functions ϕj = xj ◦ ϕ
satisfy

−∆g ϕj = 2ϕj ,

i.e., ϕj is a eigenfunction of −∆g with eigenvalue 2.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

λ∗
1(M) = sup

g
λ1(g)|M|g .

• (Hersch, Yang-Yau, Karpukhin): λ∗
1(M) < ∞.

• (Nadirashvili, 1996): metrics maximizing λ1(g)|M|g are induced
by branched minimal immersions ϕ : M → Sn, for some n.

• (Petrides, 2014): a maximizing metric (possibly with conical
singularities) for supg∈C λ1(g)|M|g exists on each conformal
class C.
The maximizer induces a harmonic map ϕ : (M, C) → Sn.

• (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): Let Mγ

be the closed orientable surface of genus γ. Then λ∗
1(Mγ) or

λ∗
1(Mγ+1) admits a maximizing metric, for each γ.
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Known Cases of Maximizers

• 2-sphere (Hersch, 1970): round metric, Id : S2 → S2, λ∗
1 = 8π;

• Projective plane (Li-Yau, 1982): round metric, Veronese
immersion RP2 → S5, λ∗

1 = 12π;

• 2-torus (Nadirashvili, 1996): flat equilateral metric, unique

immersion by first eigenfunctions, T2 → S5, λ∗
1 = 8π2

√
3
;

• Klein bottle (El Soufi-Giacomini-Jazar,
Jakobson-Nadirashvili-Polterovich, 2006): there is a unique

immersion by first eigenfunctions K → S4, λ∗
1 = 12πE

(
2
√
2

3

)
;

• Orientable surface of genus 2 (Nayatani-Shoda, 2019): induced
by a certain branched cover M → S2, λ∗

1 = 16π.
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Free-boundary minimal immersions and Steklov
eigenvalues

• (Σ, g) - compact Riemannian surface, with non-empty boundary;

• ν - outward pointing g -unit conormal vector field on ∂Σ.

• Dirichlet-to-Neumann map of (Σ, g): Sg : C∞(∂Σ) → C∞(∂Σ),

Sgϕ =
∂ϕ̂

∂ν
,

where ϕ̂ is the harmonic extension of ϕ (∆g ϕ̂ = 0).

• The spectrum of Sg is discrete (Steklov eigenvalues):

0 = σ0(g) < σ1(g) ≤ σ2(g) ≤ · · · → +∞.

• (Fraser-Schoen, 2011): Let Φ : (Σ, g) → Bn ⊂ Rn be an
isometric immersion, such that Φ(Σ) ⊂ ∂ Bn. Then, Φ is
minimal and free-boundary if, and only if, ϕj = xj ◦ ϕ are

eigenfunctions of Sg with eigenvalue 1
(
∆gϕj = 0,

∂ϕj

∂ν = ϕj

)
.
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The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

σ∗
1 (Σ) = sup

g
σ1(g)|∂Σ|g .

• (Weinstock, Fraser-Schoen, Medvedev): σ∗
1 (Σ) < ∞.

• (Fraser-Schoen, 2012): metrics maximizing σ1(g)|∂Σ|g are
induced by branched conformal minimal immersions ϕ : Σ → Bn.

• (Petrides, 2019): A maximizer for supg∈C σ1(g)|∂Σ|g exists if

sup
g∈C

σ1(g)|∂Σ|g > 2π.

The maximizer induces a free-boundary harmonic map
ϕ : (Σ, C) → Bn.

• (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): each
compact oriented surface with boundary, of genus zero or one,
admits a σ∗

1 -maximizing metric.
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Known Cases of Maximizers

• Disk (Weinstock, 1954): Flat metric with c.g.c, Id : B2 → B2,
σ∗
1 = 2π.

• Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique
immersion by first eigenfunctions [0, 1]× S1 → B3, σ∗

1 ≃ 10π√
3
.

• Mobius Band (Fraser-Schoen, 2012): Induced by the unique
immersion by first eigenfunctions in B4, σ∗

1 = 2π
√
3.

• Orientable surface of genus 0 and ℓ boundary components
(Fraser-Schoen, 2012 + Karpukhin-Stern, 2021): σ∗

1 is realized

by an embedded FBMS Σℓ ⊂ B3, such that Σℓ → S2 as ℓ → ∞.

Figure: Picture by M. Schulz.
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Free-boundary minimal immersions in spherical
caps

Bn
r = {x ∈ Sn; x0 ≥ cos r} :

geodesic ball of Sn of center p = (1, 0, . . . , 0)

and radius 0 < r < π/2.

• Φ : (Σ, g) → Bn
r is minimal and free boundary if, and only if,

ϕi = xi ◦ Φ satisfy:

−∆g ϕi = 2ϕi , in Σ, i = 0, 1, . . . , n,

∂ϕ0

∂ν
= −(tan r)ϕ0, on ∂Σ,

∂ϕi

∂ν
= (cot r)ϕi , on ∂Σ, i = 1, . . . , n.

• σ = 2 is not an eigenvalue of −∆g with Dirichlet boundary
condition: {

−∆gw = 2w , in Σ, ⇒ w ≡ 0.

w = 0, on ∂Σ,
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Steklov eingenvalue problem with frequency

• Fix α ∈ R which is not on the spectrum of −∆g with Dirichlet
boundary condition;

• given u ∈ C∞(∂Σ), there is a unique û ∈ C∞(Σ), such that

∆g û + αû = 0, in Σ,

û = u, in ∂Σ.

• Dirichlet-to-Neumann map at frequency α:

Dα : C∞(∂Σ) → C∞(∂Σ)

Dαϕ =
∂ϕ̂

∂ν
.

• The spectrum of Dα is discrete (Steklov eigenvalues with
frequency α)

σ0(g , α) < σ1(g , α) ≤ σ2(g , α) ≤ · · · → +∞.

• The case α = 0 corresponds to the usual Steklov spectrum.
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Variational characterization of eigenvalues

The eigenvalue σ0(g , α) is simple and is given by

σ0(g , α) = inf


∫
Σ

|∇g û|2g dAg − α

∫
Σ

û 2 dAg∫
∂Σ

u2 dLg

; u ∈ dom(Dα) \ {0}

 .

Denote by ϕ0 a first eigenfunction, which we can choose to be
positive. Then,

σ1(g , α) = inf

{∫
Σ

|∇g û|2g dAg − α

∫
Σ

û 2 dAg∫
∂Σ

u2 dLg

; u ∈ dom(Dα) \ {0}

and

∫
∂Σ

uϕ0 dLg = 0

}
.
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Defining a functional via eigenvalues

• Σ - compact orientable surface of genus γ and ℓ boundary
components;

• M(Σ) - space of smooth Riemannian metrics g on Σ such that
2 is not an eigenvalue of −∆g with Dirichlet boundary condition;

• There is a proper conformal branched cover u : (Σ, g) → B2
r of

the degree γ + ℓ;

• Along ∂Σ it holds

u0 = cos r , u21 + u22 = sin2 r .

• By using conformal diffeomorphisms of B2
r , we can assume∫

∂Σ

ujϕ0 dL = 0, j = 1, 2,

where ϕ0 is a positive eigenfunction associated to σ0(g , 2).
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• Along ∂Σ it holds

u0 = cos r , u21 + u22 = sin2 r .

• By using conformal diffeomorphisms of B2
r , we can assume∫

∂Σ

ujϕ0 dL = 0, j = 1, 2,

where ϕ0 is a positive eigenfunction associated to σ0(g , 2).
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σ0(g , 2)

∫
∂Σ

u20 dLg ≤
∫
Σ

|∇g û0|2g dAg − 2

∫
Σ

û 2
0 dAg

≤
∫
Σ

|∇gu0|2g dAg − 2

∫
Σ

u20 dAg ,

and for j = 1, 2,

σ1(g , 2)

∫
∂Σ

u2j dLg ≤
∫
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|∇g ûj |2g dAg − 2

∫
Σ

û 2
j dAg

≤
∫
Σ

|∇guj |2g dAg − 2

∫
Σ

u2j dAg .

We obtain(
σ0(g , 2) cos

2 r + σ1(g , 2) sin
2 r
)
|∂Σ|g +2|Σ|g ≤ 4π(1−cos r)(γ+ℓ).

We define

Θr (Σ, g) =
(
σ0(g , 2) cos

2 r + σ1(g , 2) sin
2 r
)
|∂Σ|g + 2|Σ|g .
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|∇g ûj |2g dAg − 2

∫
Σ
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Main results I

Theorem A (L., Menezes, 2023)

Let Σ be a compact orientable surface of genus γ and ℓ boundary
components. Then, for any g ∈ M(Σ), we have

Θr (Σ, g) ≤ 4π(1− cos r)(γ + ℓ).

Moreover, if Σ is a disk, the equality holds if, and only if, (Σ, g) is
isometric to B2

r .

Therefore Θ∗
r (Σ) = supg∈M(Σ) Θr (Σ, g) is finite.

Theorem B (L., Menezes, 2023)

Let Σ be a compact surface with boundary. If g ∈ M(Σ) satisfies
Θr (Σ, g) = Θ∗

r (Σ), then there exist a σ0(g , 2)-eigenfunction ϕ0 and
independent σ1(g , 2)-eigenfunctions ϕ1, . . . , ϕn, which induce a free
boundary minimal isometric immersion
Φ = (ϕ0, ϕ1, . . . , ϕn) : (Σ, g) → Bn

r .
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Free-boundary minimal rotational annuli

Otsuki (1970) and do Carmo-Dajczer (1983), described the
parametrization of the family of rotational minimal surfaces in S3:
Φa : R× S1 → S3,

Φa(s, θ) =

(√
1

2
− a cos(2s) cosφ(s),

√
1

2
− a cos(2s) sinφ(s),√

1

2
+ a cos(2s) cos θ,

√
1

2
+ a cos(2s) sin θ

)
,

where − 1
2 < a ≤ 0 is a constant and φ(s) is given by

φ(s) =

√
1

4
− a2

∫ s

0

1

( 12 − a cos(2t))
√

1
2 + a cos(2t)

dt.

Proposition (Li-Xiong, 2018): For any 0 < r ≤ π
2 , there exist

− 1
2 < a ≤ 0 and s0 ∈ R such that Φa : [−s0, s0]× S1 → B3

r is a free
boundary minimal immersion.
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Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion
Φ = (ϕ0, . . . , ϕn) : (Σ, g) → Bn

r . Suppose ϕj is a
σ1(g , 2)-eigenfunction, for j = 1, . . . , n. Then n = 3 and Φ is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-Ilias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving Θ∗

r (Σ) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is
g ∈ M(Σ) realizing Θ∗

r (Σ).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in Hn.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion
Φ = (ϕ0, . . . , ϕn) : (Σ, g) → Bn

r . Suppose ϕj is a
σ1(g , 2)-eigenfunction, for j = 1, . . . , n. Then n = 3 and Φ is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-Ilias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving Θ∗

r (Σ) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is
g ∈ M(Σ) realizing Θ∗

r (Σ).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in Hn.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion
Φ = (ϕ0, . . . , ϕn) : (Σ, g) → Bn

r . Suppose ϕj is a
σ1(g , 2)-eigenfunction, for j = 1, . . . , n. Then n = 3 and Φ is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-Ilias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving Θ∗

r (Σ) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is
g ∈ M(Σ) realizing Θ∗

r (Σ).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in Hn.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion
Φ = (ϕ0, . . . , ϕn) : (Σ, g) → Bn

r . Suppose ϕj is a
σ1(g , 2)-eigenfunction, for j = 1, . . . , n. Then n = 3 and Φ is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-Ilias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving Θ∗

r (Σ) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is
g ∈ M(Σ) realizing Θ∗

r (Σ).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in Hn.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion
Φ = (ϕ0, . . . , ϕn) : (Σ, g) → Bn

r . Suppose ϕj is a
σ1(g , 2)-eigenfunction, for j = 1, . . . , n. Then n = 3 and Φ is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-Ilias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving Θ∗

r (Σ) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is
g ∈ M(Σ) realizing Θ∗

r (Σ).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in Hn.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion
Φ = (ϕ0, . . . , ϕn) : (Σ, g) → Bn

r . Suppose ϕj is a
σ1(g , 2)-eigenfunction, for j = 1, . . . , n. Then n = 3 and Φ is one of
the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical
catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El
Soufi-Ilias which characterize the Clifford torus and the flat
equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric
achieving Θ∗

r (Σ) in the case of an annulus, then the metric is induced
by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is
g ∈ M(Σ) realizing Θ∗

r (Σ).

Remark 3: Inspired by our work, Medvedev (2023) obtained
analogous results for geodesics balls in Hn.



Free Boundary
Minimal Surfaces

Eigenvalue shape
optimization

Main results

Sketch of the proof of Theorem C

Lemma: The multiplicity of σ1(g , 2) is at most 3. Hence n = 3.

Recall that

∆g ϕi + 2ϕi = 0 in Σ, i = 0, 1, 2, 3,

∂ϕ0

∂ν
+ (tan r)ϕ0 = 0 on ∂Σ,

∂ϕi

∂ν
− (cot r)ϕi = 0 on ∂Σ, i = 1, 2, 3.

Since Σ ≃ [0, 1]× S1, then g = λgcyl, for some positive function

λ = λ(s, θ). In particular, ∆g = λ−1∆cyl and νg = λ− 1
2 νcyl.

∆g ϕi + 2ϕi = 0 ⇒ ∆cyl ϕi + 2λϕi = 0

⇒ ∆cyl
∂ϕi

∂θ
+ 2

∂λ

∂θ
ϕi + 2λ

∂ϕi

∂θ
= 0

⇒ ∆g
∂Φ

∂θ
+ 2λ−1 ∂λ

∂θ
Φ+ 2

∂Φ

∂θ
= 0.
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Claim: The condition σ0(g , 2) = − tan r and σ1(g , 2) = cot r implies

∆g
∂ϕj

∂θ
+ 2

∂ϕj

∂θ
= 0 in Σ.

The idea is to use
∂ϕj

∂θ as test-functions for σ1.

• Combining this with the previous equation we conclude that

∂λ

∂θ
≡ 0,

i.e, the metric g is rotationally symmetric.

• An O.D.E analysis implies that Φ is rotational in the sense of do
Carmo-Dajczer-Otsuki, so Φ(Σ) is one of the annuli described
before.
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