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Mean curvature flow

e The mean curvature flow (MCF) is a deformation of submanifolds
within a semi-Riemannian M™% ambient space:

—

8tX: H,

where x: [0, T*) x £ — Mtk and H(t,-) is the mean curvature
vector of x(t,-).

e For M? = E? (Euclidean space) and n = 1, this flow is called curve
shortening flow
’3/ = —KV,

where v is the outward pointing normal.

@ For a closed embedded initial curve THIS happens:

Theorem (Gage/Hamilton, Grayson, mid 80s)

If vo is smooth, the curve shortening flow starting from ~g has a unique
solution which shrinks to a point.
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Solution to the isoperimetric problem in the plane

Theorem

For a smooth domain Q C E? there holds

Z(Q) = L(0Q)* — 47A(Q) > 0

with equality on balls.

Proof.

@ Along curve shortening flow, the variations of length and area are

(a)
0:L(092;) = — /

Yt

@ GauB-Bonnet and Holder imply

x* and 6tA(Qt):—/ K= —2m.

Yt

O:(L? — 4mA) <0,

with equality iff Kk = const.
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Mean curvature flow of hypersurfaces

o Similarly, if Mk = E"*1 we can write the mean curvature flow of
hypersurfaces as
x = —Huv,
where H = tr(A) is the trace of the Weingarten operator.
@ Monotonicity: For n = 2,

3
2

Z(Q) = Area(0Q)2 — 64/ vol(Q)

is decreasing along MCF.
@ Convergence is more complicated than for n = 1.

@ Main issue is Nontrivial singularity formation:

(www.math.utah.edu/mayer/math/MCF /dumbbell2_js.html)
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Convex case

Theorem (Huisken 1984)

Let xo be the embedding of the boundary of a convex body in E"t1, then
MCF converges to a point and after rescaling to a round sphere.

@ Many similar results exists for flow speeds depending on nonlinear
functions of the Weingarten operator, e.g.
» Gauss curvature flow X = —Kv (Andrews in case n = 2,
Brendle/Choi/Daskalopoulos for n > 2)
» Inverse mean curvature flow x = H=!v (Gerhardt, Huisken/limanen,
Urbas)
» other general speeds X = F(x, v, A)v (a lot by Andrews, Langford and
many others)
@ with many applications to geometry, e.g.

» Riemannian Penrose inequality (Huisken/llmanen)
» Alexandrov-Fenchel inequalities (Guan/Li, Wang/Xia etc.)
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Lorentz manifolds |

@ A Lorentz manifold (M, g) is a smooth manifold with a
non-degenerate metric tensor of signature one.
@ Note that in a Lorentzian manifold, hypersurfaces can be

1) Riemannian (then called spacelike)
2) Lorentzian (i.e. induced metric non-degenerate but not Riemannian)
3) null (induced metric degenerate at every point).

@ A Riemannian hypersurface of Mf“ must be a graph over (a subset
of) E".
» With a pretty well-controlled gradient.
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Lorentz manifolds I

@ Lorentzian (sub)-manifolds in many ways behave like Riemannian
manifolds. For example:
» There is a Levi-Connection V with Christoffel symbols given by

8, = 38°°(085y + 0855 — 0585~

» If N is a non-degenerate hypersurface of a Lorentzian manifold (M, ),
then we can decompose:

VxY =VxY +1[(X, Y),

where II is the second fundamental form of N and V its Levi-Civita

connection.
» The 3-tensor II( X, Y) can be written as

II(X,Y)=—g(v,v)h(X, Y)v,

where h € T%2(N) and v is a unit normal vector field along N.
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MCF in Lorentz manifolds

@ Hence MCF in Lorentz manifolds looks familiar:
x = Hv,

where x: [0, T*) x £" — M is a family of SPACELIKE embeddings
(“spacelike” to ensure parabolicity of the equation).

> Nice feature: The natural “spacelike” condition gives graphicality, and
the gradient estimates (if available) endure that spacelikeness is
preserved.
@ Previous results for spacelike mean curvature flow in Lorentz spaces
for example by Ecker, Ecker/Huisken, Gerhardt, Lambert/Lotay.
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MCF in Lorentz manifolds Il

Theorem (Lambert/Lotay, 2021)

If My is an entire spacelike graph in the Minkowski space M™t™ (i.e. m

timelike directions), then there exists a smooth spacelike solution to MCF,
which exists for all t > 0.
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Null hypersurfaces

@ A hypersurface N of a Lorentz manifold is called null, if its induced
metric g is everywhere degenerate.

» By definition, at every point x € N:
J0#£Le TN: kerg(L,-) = TN,

i.e. L annihilates the whole tangent space and hence:
» Any normal vector field to A is a tangent to A and
» g(L,L) = 0 implies that there are no unit normals to .
@ Observation 1: N does not have an induced Levi-Civita connection
and hence there is no Gaussian formula for a surface ¥ C .

o Observation 2: For every hypersurface ¥ C N, L annihilates T, X
for every x € ¥. Hence normals to ¥ only depend on the position
X € X, not on the slope.

@ Observation 3: No way to decompose the mean curvature vector of
a spacelike surface in M in the form H = Hv for some unit vector v.
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Mean curvature flow in null hypersurfaces

@ What is a good way to define MCF in a null hypersurface?
@ Here is an idea from the Riemannian case:
» Suppose we have a surface (X", g), isometrically sitting in a

hypersurface (N™!, g) of some Riemannian ambient space (M"*2 ).
» Taking the Gaussian formula twice gives for X, Y € T,X:
DxY = DxY +h(X,Y)o = VxY + h(X,Y)v+ h(X,Y)>
= VX Y + IIsz.
» From here we see
Usen = pry(Uscm),

where pr is just the standard orthogonal projection.
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Mean curvature vector in null hypersurfaces

o Let X" ¢ N1 < M"+2 where M is Lorentzian and A is a null
hypersurface, be spacelike with induced (from (M, g)) Levi-Civita
connection V:

> DxY = VxY +1I(X, Y).

@ For our global null vector field Le TN c TXL, let us define a null

partner Ly with the properties

Trt =span(L, Ls), g(L,Ls)=2, g(ls,Ls)=0.

» DxY =VxY + 3g(II(X, Y),[)Ls + 2g(II(X, Y), Ls)L.
@ A reasonable definition of the mean curvature vector of ¥ C N is

= %g(ljl, L)L

» This definition does not depend on the choice of L, as any rescaling
will also adjust Ly.
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Mean curvature flow in null hypersurfaces

Definition
A family of embeddings x: (0, T) x ¥ — N, where N is a null

hypersurface sitting in a Lorentzian manifold (M, g) is said to move by
mean curvature flow, if

dex = g(H, Ly)L.

o Comparison to the null mean curvature flow of Theodora Bourni and
Kristen Moore:

» Here X is sitting in a spacelike hypersurface N (initial data set) with
normal v.

» They consider the flow
Orx = g(ﬁ, Ly)v

within the Riemannian submanifold N.
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Comparison to the Riemann/Lorentz case

@ Crucial feature of MCF in null geometries: The flow direction only
depends on the position!

» If the flowing surfaces are given as graphs over ¥,
Y, = {(w(t,2),2): z € Xy}, then MCF reads

Orw = —% tr h,
where h is the second fundamental form of ¥;, i.e.
h(X,Y) = —g(II(X, Y), Lz,) = g(DxLs,, )
» Compare to graphical MCF in non-degenerate spaces:
Ow = —Hv, v?>=1+|Vw].

» This helps on the PDE side.

@ On the geometry side, things are more complicated as we pick up
torsion from the codimension 2 ambient space.

Foliations of null hypersurfaces Punta del Este, Mar. 19”’, 2024 14 /26



MOTS

@ In the above situation, a spacelike surface ¥" C N is called outer
trapped, if

—

g(l_z, H) >0
and outer untrapped, if the reverse inequality holds.
e Y is called marginally outer trapped surface (MOTYS), if

g(Lz, H) =0.

@ Caution: These definitions apply more generally to spacelike surfaces,
without any reference to a null hypersurface.
> In this more general setting, a MOTS is simply a multiple of one of the
vectors in the null unit pair.
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Some more notation

@ G is the Einstein tensor of (M, g), G = Rc—% Rg,
@ Y is the second fundamental form of the null cone N/,

(X, Y)=—g(II(X,Y), Z) = g(DXL Y).

» Note that for all A € R we have
KX +ALY)=%(X,Y) and g(X+ALY)=g(X,Y)

and hence Y is determined the restriction to any spacelike ¥ C V.
» Thus the function tr ¥ := try ¥ is independent of any spacelike ¥ C V.

@ ¥ is the traceless part with respect to the foliation by s-slices,

X=X — 5tr¥vs,

» Here s is the ODE-flow parameter of the vector field L.
o a(X,Y)=g(RixL,Y).
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Convergence to a MOTS

Theorem (with Henri Roesch, 2021)

Let (M, g) be a 4-dimensional, time-oriented Lorentzian manifold,

>0 C M a weakly outer trapped two-sphere with respect to a future
directed null normal section Ly, and let N be the null hypersurface
generated by the past directed null partner £ of Ly,. Now consider L=al,
for a€ C*®(N), a > 0, satisfying the gauge condition:

G(L, L) = d(2r — tr X)(L) > |(tr ¥ — 4r)X| + 24| + 31X,

where r = da(l). Then, if the null hypersurface Q C N generated by L
and X admits an outer un-trapped cross-section ¥,,, the MCF

x=L1g(H, Ly,)L

from ¥, C 2 exists for all times and converges smoothly to a MOTS.
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Proof elements - ldea standard, estimates complicated

@ As we have seen earlier, our graphical MCF is

Oyw = —%trh = Aw + 2¢(Vw) — %trx — (%tri + k)| Vwl|?.

» We observe a term ( coming from the torsion.
»  is the 2" fundamental form of the background s-slices.

o (CO-estimates/Barriers are easy: As on ¥y we have, by assumption,
trx <0 and X, has try,, > 0, we obtain monotonicity of the flow.

o Cl-estimates are complicated, because the evolution of u := 3|Vw|?
is @ mess.
» That's where most of our assumptions on the ambient geometry come
into play.
» The resulting highest order term has a k = da(?) coefficient, which we
can force to be negative, however
> possibly only in small regions around the lower barrier.
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Elements of the proof - Now standard again

@ With the Cl-estimates and the quasi-linear parabolic equation, we get
Ck-estimates for any k by standard quasi-linear PDE theory.

Theorem

Under the assumptions of the main theorem, the mean curvature flow
starting from any embedded spacelike outer un-trapped surface ¥, exists
for all times and satisfies uniform estimates in any CK(¥Zo) norm.

@ Due to the monotonicity of the graphs, the pointwise limit exists,
Weo = lim w(t,-).
e t—o00 ( ’ )

Hence the flow speed must be integrable in time over [0, 00) and thus
converges to zero, i.e. the limit is a MOTS.
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Evolution of induced metric

o If NV is the standard lightcone of Minkowski space, then the
contracted Gauss equation is

R =|H” —g(h,x) = 3|H

Y

trxy = %tr X8

N[=

because the lightcone is totally umbilic, Y =
@ Markus Wolff 2023: The metric evolves by

Orgij = —HXij = —Ragj.

» Lead to a new proof of Hamilton's early 2d-Ricci flow result.
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Pre-Foliation

Corollary (of the MOTS theorem)

Under the assumptions of the MOTS theorem, there exists a foliation of a
one-sided neighbourhood of the MOTS by outer untrapped surfaces.

Proof.

The null mean curvature flow initiated at the outer un-trapped upper
barrier preserves this property and converges monotonically to the MOTS.
Hence it foliates a one-sided neighbourhood. [

The aim is now to find conditions under which we can actually foliate by
surfaces of constant spacetime mean curvature |H|2.
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Foliations

@ Modification of MCF equation to

X = ( < _ H) [
try
leads to

» the detection of surfaces with

|HP? = Htry = c,

» provided we can make the flow converge.
> The latter is again possible under barrier and ambient assumptions.
@ Then, if the mean curvature is (locally) monotone with respect to
graph ordering, one gets uniqueness and continuity with respect
to ¢ of (|H[2 = ¢)-surfaces. We call this property monotone mean
curvature property.
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Interlude: Foliations of Lorentzian manifolds

@ In earlier contexts, the monotone mean curvature property played a
similar role.

@ Suppose a spacetime is given as a product [T, 00) X Sp, where S is
compact Riemannian and the metric splits

g=—dr’ +os,.

@ It can be computed that the mean curvature of the time slices evolves
by
_ 1 _
OtH = |A? + Re(9;, 0;) > EHZ + Re(d;, 07).

» Hence under a natural timelike convergence condition,

Re(V, V) > —Ag(V, V)

for all timelike vectors, it is clear that the mean curvature increases
within the region {H > v/nA}.
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Interlude: Foliations of Lorentzian manifolds Il

Theorem (Gerhardt, ~ 2000)
Provided that within the Lorentzian manifold
M=[T,00) xSy, &= —dr’+os,

there exist spacelike graphs with sufficiently large mean curvature, a future
end F can be foliated by surfaces of constant mean curvature H. This
gives rise to a function H on F, which can be used as a new time function.
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Foliation near MOTS

Theorem (Sketch, with Wilhelm Klingenberg and Ben Lambert, in
progress)

Let Yo be a MOTS in a null hypersurface N' and suppose N has the
monotone mean curvature property. Then there exists a neighbourhood 2
of ¥, such that §Q is foliated by surfaces of constant |H|?-curvature

Main steps of proof:

@ Pick a surface X to the future of the MOTS. Then for every
0 < ¢ < inf|H|?
by

run X = (c/tr Y — H)L with initial surface ¥.
@ This gives a c-parameter family of surface with constant curvature.
@ By the continuity of graphs with respect to c, this foliates a region.
@ By the implicit function theorem, this foliation is smooth.
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Muchas gracias!
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