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INTRODUCTION



• The mean curvature flow is the gradient flow of the area
functional. This translates into the equation

dΣ

dt
· ν =− H

Here ν is the normal vector.



• Translators are a special kind of solution of the form

Σ(·, t) = Σ(·,0) + tω,

where ω is a fixed direction that we will take as −en+1

• The equation reduces to

H + en+1 · ν =0

• Translators may appear as singularity models.
• Huisken-Sinestrari proved that under the assumption of

mean-convexity, we get translating solitons as singularity models
for type 2 singularities.
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• Translators are minimal surfaces with respect to the conformal
metric e−xn+1δij (Ilmanen, 1993).

• This allows us to apply g−minimal surface theory:
1. compactness theorems,
2. curvature estimates,
3. maximum and tangency principles,
4. monotonicity results.
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Examples

• Grim Reaper

Tilted Grim Reaper



Examples

• ∆-wing



Examples



Examples

• Nguyen’s trident

• Scherk-translator



SOME CLASSIFICATION
RESULTS



Graphical translators in R3

A complete graphical translator in R3 is, up to an ambient
isometry:

•• a vertical plane,
• a (tilted) grim reaper cylinder,
• a ∆−wing,
• a bowl soliton.

These are contained in a slab, except for the bowl soliton.

This type of translators were studied independently by Hoffman,
Ilmanen, Martin, White; Bourni, Langford, Tinaglia



Semi-graphical translators in R3

• A translator M is called semigraphical if
1. M is a smooth, connected, properly embedded submanifold

(without boundary) in R3,
2. M contains a non-empty, discrete collection of vertical lines
{Li}.

3. M \
⋃

i Li is a graph.



Theorem (Hoffman, Ilmanen, Martin, White)

A semigraphical translator in R3 is one of the following:

• a (doubly periodic) Scherk translator,
• a (singly periodic) Scherkenoid,
• a (singly periodic) helicoid-like translator,
• a pitchfork,
• a (singly periodic) trident,
• (after a rigid motion) a translator containing the z−axis such that

M \ Z is a graph over {(x , y) : y 6= 0}.
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Semi-graphical translators in R3



THE PITCHFORK AND
THE HELICOID



Pictures



Analytical set-up

• If M = graph(u), the equation H + 〈ν,e3〉 = 0 becomes the
quasilinear elliptic PDE:

∆u + uxxu2
y − 2uxy uxuy + uyy u2

x + 1 + |Du|2 = 0. (1)



Definition of a pitchfork

Let Ωw be a strip of width w .
For any w ≥ π, there exists a smooth translator M whose
boundary ∂M is the z−axis Z and whose interior M \ ∂M is the
graph of a function u : Ωw → R satisfying (1) on Int(Ωw ) with
boundary values:

u(x ,0) =

{
+∞, x < 0,
−∞, x > 0

, and u(x ,w) = −∞. (2)

A pitchfork of width w is the complete, simply connected
translator without boundary Pw obtained by performing a single
Schwarz reflection of M about the z−axis, Z . It follows that
Pw \ Z projects diffeomorphically onto
{−w < y < 0} ∪ {0 < y < w}.



Definition of a Helicoid

For any w < π, there exists a smooth translator M whose
boundary ∂M consists of two vertical lines, the z−axis and the
line {x = x̂ , y = w} for some x̂ > 0, and whose interior M \ ∂M
is the graph of a function u : Ωw → R satisfying (1) on Int(Ωw )
with boundary values:

u(x ,0) =

{
+∞, x < 0,
−∞, x > 0

, and u(x ,w) =

{
−∞, x < x̂ ,
+∞, x > x̂

.

(3)
A helicoid of width w is the complete, simply connected
translator without boundary Hw obtained from M by performing
countably many repeated Schwarz reflection about these axes.
It follows that Hw contains the vertical lines Ln through the points
n(x̂ ,w) for n ∈ Z and Hw \

⋃
n Ln projects diffeomorphically onto

the strip cover ∪n∈Z{nw < y < (n + 1)w}.



Fundamental Strips



Main Theorem

For given w ∈ (0,∞), the semigraphical translators with
fundamental pieces given by graphs over the slab of width w in
the (x , y)−plane (helicoids for 0 < w < π and pitchforks for
w > π) are unique up to vertical translation.



Strategy of the proof

• Assume that we have two distinct solutions u1, u2. Then there is
p0 such that D(u1 − u2)(p0) 6= 0.

• Argue that there is a q0 such that Du1(q0) = Du1(p0). Define
ξ = q0 − p0 = (ξ1, ξ2).

• Argue that if it is not possible to pick ξ2 6= 0, then u1 = u2 + c.
• Define u′1(p) = u1(p + ξ), w(p) = u′1(p)− u2(p) and assume that

w(p0) = 0.
• Study the zero-level set of w and show the following:



Types of arcs of the level set through p0

The arcs of the zero-level set {w = 0} passing through p0 are
contained in

•• Int(Ωw ∩ Ω′w ) ∪ {~ξ }, in the case of pitchfork translators (2),

• Int(Ωw ∩ Ω′w ) ∪ {~ξ } ∪ {(x̂ ,w)}, in the case of helicoidal
translators (3),
and have one of the following types:

(i) going to infinity in the (1,0)−direction;
(ii) going to infinity in the (−1,0)−direction;
(iii) passing through the point that is the projection of the vector

~ξ to the (x , y)−plane;
(iv) (only in the helicoidal case) passing through (x̂ ,w).
There exists precisely one arc of type (iii) and of type (iv)
passing through p0.



Arc-structure



Strategy of the proof

• The Morse-Radó theory proved by Hoffman, Martin, White
implies that at a critical point of intersection of two translators the
zero-level set is composed by the intersection of at least two
analytic curves. This contradicts the structure proved for the
pitchfork.

• For the helicoid fix a helicoid constructed as a limit and show
that the zero-level set arises as a limit.

• Show that if this is the case, the structure theorem (for the level
set) is violated.
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Remarks

• A key point is to show that arcs of type (i) and (ii) are unique.
• It is also important to use the asymptotic structure of these

solutions at infinity, which was already known.
• In several points we use that these solutions are analytic since

they solve an elliptic PDE.
• We also use that critical points are isolated.



Uniqueness of type (i) for Pitchforks

• Assume there at least two such arcs, consider the semi-infinite
region S0 contained between them.

• Take any sequence of points {pn} ⊂ S0 with x−coordinates
tending to +∞.

• Due to White’s compactness theorem, for any pitchfork P
constructed from a function u, the sequence of translators
formed by

P(n) := P − (pn,u(pn))

has a smooth convergent subsequence in the uniform compact
topology.

• Work of HMW shows that this limit is a tilted grim reaper Gw over
Ωw . Hence we get two tilted grim reapers of the same slope over
different domain (Ωw and Ω′w ) that intersect along S0.

• This is a contradiction since two grim reapers cannot have this
type of intersection.



Main tools for the remaining part

• A “rotational maximum principle” (rotation+tangency principle).
• A structure theorem about the translators near infinity.



Definition ϑ−graph

For a point pa = (xa, ya,0) on the (x , y)−plane, denote the
ambient distance, ρpa (P) = dist(P, {(x , y) = (xa, ya)}), of P from
the vertical line through pa. An embedded surface M ⊂ R3 is a
ϑ−graph over a domain W ⊂ R+

ρ × Rz , if for some pa 6∈ M and
α ∈ (0,2π),

•• M is contained in a cylindrical sector of angle α centered at pa,
• the “cylindrical projection” map to radius-height coordinates

ϕpa |M : M 3 P 7−→ (ρpa (P), z(P)) ∈ [0,∞)× R (4)

is a diffeomorphism with image W . Equivalently, the image of M
under the azimuthal angle map θpa is the graph of ϑ : W → (0, α)
in the (ρpa , z)−plane, where ϑ(ϕpa (P)) := θpa (P).



Lemma (pitchforks and helicoids as ϑ-graphs)

• For a pitchfork, there is a sufficiently large R such that M<−R is
a ϑ−graph.

• For a helicoid, there is a sufficiently large R such both M>R and
M<−R are ϑ−graphs.

The proof uses the structure at infinity: these translators
converge to vertical planes.
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The last part of the proof

The key idea of our proof is to show the uniqueness of the level
set arcs of different types through p0 as follows:

•• We show that if there are multiple arcs, they would form an
infinite sub-region of Ωw ∩ Ω′w , over which the surface M ′1 can be
rotated to satisfy the conditions of the tangency principle, with
their contact occurring only along interior points.

• This would imply that the surfaces M ′1,θ,M2 coincide, due to the
tangency principle, which contradicts the boundary conditions
imposed on the functions u′1,θ,u2.

• To perform this rotational argument, we use the ϑ-graph
structure of the previous lemma.
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