Vanderson Lima
Universidade Federal do Rio Grande do Sul (Brazil)
(Joint work with Ana Menezes - Princeton University)
Geometric Flows and Relativity Punta del Este (Uruguay), March 18, 2024

Free Boundary Minimal Immersions

Free Boundary Minimal Immersions

Definition

Consider a Riemannian manifold with boundary $\left(\mathcal{N}^{n}, \mathbf{g}\right)$ and a compact surface Σ^{2}. Let $\Phi: \Sigma \rightarrow \mathcal{N}$ be an immersion such that $\Phi(\Sigma) \cap \partial \mathcal{N}=\Phi(\partial \Sigma)$.

- Φ is a free boundary minimal immersion if:
(i) $\vec{H}=0$;
(ii) $\Phi(\Sigma)$ meets $\partial \mathcal{N}$ orthogonally along $\Phi(\partial \Sigma)$ (i.e., $\nu \perp \partial \mathcal{N})$.

Free Boundary Minimal Immersions

Definition

Consider a Riemannian manifold with boundary ($\mathcal{N}^{n}, \mathbf{g}$) and a compact surface Σ^{2}. Let $\Phi: \Sigma \rightarrow \mathcal{N}$ be an immersion such that $\Phi(\Sigma) \cap \partial \mathcal{N}=\Phi(\partial \Sigma)$.

- Φ is a free boundary minimal immersion if:
(i) $\vec{H}=0$;
(ii) $\Phi(\Sigma)$ meets $\partial \mathcal{N}$ orthogonally along $\Phi(\partial \Sigma)$ (i.e., $\nu \perp \partial \mathcal{N})$.

Remark: If $\partial \Sigma=\emptyset$ we say Φ is a closed minimal immersion.

Free Boundary Minimal Immersions

Definition

Consider a Riemannian manifold with boundary ($\mathcal{N}^{n}, \mathbf{g}$) and a compact surface Σ^{2}. Let $\Phi: \Sigma \rightarrow \mathcal{N}$ be an immersion such that $\Phi(\Sigma) \cap \partial \mathcal{N}=\Phi(\partial \Sigma)$.

- Φ is a free boundary minimal immersion if:
(i) $\vec{H}=0$;
(ii) $\Phi(\Sigma)$ meets $\partial \mathcal{N}$ orthogonally along $\Phi(\partial \Sigma)$ (i.e., $\nu \perp \partial \mathcal{N})$.

Remark: If $\partial \Sigma=\emptyset$ we say Φ is a closed minimal immersion.

Figure: $(\mathcal{N}, \mathbf{g})=$ Euclidean 3-ball and $\Phi(\Sigma)=$ equatorial disc.

Critical Points of the Area Functional with Free Boundary

Critical Points of the Area Functional with Free

- Let $\Phi_{t}: \Sigma \rightarrow \mathcal{N}$ be a smooth one parameter family of immersions for $t \in(-\epsilon, \epsilon)$ such that $\Phi_{t}(\partial \Sigma) \subset \partial \mathcal{N}$.
- Denote $X=\frac{\partial \Phi}{\partial t}\left(\left.X\right|_{\partial \Sigma}\right.$ is tangent to $\left.\partial \mathcal{N}\right)$.

Critical Points of the Area Functional with Free

- Let $\Phi_{t}: \Sigma \rightarrow \mathcal{N}$ be a smooth one parameter family of immersions for $t \in(-\epsilon, \epsilon)$ such that $\Phi_{t}(\partial \Sigma) \subset \partial \mathcal{N}$.
- Denote $X=\frac{\partial \Phi}{\partial t}\left(\left.X\right|_{\partial \Sigma}\right.$ is tangent to $\left.\partial \mathcal{N}\right)$.

The first variation formula gives:

$$
\left.\frac{d}{d t}\right|_{t=0}\left|\Phi_{t}(\Sigma)\right|=-\int_{\Sigma}\langle\vec{H}, X\rangle d A+\int_{\partial \Sigma}\langle\nu, X\rangle d L
$$

Critical point $\quad \Longleftrightarrow \quad \vec{H}=0$ and $\nu \perp \partial \mathcal{N}$.

Closed minimal immersions and Laplacian eigenvalues

Closed minimal immersions and Laplacian eigenvalues

- (M, g) - closed Riemannian surface;
- Laplacian of $(M, g): \Delta_{g}=\operatorname{div}_{g}\left(\nabla_{g}\right): C^{\infty}(M) \rightarrow C^{\infty}(M)$;

Closed minimal immersions and Laplacian eigenvalues

- (M, g) - closed Riemannian surface;
- Laplacian of $(M, g): \Delta_{g}=\operatorname{div}_{g}\left(\nabla_{g}\right): C^{\infty}(M) \rightarrow C^{\infty}(M)$;
- The spectrum of $-\Delta_{g}$ is discrete:

$$
0=\lambda_{0}(g)<\lambda_{1}(g) \leq \lambda_{2}(g) \leq \ldots \lambda_{j}(g) \leq \ldots \rightarrow+\infty ;
$$

Closed minimal immersions and Laplacian eigenvalues

- (M, g) - closed Riemannian surface;
- Laplacian of $(M, g): \Delta_{g}=\operatorname{div}_{g}\left(\nabla_{g}\right): C^{\infty}(M) \rightarrow C^{\infty}(M)$;
- The spectrum of $-\Delta_{g}$ is discrete:

$$
0=\lambda_{0}(g)<\lambda_{1}(g) \leq \lambda_{2}(g) \leq \ldots \lambda_{j}(g) \leq \ldots \rightarrow+\infty ;
$$

- n-dimensional round sphere: $\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1} ; \sum_{j=0}^{n} x_{j}^{2}=1\right\}$;

Closed minimal immersions and Laplacian eigenvalues

- (M, g) - closed Riemannian surface;
- Laplacian of $(M, g): \Delta_{g}=\operatorname{div}_{g}\left(\nabla_{g}\right): C^{\infty}(M) \rightarrow C^{\infty}(M)$;
- The spectrum of $-\Delta_{g}$ is discrete:

$$
0=\lambda_{0}(g)<\lambda_{1}(g) \leq \lambda_{2}(g) \leq \ldots \lambda_{j}(g) \leq \ldots \rightarrow+\infty ;
$$

- n-dimensional round sphere: $\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1} ; \sum_{j=0}^{n} x_{j}^{2}=1\right\}$;
- (Takahashi, 1966): A isometric immersion $\phi:(M, g) \rightarrow \mathbb{S}^{n}$ is minimal if, and only if, the coordinate functions $\phi_{j}=x_{j} \circ \phi$ satisfy

$$
-\Delta_{g} \phi_{j}=2 \phi_{j},
$$

Closed minimal immersions and Laplacian eigenvalues

- (M, g) - closed Riemannian surface;
- Laplacian of $(M, g): \Delta_{g}=\operatorname{div}_{g}\left(\nabla_{g}\right): C^{\infty}(M) \rightarrow C^{\infty}(M)$;
- The spectrum of $-\Delta_{g}$ is discrete:

$$
0=\lambda_{0}(g)<\lambda_{1}(g) \leq \lambda_{2}(g) \leq \ldots \lambda_{j}(g) \leq \ldots \rightarrow+\infty ;
$$

- n-dimensional round sphere: $\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1} ; \sum_{j=0}^{n} x_{j}^{2}=1\right\}$;
- (Takahashi, 1966): A isometric immersion $\phi:(M, g) \rightarrow \mathbb{S}^{n}$ is minimal if, and only if, the coordinate functions $\phi_{j}=x_{j} \circ \phi$ satisfy

$$
-\Delta_{g} \phi_{j}=2 \phi_{j},
$$

i.e., ϕ_{j} is a eigenfunction of $-\Delta_{g}$ with eigenvalue 2.

The normalized first Laplacian eigenvalue

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$
\lambda_{1}^{*}(M)=\sup _{g} \lambda_{1}(g)|M|_{g}
$$

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$
\lambda_{1}^{*}(M)=\sup _{g} \lambda_{1}(g)|M|_{g} .
$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_{1}^{*}(M)<\infty$.

The normalized first Laplacian eigenvalue

Minimal Surfaces

$$
\lambda_{1}^{*}(M)=\sup _{g} \lambda_{1}(g)|M|_{g}
$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_{1}^{*}(M)<\infty$.
- (Nadirashvili, 1996): metrics maximizing $\lambda_{1}(g)|M| g$ are induced by branched minimal immersions $\phi: M \rightarrow \mathbb{S}^{n}$, for some n.

The normalized first Laplacian eigenvalue

$$
\lambda_{1}^{*}(M)=\sup _{g} \lambda_{1}(g)|M|_{g}
$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_{1}^{*}(M)<\infty$.
- (Nadirashvili, 1996): metrics maximizing $\lambda_{1}(g)|M|_{g}$ are induced by branched minimal immersions $\phi: M \rightarrow \mathbb{S}^{n}$, for some n.
- (Petrides, 2014): a maximizing metric (possibly with conical singularities) for $\sup _{g \in \mathcal{C}} \lambda_{1}(g)|M|_{g}$ exists on each conformal class \mathcal{C}.

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$
\lambda_{1}^{*}(M)=\sup _{g} \lambda_{1}(g)|M| g
$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_{1}^{*}(M)<\infty$.
- (Nadirashvili, 1996): metrics maximizing $\lambda_{1}(g)|M| g$ are induced by branched minimal immersions $\phi: M \rightarrow \mathbb{S}^{n}$, for some n.
- (Petrides, 2014): a maximizing metric (possibly with conical singularities) for $\sup _{g \in \mathcal{C}} \lambda_{1}(g)|M|_{g}$ exists on each conformal class \mathcal{C}.
The maximizer induces a harmonic map $\phi:(M, \mathcal{C}) \rightarrow \mathbb{S}^{n}$.

The normalized first Laplacian eigenvalue

In a closed surface M we can consider:

$$
\lambda_{1}^{*}(M)=\sup _{g} \lambda_{1}(g)|M|_{g}
$$

- (Hersch, Yang-Yau, Karpukhin): $\lambda_{1}^{*}(M)<\infty$.
- (Nadirashvili, 1996): metrics maximizing $\lambda_{1}(g)|M|_{g}$ are induced by branched minimal immersions $\phi: M \rightarrow \mathbb{S}^{n}$, for some n.
- (Petrides, 2014): a maximizing metric (possibly with conical singularities) for $\sup _{g \in \mathcal{C}} \lambda_{1}(g)|M|_{g}$ exists on each conformal class \mathcal{C}.
The maximizer induces a harmonic map $\phi:(M, \mathcal{C}) \rightarrow \mathbb{S}^{n}$.
- (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): Let M_{γ} be the closed orientable surface of genus γ. Then $\lambda_{1}^{*}\left(M_{\gamma}\right)$ or $\lambda_{1}^{*}\left(M_{\gamma+1}\right)$ admits a maximizing metric, for each γ.

Known Cases of Maximizers

Known Cases of Maximizers

- 2 -sphere (Hersch, 1970): round metric, Id : $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \lambda_{1}^{*}=8 \pi$;

Known Cases of Maximizers

Minimal Surface

- 2 -sphere (Hersch, 1970): round metric, Id : $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \lambda_{1}^{*}=8 \pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion $\mathbb{R P}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=12 \pi$;

Known Cases of Maximizers

Minimal Surface

- 2 -sphere (Hersch, 1970): round metric, Id : $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \lambda_{1}^{*}=8 \pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion $\mathbb{R P}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=12 \pi$;
- 2-torus (Nadirashvili, 1996): flat equilateral metric, unique immersion by first eigenfunctions, $\mathbb{T}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=\frac{8 \pi^{2}}{\sqrt{3}}$;

Known Cases of Maximizers

- 2 -sphere (Hersch, 1970): round metric, Id : $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \lambda_{1}^{*}=8 \pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion $\mathbb{R P}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=12 \pi$;
- 2-torus (Nadirashvili, 1996): flat equilateral metric, unique immersion by first eigenfunctions, $\mathbb{T}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=\frac{8 \pi^{2}}{\sqrt{3}}$;
- Klein bottle (El Soufi-Giacomini-Jazar, Jakobson-Nadirashvili-Polterovich, 2006): there is a unique immersion by first eigenfunctions $\mathbb{K} \rightarrow \mathbb{S}^{4}, \lambda_{1}^{*}=12 \pi E\left(\frac{2 \sqrt{2}}{3}\right)$;

Known Cases of Maximizers

- 2 -sphere (Hersch, 1970): round metric, Id : $\mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \lambda_{1}^{*}=8 \pi$;
- Projective plane (Li-Yau, 1982): round metric, Veronese immersion $\mathbb{R P}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=12 \pi$;
- 2-torus (Nadirashvili, 1996): flat equilateral metric, unique immersion by first eigenfunctions, $\mathbb{T}^{2} \rightarrow \mathbb{S}^{5}, \lambda_{1}^{*}=\frac{8 \pi^{2}}{\sqrt{3}}$;
- Klein bottle (El Soufi-Giacomini-Jazar, Jakobson-Nadirashvili-Polterovich, 2006): there is a unique immersion by first eigenfunctions $\mathbb{K} \rightarrow \mathbb{S}^{4}, \lambda_{1}^{*}=12 \pi E\left(\frac{2 \sqrt{2}}{3}\right)$;
- Orientable surface of genus 2 (Nayatani-Shoda, 2019): induced by a certain branched cover $M \rightarrow \mathbb{S}^{2}, \lambda_{1}^{*}=16 \pi$.

Free-boundary minimal immersions and Steklov eigenvalues

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) - compact Riemannian surface, with non-empty boundary;
- ν - outward pointing g-unit conormal vector field on $\partial \Sigma$.

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) - compact Riemannian surface, with non-empty boundary;
- ν - outward pointing g-unit conormal vector field on $\partial \Sigma$.
- Dirichlet-to-Neumann map of $(\Sigma, g): S_{g}: C^{\infty}(\partial \Sigma) \rightarrow C^{\infty}(\partial \Sigma)$,

$$
S_{g} \phi=\frac{\partial \widehat{\phi}}{\partial \nu}
$$

where $\widehat{\phi}$ is the harmonic extension of $\phi\left(\Delta_{g} \widehat{\phi}=0\right)$.

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) - compact Riemannian surface, with non-empty boundary;
- ν - outward pointing g-unit conormal vector field on $\partial \Sigma$.
- Dirichlet-to-Neumann map of $(\Sigma, g): S_{g}: C^{\infty}(\partial \Sigma) \rightarrow C^{\infty}(\partial \Sigma)$,

$$
S_{g} \phi=\frac{\partial \widehat{\phi}}{\partial \nu}
$$

where $\widehat{\phi}$ is the harmonic extension of $\phi\left(\Delta_{g} \widehat{\phi}=0\right)$.

- The spectrum of S_{g} is discrete (Steklov eigenvalues):

$$
0=\sigma_{0}(g)<\sigma_{1}(g) \leq \sigma_{2}(g) \leq \cdots \rightarrow+\infty .
$$

Free-boundary minimal immersions and Steklov eigenvalues

- (Σ, g) - compact Riemannian surface, with non-empty boundary;
- ν - outward pointing g-unit conormal vector field on $\partial \Sigma$.
- Dirichlet-to-Neumann map of $(\Sigma, g): S_{g}: C^{\infty}(\partial \Sigma) \rightarrow C^{\infty}(\partial \Sigma)$,

$$
S_{g} \phi=\frac{\partial \widehat{\phi}}{\partial \nu}
$$

where $\widehat{\phi}$ is the harmonic extension of $\phi\left(\Delta_{g} \widehat{\phi}=0\right)$.

- The spectrum of S_{g} is discrete (Steklov eigenvalues):

$$
0=\sigma_{0}(g)<\sigma_{1}(g) \leq \sigma_{2}(g) \leq \cdots \rightarrow+\infty
$$

- (Fraser-Schoen, 2011): Let $\Phi:(\Sigma, g) \rightarrow \mathrm{B}^{n} \subset \mathbb{R}^{n}$ be an isometric immersion, such that $\Phi(\Sigma) \subset \partial \mathrm{B}^{n}$. Then, Φ is minimal and free-boundary if, and only if, $\phi_{j}=x_{j} \circ \phi$ are eigenfunctions of S_{g} with eigenvalue $1\left(\Delta_{g} \phi_{j}=0, \frac{\partial \phi_{j}}{\partial \nu}=\phi_{j}\right)$.

The normalized first Steklov eigenvalue

The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

$$
\sigma_{1}^{*}(\Sigma)=\sup _{g} \sigma_{1}(g)|\partial \Sigma|_{g}
$$

The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

$$
\sigma_{1}^{*}(\Sigma)=\sup _{g} \sigma_{1}(g)|\partial \Sigma|_{g}
$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_{1}^{*}(\Sigma)<\infty$.

The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

$$
\sigma_{1}^{*}(\Sigma)=\sup _{g} \sigma_{1}(g)|\partial \Sigma|_{g}
$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_{1}^{*}(\Sigma)<\infty$.
- (Fraser-Schoen, 2012): metrics maximizing $\sigma_{1}(g)|\partial \Sigma|_{g}$ are induced by branched conformal minimal immersions $\phi: \Sigma \rightarrow \mathrm{B}^{n}$.

The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

$$
\sigma_{1}^{*}(\Sigma)=\sup _{g} \sigma_{1}(g)|\partial \Sigma|_{g}
$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_{1}^{*}(\Sigma)<\infty$.
- (Fraser-Schoen, 2012): metrics maximizing $\sigma_{1}(g)|\partial \Sigma|_{g}$ are induced by branched conformal minimal immersions $\phi: \Sigma \rightarrow \mathrm{B}^{n}$.
- (Petrides, 2019): A maximizer for $\sup _{g \in \mathcal{C}} \sigma_{1}(g)|\partial \Sigma|_{g}$ exists if

$$
\sup _{g \in \mathcal{C}} \sigma_{1}(g)|\partial \Sigma|_{g}>2 \pi .
$$

The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

$$
\sigma_{1}^{*}(\Sigma)=\sup _{g} \sigma_{1}(g)|\partial \Sigma|_{g}
$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_{1}^{*}(\Sigma)<\infty$.
- (Fraser-Schoen, 2012): metrics maximizing $\sigma_{1}(g)|\partial \Sigma|_{g}$ are induced by branched conformal minimal immersions $\phi: \Sigma \rightarrow \mathrm{B}^{n}$.
- (Petrides, 2019): A maximizer for $\sup _{g \in \mathcal{C}} \sigma_{1}(g)|\partial \Sigma|_{g}$ exists if

$$
\sup _{g \in \mathcal{C}} \sigma_{1}(g)|\partial \Sigma|_{g}>2 \pi .
$$

The maximizer induces a free-boundary harmonic map $\phi:(\Sigma, \mathcal{C}) \rightarrow \mathrm{B}^{n}$.

The normalized first Steklov eigenvalue

In a compact surface Σ with non-empty boundary we can consider:

$$
\sigma_{1}^{*}(\Sigma)=\sup _{g} \sigma_{1}(g)|\partial \Sigma|_{g}
$$

- (Weinstock, Fraser-Schoen, Medvedev): $\sigma_{1}^{*}(\Sigma)<\infty$.
- (Fraser-Schoen, 2012): metrics maximizing $\sigma_{1}(g)|\partial \Sigma|_{g}$ are induced by branched conformal minimal immersions $\phi: \Sigma \rightarrow \mathrm{B}^{n}$.
- (Petrides, 2019): A maximizer for $\sup _{g \in \mathcal{C}} \sigma_{1}(g)|\partial \Sigma|_{g}$ exists if

$$
\sup _{g \in \mathcal{C}} \sigma_{1}(g)|\partial \Sigma|_{g}>2 \pi .
$$

The maximizer induces a free-boundary harmonic map $\phi:(\Sigma, \mathcal{C}) \rightarrow \mathrm{B}^{n}$.

- (Karpukhin-Kusner-Mcgrath-Stern, new preprint-2024): each compact oriented surface with boundary, of genus zero or one, admits a σ_{1}^{*}-maximizing metric.

Known Cases of Maximizers

Known Cases of Maximizers

Free Boundary Minimal Surfaces

Eigenvalue shape optimization Main results

- Disk (Weinstock, 1954): Flat metric with c.g.c, Id : $\mathrm{B}^{2} \rightarrow \mathrm{~B}^{2}$, $\sigma_{1}^{*}=2 \pi$.

Known Cases of Maximizers

Free Boundary Minimal Surfaces optimization
Main results

- Disk (Weinstock, 1954): Flat metric with c.g.c, Id : $\mathrm{B}^{2} \rightarrow \mathrm{~B}^{2}$, $\sigma_{1}^{*}=2 \pi$.
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions $[0,1] \times \mathbb{S}^{1} \rightarrow \mathrm{~B}^{3}, \sigma_{1}^{*} \simeq \frac{10 \pi}{\sqrt{3}}$.

Known Cases of Maximizers

- Disk (Weinstock, 1954): Flat metric with c.g.c, Id : $\mathrm{B}^{2} \rightarrow \mathrm{~B}^{2}$, $\sigma_{1}^{*}=2 \pi$.
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions $[0,1] \times \mathbb{S}^{1} \rightarrow \mathrm{~B}^{3}, \sigma_{1}^{*} \simeq \frac{10 \pi}{\sqrt{3}}$.
- Mobius Band (Fraser-Schoen, 2012): Induced by the unique immersion by first eigenfunctions in $\mathrm{B}^{4}, \sigma_{1}^{*}=2 \pi \sqrt{3}$.

Known Cases of Maximizers

- Disk (Weinstock, 1954): Flat metric with c.g.c, Id : $\mathrm{B}^{2} \rightarrow \mathrm{~B}^{2}$, $\sigma_{1}^{*}=2 \pi$.
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions $[0,1] \times \mathbb{S}^{1} \rightarrow \mathrm{~B}^{3}, \sigma_{1}^{*} \simeq \frac{10 \pi}{\sqrt{3}}$.
- Mobius Band (Fraser-Schoen, 2012): Induced by the unique immersion by first eigenfunctions in $\mathrm{B}^{4}, \sigma_{1}^{*}=2 \pi \sqrt{3}$.
- Orientable surface of genus 0 and ℓ boundary components (Fraser-Schoen, $2012+$ Karpukhin-Stern, 2021): σ_{1}^{*} is realized by an embedded FBMS $\Sigma_{\ell} \subset B^{3}$, such that $\Sigma_{\ell} \rightarrow \mathbb{S}^{2}$ as $\ell \rightarrow \infty$.

Known Cases of Maximizers

- Disk (Weinstock, 1954): Flat metric with c.g.c, Id : $\mathrm{B}^{2} \rightarrow \mathrm{~B}^{2}$, $\sigma_{1}^{*}=2 \pi$.
- Annulus (Fraser-Schoen, 2012): The Critical Catenoid, unique immersion by first eigenfunctions $[0,1] \times \mathbb{S}^{1} \rightarrow \mathrm{~B}^{3}, \sigma_{1}^{*} \simeq \frac{10 \pi}{\sqrt{3}}$.
- Mobius Band (Fraser-Schoen, 2012): Induced by the unique immersion by first eigenfunctions in $\mathrm{B}^{4}, \sigma_{1}^{*}=2 \pi \sqrt{3}$.
- Orientable surface of genus 0 and ℓ boundary components (Fraser-Schoen, $2012+$ Karpukhin-Stern, 2021): σ_{1}^{*} is realized by an embedded FBMS $\Sigma_{\ell} \subset B^{3}$, such that $\Sigma_{\ell} \rightarrow \mathbb{S}^{2}$ as $\ell \rightarrow \infty$.

Figure: Picture by M. Schulz.

Free-boundary minimal immersions in spherical caps

Free-boundary minimal immersions in spherical

$$
\mathbb{B}_{r}^{n}=\left\{x \in \mathbb{S}^{n} ; x_{0} \geq \cos r\right\}:
$$

geodesic ball of \mathbb{S}^{n} of center $p=(1,0, \ldots, 0)$ and radius $0<r<\pi / 2$.

Free-boundary minimal immersions in spherical

$$
\mathbb{B}_{r}^{n}=\left\{x \in \mathbb{S}^{n} ; x_{0} \geq \cos r\right\}:
$$

geodesic ball of \mathbb{S}^{n} of center $p=(1,0, \ldots, 0)$ and radius $0<r<\pi / 2$.

- $\Phi:(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$ is minimal and free boundary if, and only if, $\phi_{i}=x_{i} \circ \Phi$ satisfy:

$$
\begin{aligned}
-\Delta_{g} \phi_{i} & =2 \phi_{i}, \quad \text { in } \Sigma, \quad i=0,1, \ldots, n \\
\frac{\partial \phi_{0}}{\partial \nu} & =-(\tan r) \phi_{0}, \quad \text { on } \partial \Sigma \\
\frac{\partial \phi_{i}}{\partial \nu} & =(\cot r) \phi_{i}, \quad \text { on } \partial \Sigma, \quad i=1, \ldots, n
\end{aligned}
$$

Free-boundary minimal immersions in spherical

$$
\mathbb{B}_{r}^{n}=\left\{x \in \mathbb{S}^{n} ; x_{0} \geq \cos r\right\}
$$

geodesic ball of \mathbb{S}^{n} of center $p=(1,0, \ldots, 0)$ and radius $0<r<\pi / 2$.

- $\Phi:(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$ is minimal and free boundary if, and only if, $\phi_{i}=x_{i} \circ \Phi$ satisfy:

$$
\begin{aligned}
-\Delta_{g} \phi_{i} & =2 \phi_{i}, \quad \text { in } \Sigma, \quad i=0,1, \ldots, n \\
\frac{\partial \phi_{0}}{\partial \nu} & =-(\tan r) \phi_{0}, \quad \text { on } \partial \Sigma \\
\frac{\partial \phi_{i}}{\partial \nu} & =(\cot r) \phi_{i}, \quad \text { on } \partial \Sigma, \quad i=1, \ldots, n
\end{aligned}
$$

- $\sigma=2$ is not an eigenvalue of $-\Delta_{g}$ with Dirichlet boundary condition:

$$
\begin{cases}-\Delta_{g} w=2 w, & \text { in } \Sigma, \quad \Rightarrow \quad w \equiv 0 \\ w=0, & \text { on } \partial \Sigma,\end{cases}
$$

Steklov eingenvalue problem with frequency

Steklov eingenvalue problem with frequency

- Fix $\alpha \in \mathbb{R}$ which is not on the spectrum of $-\Delta_{g}$ with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$
\begin{aligned}
\Delta_{g} \widehat{u}+\alpha \widehat{u} & =0, \quad \text { in } \Sigma, \\
\widehat{u} & =u, \quad \text { in } \partial \Sigma .
\end{aligned}
$$

Steklov eingenvalue problem with frequency

- Fix $\alpha \in \mathbb{R}$ which is not on the spectrum of $-\Delta_{g}$ with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$
\begin{aligned}
\Delta_{g} \widehat{u}+\alpha \widehat{u} & =0, \quad \text { in } \Sigma, \\
\widehat{u} & =u, \quad \text { in } \partial \Sigma .
\end{aligned}
$$

- Dirichlet-to-Neumann map at frequency α :

$$
\begin{aligned}
\mathcal{D}_{\alpha}: C^{\infty}(\partial \Sigma) & \rightarrow C^{\infty}(\partial \Sigma) \\
\mathcal{D}_{\alpha} \phi & =\frac{\partial \widehat{\phi}}{\partial \nu} .
\end{aligned}
$$

Steklov eingenvalue problem with frequency

- Fix $\alpha \in \mathbb{R}$ which is not on the spectrum of $-\Delta_{g}$ with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$
\begin{aligned}
\Delta_{g} \widehat{u}+\alpha \widehat{u} & =0, \quad \text { in } \Sigma, \\
\widehat{u} & =u, \quad \text { in } \partial \Sigma .
\end{aligned}
$$

- Dirichlet-to-Neumann map at frequency α :

$$
\begin{aligned}
\mathcal{D}_{\alpha}: C^{\infty}(\partial \Sigma) & \rightarrow C^{\infty}(\partial \Sigma) \\
\mathcal{D}_{\alpha} \phi & =\frac{\partial \widehat{\phi}}{\partial \nu} .
\end{aligned}
$$

- The spectrum of \mathcal{D}_{α} is discrete (Steklov eigenvalues with frequency α)

$$
\sigma_{0}(g, \alpha)<\sigma_{1}(g, \alpha) \leq \sigma_{2}(g, \alpha) \leq \cdots \rightarrow+\infty .
$$

Steklov eingenvalue problem with frequency

- Fix $\alpha \in \mathbb{R}$ which is not on the spectrum of $-\Delta_{g}$ with Dirichlet boundary condition;
- given $u \in C^{\infty}(\partial \Sigma)$, there is a unique $\widehat{u} \in C^{\infty}(\Sigma)$, such that

$$
\begin{aligned}
\Delta_{g} \widehat{u}+\alpha \widehat{u} & =0, \quad \text { in } \Sigma \\
\widehat{u} & =u, \quad \text { in } \partial \Sigma
\end{aligned}
$$

- Dirichlet-to-Neumann map at frequency α :

$$
\begin{aligned}
\mathcal{D}_{\alpha}: C^{\infty}(\partial \Sigma) & \rightarrow C^{\infty}(\partial \Sigma) \\
\mathcal{D}_{\alpha} \phi & =\frac{\partial \widehat{\phi}}{\partial \nu} .
\end{aligned}
$$

- The spectrum of \mathcal{D}_{α} is discrete (Steklov eigenvalues with frequency α)

$$
\sigma_{0}(g, \alpha)<\sigma_{1}(g, \alpha) \leq \sigma_{2}(g, \alpha) \leq \cdots \rightarrow+\infty
$$

- The case $\alpha=0$ corresponds to the usual Steklov spectrum.

Variational characterization of eigenvalues

Variational characterization of eigenvalues

The eigenvalue $\sigma_{0}(g, \alpha)$ is simple and is given by

$$
\sigma_{0}(g, \alpha)=\inf \left\{\frac{\int_{\Sigma}\left|\nabla^{g} \widehat{u}\right|_{g}^{2} d A_{g}-\alpha \int_{\Sigma} \widehat{u}^{2} d A_{g}}{\int_{\partial \Sigma} u^{2} d L_{g}} ; u \in \operatorname{dom}\left(\mathcal{D}_{\alpha}\right) \backslash\{0\}\right\} .
$$

Variational characterization of eigenvalues

The eigenvalue $\sigma_{0}(g, \alpha)$ is simple and is given by

$$
\sigma_{0}(g, \alpha)=\inf \left\{\frac{\int_{\Sigma}\left|\nabla^{g} \widehat{u}\right|_{g}^{2} d A_{g}-\alpha \int_{\Sigma} \widehat{u}^{2} d A_{g}}{\int_{\partial \Sigma} u^{2} d L_{g}} ; u \in \operatorname{dom}\left(\mathcal{D}_{\alpha}\right) \backslash\{0\}\right\} .
$$

Denote by ϕ_{0} a first eigenfunction, which we can choose to be positive. Then,

$$
\begin{gathered}
\sigma_{1}(g, \alpha)=\inf \left\{\frac{\int_{\Sigma}\left|\nabla^{g} \widehat{u}\right|_{g}^{2} d A_{g}-\alpha \int_{\Sigma} \widehat{u}^{2} d A_{g}}{\int_{\partial \Sigma} u^{2} d L_{g}} ; u \in \operatorname{dom}\left(\mathcal{D}_{\alpha}\right) \backslash\{0\}\right. \\
\text { and } \left.\int_{\partial \Sigma} u \phi_{0} d L_{g}=0\right\} .
\end{gathered}
$$

Defining a functional via eigenvalues

Defining a functional via eigenvalues

- Σ - compact orientable surface of genus γ and ℓ boundary components;

Defining a functional via eigenvalues

- Σ - compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ - space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_{g}$ with Dirichlet boundary condition;

Defining a functional via eigenvalues

- Σ - compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ - space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_{g}$ with Dirichlet boundary condition;
- There is a proper conformal branched cover $u:(\Sigma, g) \rightarrow \mathbb{B}_{r}^{2}$ of the degree $\gamma+\ell$;

Defining a functional via eigenvalues

- Σ - compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ - space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_{g}$ with Dirichlet boundary condition;
- There is a proper conformal branched cover $u:(\Sigma, g) \rightarrow \mathbb{B}_{r}^{2}$ of the degree $\gamma+\ell$;
- Along $\partial \Sigma$ it holds

$$
u_{0}=\cos r, \quad u_{1}^{2}+u_{2}^{2}=\sin ^{2} r
$$

Defining a functional via eigenvalues

- Σ - compact orientable surface of genus γ and ℓ boundary components;
- $\mathcal{M}(\Sigma)$ - space of smooth Riemannian metrics g on Σ such that 2 is not an eigenvalue of $-\Delta_{g}$ with Dirichlet boundary condition;
- There is a proper conformal branched cover $u:(\Sigma, g) \rightarrow \mathbb{B}_{r}^{2}$ of the degree $\gamma+\ell$;
- Along $\partial \Sigma$ it holds

$$
u_{0}=\cos r, \quad u_{1}^{2}+u_{2}^{2}=\sin ^{2} r
$$

- By using conformal diffeomorphisms of \mathbb{B}_{r}^{2}, we can assume

$$
\int_{\partial \Sigma} u_{j} \phi_{0} d L=0, \quad j=1,2,
$$

where ϕ_{0} is a positive eigenfunction associated to $\sigma_{0}(g, 2)$.

By the variational characterization of the eigenvalues, we have

Free Boundary
Minimal Surface
Eigenvalue shape optimization

$$
\begin{aligned}
\sigma_{0}(g, 2) \int_{\partial \Sigma} u_{0}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{0}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{0}^{2} d A_{g},
\end{aligned}
$$

By the variational characterization of the eigenvalues, we have

$$
\begin{aligned}
\sigma_{0}(g, 2) \int_{\partial \Sigma} u_{0}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{0}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{0}^{2} d A_{g},
\end{aligned}
$$

and for $j=1,2$,

$$
\begin{aligned}
\sigma_{1}(g, 2) \int_{\partial \Sigma} u_{j}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{j}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{j}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{j}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{j}^{2} d A_{g} .
\end{aligned}
$$

By the variational characterization of the eigenvalues, we have

$$
\begin{aligned}
\sigma_{0}(g, 2) \int_{\partial \Sigma} u_{0}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{0}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{0}^{2} d A_{g},
\end{aligned}
$$

and for $j=1,2$,

$$
\begin{aligned}
\sigma_{1}(g, 2) \int_{\partial \Sigma} u_{j}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{j}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{j}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{j}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{j}^{2} d A_{g} .
\end{aligned}
$$

We obtain

$$
\left(\sigma_{0}(g, 2) \cos ^{2} r+\sigma_{1}(g, 2) \sin ^{2} r\right)|\partial \Sigma|_{g}+2|\Sigma|_{g} \leq 4 \pi(1-\cos r)(\gamma+\ell)
$$

By the variational characterization of the eigenvalues, we have

$$
\begin{aligned}
\sigma_{0}(g, 2) \int_{\partial \Sigma} u_{0}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{0}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{0}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{0}^{2} d A_{g},
\end{aligned}
$$

and for $j=1,2$,

$$
\begin{aligned}
\sigma_{1}(g, 2) \int_{\partial \Sigma} u_{j}^{2} d L_{g} & \leq \int_{\Sigma}\left|\nabla^{g} \widehat{u}_{j}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} \widehat{u}_{j}^{2} d A_{g} \\
& \leq \int_{\Sigma}\left|\nabla^{g} u_{j}\right|_{g}^{2} d A_{g}-2 \int_{\Sigma} u_{j}^{2} d A_{g} .
\end{aligned}
$$

We obtain

$$
\left(\sigma_{0}(g, 2) \cos ^{2} r+\sigma_{1}(g, 2) \sin ^{2} r\right)|\partial \Sigma|_{g}+2|\Sigma|_{g} \leq 4 \pi(1-\cos r)(\gamma+\ell) .
$$

We define

$$
\Theta_{r}(\Sigma, g)=\left(\sigma_{0}(g, 2) \cos ^{2} r+\sigma_{1}(g, 2) \sin ^{2} r\right)|\partial \Sigma|_{g}+2|\Sigma|_{g} .
$$

Main results I

Main results I

Theorem A (L., Menezes, 2023)
Let Σ be a compact orientable surface of genus γ and ℓ boundary components. Then, for any $g \in \mathcal{M}(\Sigma)$, we have

$$
\Theta_{r}(\Sigma, g) \leq 4 \pi(1-\cos r)(\gamma+\ell) .
$$

Moreover, if Σ is a disk, the equality holds if, and only if, (Σ, g) is isometric to \mathbb{B}_{r}^{2}.

Therefore $\Theta_{r}^{*}(\Sigma)=\sup _{g \in \mathcal{M}(\Sigma)} \Theta_{r}(\Sigma, g)$ is finite.

Main results I

Theorem A (L., Menezes, 2023)
Let Σ be a compact orientable surface of genus γ and ℓ boundary components. Then, for any $g \in \mathcal{M}(\Sigma)$, we have

$$
\Theta_{r}(\Sigma, g) \leq 4 \pi(1-\cos r)(\gamma+\ell) .
$$

Moreover, if Σ is a disk, the equality holds if, and only if, (Σ, g) is isometric to \mathbb{B}_{r}^{2}.

Therefore $\Theta_{r}^{*}(\Sigma)=\sup _{g \in \mathcal{M}(\Sigma)} \Theta_{r}(\Sigma, g)$ is finite.
Theorem B (L., Menezes, 2023)
Let Σ be a compact surface with boundary. If $g \in \mathcal{M}(\Sigma)$ satisfies $\Theta_{r}(\Sigma, g)=\Theta_{r}^{*}(\Sigma)$, then there exist a $\sigma_{0}(g, 2)$-eigenfunction ϕ_{0} and independent $\sigma_{1}(g, 2)$-eigenfunctions $\phi_{1}, \ldots, \phi_{n}$, which induce a free boundary minimal isometric immersion

$$
\Phi=\left(\phi_{0}, \phi_{1}, \ldots, \phi_{n}\right):(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n} .
$$

Free-boundary minimal rotational annuli

Free-boundary minimal rotational annuli

Otsuki (1970) and do Carmo-Dajczer (1983), described the parametrization of the family of rotational minimal surfaces in \mathbb{S}^{3} :

Free-boundary minimal rotational annuli

Otsuki (1970) and do Carmo-Dajczer (1983), described the parametrization of the family of rotational minimal surfaces in \mathbb{S}^{3} : $\Phi_{a}: \mathbb{R} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{3}$,

$$
\begin{aligned}
\Phi_{a}(s, \theta)= & \left(\sqrt{\frac{1}{2}-a \cos (2 s)} \cos \varphi(s), \sqrt{\frac{1}{2}-a \cos (2 s)} \sin \varphi(s),\right. \\
& \left.\sqrt{\frac{1}{2}+a \cos (2 s)} \cos \theta, \sqrt{\frac{1}{2}+a \cos (2 s)} \sin \theta\right)
\end{aligned}
$$

where $-\frac{1}{2}<a \leq 0$ is a constant and $\varphi(s)$ is given by

$$
\varphi(s)=\sqrt{\frac{1}{4}-a^{2}} \int_{0}^{s} \frac{1}{\left(\frac{1}{2}-a \cos (2 t)\right) \sqrt{\frac{1}{2}+a \cos (2 t)}} d t
$$

Free-boundary minimal rotational annuli

Otsuki (1970) and do Carmo-Dajczer (1983), described the parametrization of the family of rotational minimal surfaces in \mathbb{S}^{3} : $\Phi_{a}: \mathbb{R} \times \mathbb{S}^{1} \rightarrow \mathbb{S}^{3}$,

$$
\begin{aligned}
\Phi_{a}(s, \theta)= & \left(\sqrt{\frac{1}{2}-a \cos (2 s)} \cos \varphi(s), \sqrt{\frac{1}{2}-a \cos (2 s)} \sin \varphi(s),\right. \\
& \left.\sqrt{\frac{1}{2}+a \cos (2 s)} \cos \theta, \sqrt{\frac{1}{2}+a \cos (2 s)} \sin \theta\right)
\end{aligned}
$$

where $-\frac{1}{2}<a \leq 0$ is a constant and $\varphi(s)$ is given by

$$
\varphi(s)=\sqrt{\frac{1}{4}-a^{2}} \int_{0}^{s} \frac{1}{\left(\frac{1}{2}-a \cos (2 t)\right) \sqrt{\frac{1}{2}+a \cos (2 t)}} d t
$$

Proposition (Li-Xiong, 2018): For any $0<r \leq \frac{\pi}{2}$, there exist $-\frac{1}{2}<a \leq 0$ and $s_{0} \in \mathbb{R}$ such that $\Phi_{a}:\left[-s_{0}, s_{0}\right] \times \mathbb{S}^{1} \rightarrow \mathbb{B}_{r}^{3}$ is a free boundary minimal immersion.

Main results II

Main results II

Theorem C (L., Menezes, 2023)
Let Σ be an annulus and consider a free boundary minimal immersion $\Phi=\left(\phi_{0}, \ldots, \phi_{n}\right):(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$. Suppose ϕ_{j} is a $\sigma_{1}(g, 2)$-eigenfunction, for $j=1, \ldots, n$. Then $n=3$ and Φ is one of the rotational immersions described previously.

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi=\left(\phi_{0}, \ldots, \phi_{n}\right):(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$. Suppose ϕ_{j} is a $\sigma_{1}(g, 2)$-eigenfunction, for $j=1, \ldots, n$. Then $n=3$ and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-llias which characterize the Clifford torus and the flat equilateral torus.

Main results II

Theorem C (L., Menezes, 2023)

Let Σ be an annulus and consider a free boundary minimal immersion $\Phi=\left(\phi_{0}, \ldots, \phi_{n}\right):(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$. Suppose ϕ_{j} is a $\sigma_{1}(g, 2)$-eigenfunction, for $j=1, \ldots, n$. Then $n=3$ and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-llias which characterize the Clifford torus and the flat equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric achieving $\Theta_{r}^{*}(\Sigma)$ in the case of an annulus, then the metric is induced by the immersion of a rotational free boundary minimal annulus.

Main results II

Theorem C (L., Menezes, 2023)
Let Σ be an annulus and consider a free boundary minimal immersion $\Phi=\left(\phi_{0}, \ldots, \phi_{n}\right):(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$. Suppose ϕ_{j} is a $\sigma_{1}(g, 2)$-eigenfunction, for $j=1, \ldots, n$. Then $n=3$ and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-llias which characterize the Clifford torus and the flat equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric achieving $\Theta_{r}^{*}(\Sigma)$ in the case of an annulus, then the metric is induced by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is $g \in \mathcal{M}(\Sigma)$ realizing $\Theta_{r}^{*}(\Sigma)$.

Main results II

Theorem C (L., Menezes, 2023)
Let Σ be an annulus and consider a free boundary minimal immersion $\Phi=\left(\phi_{0}, \ldots, \phi_{n}\right):(\Sigma, g) \rightarrow \mathbb{B}_{r}^{n}$. Suppose ϕ_{j} is a $\sigma_{1}(g, 2)$-eigenfunction, for $j=1, \ldots, n$. Then $n=3$ and Φ is one of the rotational immersions described previously.

Remark 1: Theorem C is analogous to the uniqueness of the critical catenoid (Fraser-Schoen), as well as to results of Montiel-Ros and El Soufi-llias which characterize the Clifford torus and the flat equilateral torus.

Remark 2: By Theorems B and C, if there is a smooth metric achieving $\Theta_{r}^{*}(\Sigma)$ in the case of an annulus, then the metric is induced by the immersion of a rotational free boundary minimal annulus.

Problem: Let Σ be a compact orientable surface. Prove that there is $g \in \mathcal{M}(\Sigma)$ realizing $\Theta_{r}^{*}(\Sigma)$.

Remark 3: Inspired by our work, Medvedev (2023) obtained analogous results for geodesics balls in \mathbb{H}^{n}.

Sketch of the proof of Theorem C

Sketch of the proof of Theorem C

Lemma: The multiplicity of $\sigma_{1}(g, 2)$ is at most 3 . Hence $n=3$.

Sketch of the proof of Theorem C

Lemma: The multiplicity of $\sigma_{1}(g, 2)$ is at most 3 . Hence $n=3$.
Recall that

$$
\begin{aligned}
\Delta_{g} \phi_{i}+2 \phi_{i}=0 & \text { in } \Sigma, i=0,1,2,3, \\
\frac{\partial \phi_{0}}{\partial \nu}+(\tan r) \phi_{0}=0 & \text { on } \partial \Sigma, \\
\frac{\partial \phi_{i}}{\partial \nu}-(\cot r) \phi_{i}=0 & \text { on } \partial \Sigma, \quad i=1,2,3 .
\end{aligned}
$$

Since $\Sigma \simeq[0,1] \times \mathbb{S}^{1}$, then $g=\lambda g_{\text {cyl }}$, for some positive function $\lambda=\lambda(s, \theta)$. In particular, $\Delta_{g}=\lambda^{-1} \Delta_{\mathrm{cyl}}$ and $\nu_{g}=\lambda^{-\frac{1}{2}} \nu_{\mathrm{cyl}}$.

Sketch of the proof of Theorem C

Lemma: The multiplicity of $\sigma_{1}(g, 2)$ is at most 3 . Hence $n=3$.
Recall that

$$
\begin{aligned}
\Delta_{g} \phi_{i}+2 \phi_{i}=0 & \text { in } \Sigma, i=0,1,2,3, \\
\frac{\partial \phi_{0}}{\partial \nu}+(\tan r) \phi_{0}=0 & \text { on } \partial \Sigma, \\
\frac{\partial \phi_{i}}{\partial \nu}-(\cot r) \phi_{i}=0 & \text { on } \partial \Sigma, \quad i=1,2,3 .
\end{aligned}
$$

Since $\Sigma \simeq[0,1] \times \mathbb{S}^{1}$, then $g=\lambda g_{\text {cyl }}$, for some positive function $\lambda=\lambda(s, \theta)$. In particular, $\Delta_{g}=\lambda^{-1} \Delta_{\mathrm{cyl}}$ and $\nu_{g}=\lambda^{-\frac{1}{2}} \nu_{\mathrm{cyl}}$.

$$
\begin{gathered}
\Delta_{g} \phi_{i}+2 \phi_{i}=0 \quad \Rightarrow \quad \Delta_{\text {cyl }} \phi_{i}+2 \lambda \phi_{i}=0 \\
\Rightarrow \Delta_{\text {cyl }} \frac{\partial \phi_{i}}{\partial \theta}+2 \frac{\partial \lambda}{\partial \theta} \phi_{i}+2 \lambda \frac{\partial \phi_{i}}{\partial \theta}=0 \\
\Rightarrow \Delta_{g} \frac{\partial \Phi}{\partial \theta}+2 \lambda^{-1} \frac{\partial \lambda}{\partial \theta} \Phi+2 \frac{\partial \Phi}{\partial \theta}=0 .
\end{gathered}
$$

Claim: The condition $\sigma_{0}(g, 2)=-\tan r$ and $\sigma_{1}(g, 2)=\cot r$ implies

$$
\Delta_{g} \frac{\partial \phi_{j}}{\partial \theta}+2 \frac{\partial \phi_{j}}{\partial \theta}=0 \text { in } \Sigma .
$$

$$
\Delta_{g} \frac{\partial \phi_{j}}{\partial \theta}+2 \frac{\partial \phi_{j}}{\partial \theta}=0 \text { in } \Sigma .
$$

The idea is to use $\frac{\partial \phi_{j}}{\partial \theta}$ as test-functions for σ_{1}.

$$
\Delta_{g} \frac{\partial \phi_{j}}{\partial \theta}+2 \frac{\partial \phi_{j}}{\partial \theta}=0 \text { in } \Sigma .
$$

The idea is to use $\frac{\partial \phi_{j}}{\partial \theta}$ as test-functions for σ_{1}.

- Combining this with the previous equation we conclude that

$$
\frac{\partial \lambda}{\partial \theta} \equiv 0,
$$

i.e, the metric g is rotationally symmetric.

Claim: The condition $\sigma_{0}(g, 2)=-\tan r$ and $\sigma_{1}(g, 2)=\cot r$ implies

$$
\Delta_{g} \frac{\partial \phi_{j}}{\partial \theta}+2 \frac{\partial \phi_{j}}{\partial \theta}=0 \text { in } \Sigma
$$

The idea is to use $\frac{\partial \phi_{j}}{\partial \theta}$ as test-functions for σ_{1}.

- Combining this with the previous equation we conclude that

$$
\frac{\partial \lambda}{\partial \theta} \equiv 0
$$

i.e, the metric g is rotationally symmetric.

- An O.D.E analysis implies that Φ is rotational in the sense of do Carmo-Dajczer-Otsuki, so $\Phi(\Sigma)$ is one of the annuli described before.

Thank you!

