Why are Zoll metrics interesting?

Lucas Ambrozio

IMPA
Workshop Geometric Flows and Relativity - Punta del Este March 20th 2024

The surfaces of revolution of Otto Zoll

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^{3} are the great circles.

The surfaces of revolution of Otto Zoll

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^{3} are the great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll wrote down explicit formulas describing an infinite dimensional family of spheres of revolution in $\mathbb{R}^{3} \ldots$

The surfaces of revolution of Otto Zoll

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^{3} are the great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll wrote down explicit formulas describing an infinite dimensional family of spheres of revolution in $\mathbb{R}^{3} \ldots$
... just like the Euclidean sphere,

The surfaces of revolution of Otto Zoll

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^{3} are the great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll wrote down explicit formulas describing an infinite dimensional family of spheres of revolution in $\mathbb{R}^{3} \ldots$
... just like the Euclidean sphere, all of their unit-speed geodesics are periodic, simple and have the same length!

Zoll's surfaces

Pictures by Mario Schulz.

Zoll metrics

Let M^{n} be a compact manifold (with no boundary), $n \geq 2$.
Definition
A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Zoll metrics

Let M^{n} be a compact manifold (with no boundary), $n \geq 2$.
Definition
A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Model examples: spheres S^{n} and projective spaces $\left(\mathbb{R P}^{n}, \mathbb{C P}^{n}\right.$, \mathbb{H}^{n} and Ca^{2}) with their canonical metrics.

Zoll metrics

Let M^{n} be a compact manifold (with no boundary), $n \geq 2$.
Definition
A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Model examples: spheres S^{n} and projective spaces $\left(\mathbb{R P}^{n}, \mathbb{C P}^{n}\right.$, $H \mathbb{P}^{n}$ and Ca^{2}) with their canonical metrics.

More than a century of developments: see for instance Manifolds all of whose geodesics are closed by Arthur Besse...

Zoll metrics

Let M^{n} be a compact manifold (with no boundary), $n \geq 2$.
Definition
A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Model examples: spheres S^{n} and projective spaces $\left(\mathbb{R P}^{n}, \mathbb{C P}^{n}\right.$, $\mathbb{H P}^{n}$ and Ca^{2}) with their canonical metrics.

More than a century of developments: see for instance Manifolds all of whose geodesics are closed by Arthur Besse...
... and still several interesting open problems about them!

More reasons to investigate Zoll metrics?

Aside from having obviously interesting dynamical properties, Zoll metrics have interesting variational/geometric properties.

More reasons to investigate Zoll metrics?

Aside from having obviously interesting dynamical properties, Zoll metrics have interesting variational/geometric properties.

In this talk, we will discuss two of these properties, regarding

More reasons to investigate Zoll metrics?

Aside from having obviously interesting dynamical properties, Zoll metrics have interesting variational/geometric properties.

In this talk, we will discuss two of these properties, regarding

- systoles vs area,

More reasons to investigate Zoll metrics?

Aside from having obviously interesting dynamical properties, Zoll metrics have interesting variational/geometric properties.

In this talk, we will discuss two of these properties, regarding

- systoles vs area,
- Lusternik-Schnirelmann theory.

More reasons to investigate Zoll metrics?

Aside from having obviously interesting dynamical properties, Zoll metrics have interesting variational/geometric properties.

In this talk, we will discuss two of these properties, regarding

- systoles vs area,
- Lusternik-Schnirelmann theory.

And we will see how they can inspire meaningful analogies in other variational theories.

Systoles of Riemannian 2-spheres

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).
- $\operatorname{sys}\left(S^{2}, g\right)=$ least length of nontrivial periodic geodesics.

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).
- $\operatorname{sys}\left(S^{2}, g\right)=$ least length of nontrivial periodic geodesics.
$-\sup _{g}\left(\operatorname{sys}\left(S^{2}, g\right) / \operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}\right)<+\infty($ Croke, 1989).

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).
- $\operatorname{sys}\left(S^{2}, g\right)=$ least length of nontrivial periodic geodesics.
$-\sup _{g}\left(\operatorname{sys}\left(S^{2}, g\right) / \operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}\right)<+\infty($ Croke, 1989).
Conjecture (Calabi-Croke)

$$
\sup _{g} \frac{\operatorname{sys}\left(S^{2}, g\right)}{\operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}}=\sqrt{2 \sqrt{3}}
$$

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).
- $\operatorname{sys}\left(S^{2}, g\right)=$ least length of nontrivial periodic geodesics.
$-\sup _{g}\left(\operatorname{sys}\left(S^{2}, g\right) / \operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}\right)<+\infty($ Croke, 1989).
Conjecture (Calabi-Croke)

$$
\sup _{g} \frac{\operatorname{sys}\left(S^{2}, g\right)}{\operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}}=\sqrt{2 \sqrt{3}} \sim 1.861 \ldots
$$

Systoles of Riemannian 2-spheres

Let $\left(S^{2}, g\right)$ denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).
- $\operatorname{sys}\left(S^{2}, g\right)=$ least length of nontrivial periodic geodesics.
$-\sup _{g}\left(\operatorname{sys}\left(S^{2}, g\right) / \operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}\right)<+\infty($ Croke, 1989 $)$.
Conjecture (Calabi-Croke)

$$
\sup _{g} \frac{\operatorname{sys}\left(S^{2}, g\right)}{\operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}}=\sqrt{2 \sqrt{3}} \sim 1.861 \ldots
$$

Remark: Best upper bound so far: $4 \sqrt{2}$ (R. Rotman, 2006).

Systoles of Zoll Riemannian 2-spheres - I

Systoles of Zoll Riemannian 2-spheres - I

Theorem (Weinstein, 1974)
If g is a Zoll metric on S^{2}, then $\frac{\operatorname{sys}\left(S^{2}, g\right)}{\operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}}=\sqrt{\pi} \sim 1.772$.

Systoles of Zoll Riemannian 2-spheres - I

Theorem (Weinstein, 1974)
If g is a Zoll metric on S^{2}, then $\frac{\text { sys }\left(S^{2}, g\right)}{\text { area }\left(S^{2}, g\right)^{\frac{1}{2}}}=\sqrt{\pi} \sim 1.772$.
Using Symplectic Geometry techniques, A. Abbondandolo, B. Braham, U. Hryniewicz and P. Salomão showed:

Systoles of Zoll Riemannian 2-spheres - I

Theorem (Weinstein, 1974)
If g is a Zoll metric on S^{2}, then $\frac{s s y\left(S S^{2}, g\right)}{\text { area }\left(S^{2}, g\right)^{\frac{1}{2}}}=\sqrt{\pi} \sim 1.772$.
Using Symplectic Geometry techniques, A. Abbondandolo, B. Braham, U. Hryniewicz and P. Salomão showed:

Theorem (A. Abbondandolo et al., 2018) If g_{z} is a Zoll metric on the 2 -sphere, then there exists a C^{3}-neighbourhood \mathcal{U} of g_{z} such that

$$
\frac{\operatorname{sys}\left(S^{2}, g\right)}{\operatorname{area}\left(S^{2}, g\right)^{\frac{1}{2}}} \leq \sqrt{\pi} \quad \text { for every } g \in \mathcal{U}
$$

and equality holds for $g \in \mathcal{U}$ if and only if g Zoll.

Systoles of Zoll Riemannian 2-spheres - II

Also, among just the metrics originally considered by Zoll...

Systoles of Zoll Riemannian 2-spheres - II

Also, among just the metrics originally considered by Zoll...
Theorem (A. Abbondandolo et al., 2021)
If Σ is a sphere of revolution in \mathbb{R}^{3}, then

$$
\frac{\operatorname{sys}\left(\Sigma^{2}, g\right)}{\operatorname{area}\left(\Sigma^{2}, g\right)^{\frac{1}{2}}} \leq \sqrt{\pi} \quad \text { for every } \quad g \in \mathcal{U}
$$

and equality holds for if and only if Σ is a Zoll sphere of revolution in \mathbb{R}^{3}.

Lusternik-Schnirelmann theory

Lusternik-Schnirelmann theory

Theorem (Lusternik-Schnirelmann, 1920's)
Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Lusternik-Schnirelmann theory

Theorem (Lusternik-Schnirelmann, 1920's)
Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^{2} has the homotopy type of $\mathbb{R} \mathbb{P}^{3}$. (Smale)

Lusternik-Schnirelmann theory

Theorem (Lusternik-Schnirelmann, 1920's)
Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^{2} has the homotopy type of $\mathbb{R} \mathbb{P}^{3}$. (Smale)

Idea: LS identified critical levels ("widths")

Lusternik-Schnirelmann theory

Theorem (Lusternik-Schnirelmann, 1920's)
Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^{2} has the homotopy type of $\mathbb{R} \mathbb{P}^{3}$. (Smale)

Idea: LS identified critical levels ("widths")

$$
0<\omega_{1}\left(S^{2}, g\right) \leq \omega_{2}\left(S^{2}, g\right) \leq \omega_{3}\left(S^{2}, g\right)<+\infty
$$

Lusternik-Schnirelmann theory

Theorem (Lusternik-Schnirelmann, 1920's)
Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^{2} has the homotopy type of $\mathbb{R P}^{3}$. (Smale)

Idea: LS identified critical levels ("widths")

$$
0<\omega_{1}\left(S^{2}, g\right) \leq \omega_{2}\left(S^{2}, g\right) \leq \omega_{3}\left(S^{2}, g\right)<+\infty
$$

which are detected by a min-max procedure for i-parameter families of embedded circles, $i=1,2,3, \ldots$

LS widths of Zoll spheres

... and LS proved that either these three widths are different or there are infinitely many periodic simple geodesics.

LS widths of Zoll spheres

... and LS proved that either these three widths are different or there are infinitely many periodic simple geodesics.

Theorem (Mazzucchelli-Suhr, 2018)
Let $\left(S^{2}, g\right)$ be a Riemannian two-sphere.
i) If $\omega_{1}\left(S^{2}, g\right)=\omega_{2}\left(S^{2}, g\right)$ or $\omega_{2}\left(S^{2}, g\right)=\omega_{3}\left(S^{2}, g\right)$, then there exists a periodic simple geodesic of length $\omega_{2}\left(S^{2}, g\right)$ through every point of S^{2}.

LS widths of Zoll spheres

... and LS proved that either these three widths are different or there are infinitely many periodic simple geodesics.

Theorem (Mazzucchelli-Suhr, 2018)
Let $\left(S^{2}, g\right)$ be a Riemannian two-sphere.
i) If $\omega_{1}\left(S^{2}, g\right)=\omega_{2}\left(S^{2}, g\right)$ or $\omega_{2}\left(S^{2}, g\right)=\omega_{3}\left(S^{2}, g\right)$, then there exists a periodic simple geodesic of length $\omega_{2}\left(S^{2}, g\right)$ through every point of S^{2}.
ii) $\omega_{1}\left(S^{2}, g\right)=\omega_{3}\left(S^{2}, g\right)$ if, and only if, g is a Zoll metric.

Similar notions in other dimensions?

Similar notions in other dimensions?

Simple periodic geodesic
$=$ embedded S^{1} with zero geodesic curvature $=$ embedded S^{1} that is critical point of the length functional.

Similar notions in other dimensions?

> Simple periodic geodesic
> $=$ embedded S^{1} with zero geodesic curvature $=$ embedded S^{1} that is critical point of the length functional.

Embedded minimal spheres
$=$ embedded spheres $S^{n}, n \geq 2$, with zero mean curvature. $=$ embedded sphere $S^{n}, n \geq 2$, that is critical point of the area functional

Spherical systole in dimension 3

Spherical systole in dimension 3

Theorem (Simon-Smith, 1981)
Every Riemannian 3-sphere contains an embedded minimal 2-sphere.

Spherical systole in dimension 3

Theorem (Simon-Smith, 1981)
Every Riemannian 3-sphere contains an embedded minimal 2-sphere.

It then makes sense to consider the "spherical systole":

$$
\begin{aligned}
& \mathcal{S}\left(S^{3}, g\right)=\inf \{\operatorname{area}(\Sigma, g) \mid \Sigma \text { embedded } \\
& \left.\quad \text { minimal 2-sphere in }\left(S^{3}, g\right)\right\}>0 .
\end{aligned}
$$

Systolic freedom

Example: $\left(S^{3}, c a n\right)=$ unit Euclidean 3-sphere

 equators $=$ least area embedded minimal surfaces in (S^{3}, can $)$.
Systolic freedom

Example: $\left(S^{3}\right.$, can $)=$ unit Euclidean 3-sphere

 equators $=$ least area embedded minimal surfaces in $\left(S^{3}\right.$, can $)$.Theorem (A. - Montezuma (2018))

$$
\sup _{g} \frac{\mathcal{S}\left(S^{3}, g\right)}{\operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}}=+\infty \ldots
$$

Systolic freedom

Example: $\left(S^{3}\right.$, can $)=$ unit Euclidean 3-sphere

 equators $=$ least area embedded minimal surfaces in $\left(S^{3}\right.$, can $)$.Theorem (A. - Montezuma (2018))

$$
\sup _{g} \frac{\mathcal{S}\left(S^{3}, g\right)}{\operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}}=+\infty \ldots
$$

... even among Berger metrics with sec >0.

A sharp inequality

Analogies with eigenvalues suggest to look for estimates inside conformal classes $\left[g_{0}\right]=\left\{g=e^{2 f} g_{0} \mid f \in C^{\infty}\left(S^{3}\right)\right\}$ of metrics.

A sharp inequality

Analogies with eigenvalues suggest to look for estimates inside conformal classes $\left[g_{0}\right]=\left\{g=e^{2 f} g_{0} \mid f \in C^{\infty}\left(S^{3}\right)\right\}$ of metrics.

Theorem (A. - Montezuma, 2018)
If $\left(S^{3}, g\right)$ is conformally flat and has positive Ricci curvature, then

$$
\mathcal{S}\left(S^{3}, g\right) \leq \sqrt[3]{\frac{16}{\pi}} \operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}
$$

A sharp inequality

Analogies with eigenvalues suggest to look for estimates inside conformal classes $\left[g_{0}\right]=\left\{g=e^{2 f} g_{0} \mid f \in C^{\infty}\left(S^{3}\right)\right\}$ of metrics.

Theorem (A. - Montezuma, 2018)
If $\left(S^{3}, g\right)$ is conformally flat and has positive Ricci curvature, then

$$
\mathcal{S}\left(S^{3}, g\right) \leq \sqrt[3]{\frac{16}{\pi}} \operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}
$$

Equality holds if and only if g has constant seccional curvature.

A sharp inequality

Analogies with eigenvalues suggest to look for estimates inside conformal classes $\left[g_{0}\right]=\left\{g=e^{2 f} g_{0} \mid f \in C^{\infty}\left(S^{3}\right)\right\}$ of metrics.

Theorem (A. - Montezuma, 2018)
If $\left(S^{3}, g\right)$ is conformally flat and has positive Ricci curvature, then

$$
\mathcal{S}\left(S^{3}, g\right) \leq \sqrt[3]{\frac{16}{\pi}} \operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}
$$

Equality holds if and only ifg has constant seccional curvature.
Proof: study how $\mathcal{S}\left(S^{3}, g\right)$ varies along a the volume-preserving Yamabe Flow $g_{t} \in[c a n]$ and use the preserved condition $R i c_{g_{t}}>0$ to guarantee $\mathcal{S}\left(S^{3}, g_{t}\right)$ is realised by an index one minimal sphere.

Properties of maximising metrics?

Properties of maximising metrics?

Theorem (A. - Montezuma, 2018)
Assume $\left(S^{3}, g\right)$ has Ric $_{g}>0$ and is local maximum of $\mathcal{S} / \mathrm{vol}^{\frac{2}{3}}$ inside its conformal class.

Properties of maximising metrics?

Theorem (A. - Montezuma, 2018)
Assume $\left(S^{3}, g\right)$ has Ric >0 and is local maximum of $\mathcal{S} /$ vol $^{\frac{2}{3}}$ inside its conformal class. Then there exists a sequence $\left\{\Sigma_{i}\right\}$ of embedded index one minimal 2 -spheres with area $\mathcal{S}\left(S^{3}, g\right)$ such that

$$
f_{S^{3}} f d V_{g}=\lim _{k \rightarrow+\infty} \frac{1}{k} \sum_{i=1}^{k} f_{\Sigma_{i}} f d V_{g} \text { for all } f \in C^{0}\left(S^{3}\right) .
$$

Properties of maximising metrics?

Theorem (A. - Montezuma, 2018)
Assume $\left(S^{3}, g\right)$ has Ric >0 and is local maximum of $\mathcal{S} /$ vol $^{\frac{2}{3}}$ inside its conformal class. Then there exists a sequence $\left\{\Sigma_{i}\right\}$ of embedded index one minimal 2 -spheres with area $\mathcal{S}\left(S^{3}, g\right)$ such that

$$
f_{S^{3}} f d V_{g}=\lim _{k \rightarrow+\infty} \frac{1}{k} \sum_{i=1}^{k} f_{\Sigma_{i}} f d V_{g} \text { for all } f \in C^{0}\left(S^{3}\right) .
$$

Corollary: through each point of such $\left(S^{3}, g\right)$ passes an embedded index one minimal two-sphere with area $\mathcal{S}\left(S^{3}, g\right)$.

Properties of maximising metrics?

Theorem (A. - Montezuma, 2018)
Assume $\left(S^{3}, g\right)$ has $R i c_{g}>0$ and is local maximum of $\mathcal{S} / \mathrm{vol}^{\frac{2}{3}}$ inside its conformal class. Then there exists a sequence $\left\{\Sigma_{i}\right\}$ of embedded index one minimal 2 -spheres with area $\mathcal{S}\left(S^{3}, g\right)$ such that

$$
f_{S^{3}} f d V_{g}=\lim _{k \rightarrow+\infty} \frac{1}{k} \sum_{i=1}^{k} f_{\Sigma_{i}} f d V_{g} \text { for all } f \in C^{0}\left(S^{3}\right)
$$

Corollary: through each point of such $\left(S^{3}, g\right)$ passes an embedded index one minimal two-sphere with area $\mathcal{S}\left(S^{3}, g\right)$.

Examples??? All homogeneous metrics on S^{3} satisfy the conclusion of the above theorem...

Further questions to be investigated

-) Could analogues of Zoll metrics play a role in the study of

$$
\mathcal{S}\left(S^{3}, g\right) / \operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}} ?
$$

Further questions to be investigated

-) Could analogues of Zoll metrics play a role in the study of

$$
\mathcal{S}\left(S^{3}, g\right) / \operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}} ?
$$

-) Are there analogues of Zoll metrics in the theory of minimal ($n-1$)-spheres in Riemannian n-spheres, that are as abundant and interesting as Zoll metrics on two-spheres?

Zoll families of $(n-1)$-spheres - I

If g is Zoll metric on S^{2}, then for every $(p, \ell) \in G r_{1}\left(T S^{2}\right)$ there exists a unique embedded circle γ that is geodesic with respect to g, contains p and is tangent to ℓ at p.

Zoll families of $(n-1)$-spheres - I

If g is Zoll metric on S^{2}, then for every $(p, \ell) \in G r_{1}\left(T S^{2}\right)$ there exists a unique embedded circle γ that is geodesic with respect to g, contains p and is tangent to ℓ at p.

It can be proven that the space of geodesics is parametrised by $\mathbb{R P}^{2}$, and nearby geodesics are normal graphs onto each other. Moreover, all geodesics have the same length.

Zoll families of $(n-1)$-spheres - I

If g is Zoll metric on S^{2}, then for every $(p, \ell) \in G r_{1}\left(T S^{2}\right)$ there exists a unique embedded circle γ that is geodesic with respect to g, contains p and is tangent to ℓ at p.

It can be proven that the space of geodesics is parametrised by $\mathbb{R P}^{2}$, and nearby geodesics are normal graphs onto each other. Moreover, all geodesics have the same length.

Higher dimensional model: (S^{n}, can) and family of totally geodesic equators

$$
\Sigma_{\sigma}=\sigma^{\perp} \cap S^{n}, \quad \sigma \in \mathbb{R P}^{n}
$$

Zoll families of $(n-1)$-spheres - II

$$
G r_{n-1}\left(T S^{n}\right)=\left\{(p, \pi) \mid \pi \subset T_{p} S^{n}(n-1) \text {-dim. linear subspace }\right\} .
$$

Zoll families of $(n-1)$-spheres - II

$\operatorname{Gr}_{n-1}\left(T S^{n}\right)=\left\{(p, \pi) \mid \pi \subset T_{p} S^{n}(n-1)\right.$-dim. linear subspace $\}$.
$\left\{\Sigma_{\sigma}\right\}$ family of smoothly embedded S^{n-1} 's in S^{n},

Zoll families of $(n-1)$-spheres - II

$G r_{n-1}\left(T S^{n}\right)=\left\{(p, \pi) \mid \pi \subset T_{p} S^{n}(n-1)\right.$-dim. linear subspace $\}$.
$\left\{\Sigma_{\sigma}\right\}$ family of smoothly embedded S^{n-1} 's in S^{n}, smoothly parametrised by $\sigma \in \mathbb{R} \mathbb{P}^{n}$.

Zoll families of $(n-1)$-spheres - II

$G r_{n-1}\left(T S^{n}\right)=\left\{(p, \pi) \mid \pi \subset T_{p} S^{n}(n-1)\right.$-dim. linear subspace $\}$.
$\left\{\Sigma_{\sigma}\right\}$ family of smoothly embedded S^{n-1} 's in S^{n}, smoothly parametrised by $\sigma \in \mathbb{R P}^{n}$.

Assumption 1:
Given $(p, \pi) \in G r_{n-1}\left(T S^{n}\right)$, there exists a unique $\sigma \in \mathbb{R}^{n}$ s.t.

$$
p \in \Sigma_{\sigma} \quad \text { and } \quad T_{p} \Sigma_{\sigma}=\pi .
$$

Zoll families of $(n-1)$-spheres - II

$G r_{n-1}\left(T S^{n}\right)=\left\{(p, \pi) \mid \pi \subset T_{p} S^{n}(n-1)\right.$-dim. linear subspace $\}$.
$\left\{\Sigma_{\sigma}\right\}$ family of smoothly embedded S^{n-1} 's in S^{n}, smoothly parametrised by $\sigma \in \mathbb{R} \mathbb{P}^{n}$.

Assumption 1:
Given $(p, \pi) \in G r_{n-1}\left(T S^{n}\right)$, there exists a unique $\sigma \in \mathbb{R P}^{n}$ s.t.

$$
p \in \Sigma_{\sigma} \quad \text { and } \quad T_{p} \Sigma_{\sigma}=\pi
$$

Assumption 2:
The assignment $(p, \pi) \mapsto \Sigma_{\sigma}$ is smooth (in graphical sense).

Mean curvature

Consider $\left\{\Sigma_{\sigma}\right\}_{\sigma \in \mathbb{R P}^{n}}$ a Zoll family in the n-sphere as before.

Mean curvature

Consider $\left\{\Sigma_{\sigma}\right\}_{\sigma \in \mathbb{R P}^{n}}$ a Zoll family in the n-sphere as before.
Given a Riemannian metric g on S^{n}, may define the generalised mean curvature vector map of the family $\left\{\Sigma_{\sigma}\right\}$:

$$
\overrightarrow{\mathcal{H}}\left(g,\left\{\Sigma_{\sigma}\right\}\right):(p, \pi) \in G r_{n-1}\left(S^{n}\right) \mapsto \vec{H}_{g}^{\Sigma_{\sigma}}(p) \in T_{p} S^{n}
$$

where Σ_{σ} is the unique element of the family with $\pi=T_{p} \Sigma_{\sigma}$.

Mean curvature

Consider $\left\{\Sigma_{\sigma}\right\}_{\sigma \in \mathbb{R P}^{n}}$ a Zoll family in the n-sphere as before.
Given a Riemannian metric g on S^{n}, may define the generalised mean curvature vector map of the family $\left\{\Sigma_{\sigma}\right\}$:

$$
\overrightarrow{\mathcal{H}}\left(g,\left\{\Sigma_{\sigma}\right\}\right):(p, \pi) \in G r_{n-1}\left(S^{n}\right) \mapsto \vec{H}_{g}^{\Sigma_{\sigma}}(p) \in T_{p} S^{n}
$$

where Σ_{σ} is the unique element of the family with $\pi=T_{p} \Sigma_{\sigma}$.

Recall: Σ_{σ} minimal in $\left(S^{n}, g\right) \Leftrightarrow \vec{H}_{g}^{\Sigma_{\sigma}} \equiv 0$.

Mean curvature

Consider $\left\{\Sigma_{\sigma}\right\}_{\sigma \in \mathbb{R P}^{n}}$ a Zoll family in the n-sphere as before.
Given a Riemannian metric g on S^{n}, may define the generalised mean curvature vector map of the family $\left\{\Sigma_{\sigma}\right\}$:

$$
\overrightarrow{\mathcal{H}}\left(g,\left\{\Sigma_{\sigma}\right\}\right):(p, \pi) \in G r_{n-1}\left(S^{n}\right) \mapsto \vec{H}_{g}^{\Sigma_{\sigma}}(p) \in T_{p} S^{n}
$$

where Σ_{σ} is the unique element of the family with $\pi=T_{p} \Sigma_{\sigma}$.

Recall: Σ_{σ} minimal in $\left(S^{n}, g\right) \Leftrightarrow \vec{H}_{g}^{\Sigma_{\sigma}} \equiv 0$.
Remark: If $\vec{H}\left(g,\left\{\Sigma_{\sigma}\right\}\right) \equiv 0$, then all Σ_{σ} have the same area.

A new Zoll-like condition and a new problem

Find and understand geometry of solutions to

$$
\overrightarrow{\mathcal{H}}\left(g,\left\{\Sigma_{\sigma}\right\}\right) \equiv 0 .
$$

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).
- Perturbations of (can, \{equators\}).

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).
- Perturbations of (can, \{equators\}). (Generalises Gullemin's result on $n=2$).

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).
- Perturbations of (can, \{equators\}). (Generalises Gullemin's result on $n=2$). Remark: possible to perturb inside [can].

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).
- Perturbations of (can, \{equators\}). (Generalises Gullemin's result on $n=2$). Remark: possible to perturb inside [can].
- Some examples have trivial isometry group,

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).
- Perturbations of (can, \{equators\}). (Generalises Gullemin's result on $n=2$). Remark: possible to perturb inside [can].
- Some examples have trivial isometry group, arbitrarily close to can,

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \geq 3$.

- Examples of the form (g, \{equators $\}$). (Classification).
- Perturbations of (can, \{equators\}). (Generalises Gullemin's result on $n=2$). Remark: possible to perturb inside [can].
- Some examples have trivial isometry group, arbitrarily close to can, and inside [can]! (Answer to a question by Yau).

Back to Otto Zoll's original construction?

Are there n-spheres of revolution in \mathbb{R}^{n+1} that contain Zoll families of minimal $(n-1)$-spheres, for all $n \geq 3$?

Summary

Riemannian 3-spheres with Zoll families of minimal 2-spheres do not necessarily maximise

$$
\frac{\mathcal{S}\left(S^{3}, g\right)}{\operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}}
$$

in their respective conformal classes...

Summary

Riemannian 3-spheres with Zoll families of minimal 2-spheres do not necessarily maximise

$$
\frac{\mathcal{S}\left(S^{3}, g\right)}{\operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}}
$$

in their respective conformal classes...
... and yet ...

Summary

Riemannian 3-spheres with Zoll families of minimal 2-spheres do not necessarily maximise

$$
\frac{\mathcal{S}\left(S^{3}, g\right)}{\operatorname{vol}\left(S^{3}, g\right)^{\frac{2}{3}}}
$$

in their respective conformal classes...
... and yet ...
... they are very good candidates, and also abundant, curious geometric objects that deserve to be investigated further.

Back to Lusternik-Schnirelmann theory

$\left(M^{n}, g\right)$ complete Riemannian manifold.

Back to Lusternik-Schnirelmann theory

(M^{n}, g) complete Riemannian manifold.
Γ embedded circle in M.

Back to Lusternik-Schnirelmann theory

(M^{n}, g) complete Riemannian manifold.
Γ embedded circle in M.
$\mathcal{P}:=$ subsets of $\Gamma \simeq \mathbb{S}^{1}$ with at most two elements.

Back to Lusternik-Schnirelmann theory

(M^{n}, g) complete Riemannian manifold.
Γ embedded circle in M.
$\mathcal{P}:=$ subsets of $\Gamma \simeq \mathbb{S}^{1}$ with at most two elements.
$\Delta:=$ subsets of Γ with exactly one element.

Back to Lusternik-Schnirelmann theory

(M^{n}, g) complete Riemannian manifold.
Γ embedded circle in M.
$\mathcal{P}:=$ subsets of $\Gamma \simeq \mathbb{S}^{1}$ with at most two elements.
$\Delta:=$ subsets of Γ with exactly one element.
Consider the bounded functional

$$
\rho:\{x, y\} \in \mathcal{P} / \Delta \mapsto d_{g}(x, y) \in[0,+\infty) .
$$

LS theory for distance functions - I

Lemma
$\mathcal{P} \simeq$ Möbius band, $\partial \mathcal{P}=\Delta$.

LS theory for distance functions - I

Lemma
$\mathcal{P} \simeq$ Möbius band, $\partial \mathcal{P}=\Delta$.
$\mathcal{P} / \Delta \simeq \mathbb{R} \mathbb{P}^{2}$.

LS theory for distance functions - I

Lemma
$\mathcal{P} \simeq$ Möbius band, $\partial \mathcal{P}=\Delta$.
$\mathcal{P} / \Delta \simeq \mathbb{R} \mathbb{P}^{2}$.
If ρ is smooth (away from [Δ]), LS theory finds two critical values for ρ,

$$
0<\mathcal{S}(\Gamma) \leq \operatorname{diam}(\Gamma)
$$

and guarantees there are infinitely many non-trivial critical points of ρ if equality holds.

LS theory for distance functions - I

Lemma
$\mathcal{P} \simeq$ Möbius band, $\partial \mathcal{P}=\Delta$.
$\mathcal{P} / \Delta \simeq \mathbb{R P}^{2}$.
If ρ is smooth (away from [Δ]), LS theory finds two critical values for ρ,

$$
0<\mathcal{S}(\Gamma) \leq \operatorname{diam}(\Gamma),
$$

and guarantees there are infinitely many non-trivial critical points of ρ if equality holds.

Remark: in this case non-trivial critical point of ρ if and only if the minimising geodesic joining them is orthogonal to Γ.

The critical value $S(\Gamma)$

$$
S(\Gamma)=\inf _{\text {sweepout }} \max _{t \in[0,1]} d_{g}\left(p_{t}, q_{t}\right)
$$

The critical value $S(\Gamma)$

$$
S(\Gamma)=\inf _{\text {sweepout }} \max _{t \in[0,1]} d_{g}\left(p_{t}, q_{t}\right)
$$

where a sweepout is a family $\left\{p_{t}, q_{t}\right\} \subset \Gamma, t \in[0,1]$, such that

The critical value $S(\Gamma)$

$$
S(\Gamma)=\inf _{\text {sweepout }} \max _{t \in[0,1]} d_{g}\left(p_{t}, q_{t}\right)
$$

where a sweepout is a family $\left\{p_{t}, q_{t}\right\} \subset \Gamma, t \in[0,1]$, such that
i) $p_{0}=q_{0}$ and $p_{1}=q_{1}$;

The critical value $S(\Gamma)$

$$
S(\Gamma)=\inf _{\text {sweepout }} \max _{t \in[0,1]} d_{g}\left(p_{t}, q_{t}\right)
$$

where a sweepout is a family $\left\{p_{t}, q_{t}\right\} \subset \Gamma, t \in[0,1]$, such that
i) $p_{0}=q_{0}$ and $p_{1}=q_{1}$;
ii) $t \in[0,1] \mapsto p_{t} \in \Gamma$ and $t \in[0,1] \mapsto q_{t} \in \Gamma$ are continuous functions; and

The critical value $S(\Gamma)$

$$
S(\Gamma)=\inf _{\text {sweepout }} \max _{t \in[0,1]} d_{g}\left(p_{t}, q_{t}\right)
$$

where a sweepout is a family $\left\{p_{t}, q_{t}\right\} \subset \Gamma, t \in[0,1]$, such that
i) $p_{0}=q_{0}$ and $p_{1}=q_{1}$;
ii) $t \in[0,1] \mapsto p_{t} \in \Gamma$ and $t \in[0,1] \mapsto q_{t} \in \Gamma$ are continuous functions; and
iii) There are arcs $C_{t} \subset \Gamma$ with $C_{0}=\left\{p_{0}\right\}, C_{1}=\Gamma$ and C_{t} with extremities $\left\{p_{t}, q_{t}\right\}$ such that $t \mapsto C_{t}$ is continuous.

LS theory for distance functions - II

But, in general, ρ is not a smooth function (away from $[\Delta]$)!

LS theory for distance functions - II

But, in general, ρ is not a smooth function (away from $[\Delta]$)!

In a joint work with R. Montezuma and R. Santos (2023), we proposed a definition of regular/critical point of ρ and proved the generalisation of Lusternik-Schnirelmann theorem in this degree of generality.

LS theory for distance functions - II

But, in general, ρ is not a smooth function (away from $[\Delta]$)!

In a joint work with R. Montezuma and R. Santos (2023), we proposed a definition of regular/critical point of ρ and proved the generalisation of Lusternik-Schnirelmann theorem in this degree of generality.

If $\Gamma=\partial \Omega, \Omega$ totally convex embedded 2-disc, and natural geometric extra assumptions, we can also characterise minimising geodesics with extremities at a critical point of ρ at the level $\mathcal{S}(\Gamma)$.

Regular and critical points of ρ

Definition
A point $\{p, q\} \in \mathcal{P}$ is a regular point of ρ when there exists

$$
(v, w) \in T_{p} \Gamma \times T_{q} \Gamma
$$

such that, for every minimising geodesic γ joining p and q,

$$
\left\langle w, \nu_{\gamma}(q)\right\rangle+\left\langle v, \nu_{\gamma}(p)\right\rangle<0
$$

Regular and critical points of ρ

Definition
A point $\{p, q\} \in \mathcal{P}$ is a regular point of ρ when there exists

$$
(v, w) \in T_{p} \Gamma \times T_{q} \Gamma
$$

such that, for every minimising geodesic γ joining p and q,

$$
\left\langle w, \nu_{\gamma}(q)\right\rangle+\left\langle v, \nu_{\gamma}(p)\right\rangle<0
$$

A point $\{p, q\} \in \mathcal{P}$ is a critical point of ρ if it is not regular.

Regular and critical points of ρ

Definition
A point $\{p, q\} \in \mathcal{P}$ is a regular point of ρ when there exists

$$
(v, w) \in T_{p} \Gamma \times T_{q} \Gamma
$$

such that, for every minimising geodesic γ joining p and q,

$$
\left\langle w, \nu_{\gamma}(q)\right\rangle+\left\langle v, \nu_{\gamma}(p)\right\rangle<0 .
$$

A point $\{p, q\} \in \mathcal{P}$ is a critical point of ρ if it is not regular.

Motivation: first variation formula of length for γ.

LS theory for distance functions - III

From the analogy with Zoll metrics...

LS theory for distance functions - III

From the analogy with Zoll metrics...
... the case $\mathcal{S}(\Gamma)=\operatorname{diam}(\Gamma)$ should be special!

LS theory for distance functions - III

From the analogy with Zoll metrics...
... the case $\mathcal{S}(\Gamma)=\operatorname{diam}(\Gamma)$ should be special!

In fact...
... if Γ is a plane convex curve, ...

LS theory for distance functions - III

From the analogy with Zoll metrics...
... the case $\mathcal{S}(\Gamma)=\operatorname{diam}(\Gamma)$ should be special!

In fact...
... if Γ is a plane convex curve, ...
... then $\mathcal{S}(\Gamma)=\operatorname{diam}(\Gamma) \Leftrightarrow$
Γ is a curve of constant width.

LS theory for distance functions - III

From the analogy with Zoll metrics...

$$
\ldots \text { the case } \mathcal{S}(\Gamma)=\operatorname{diam}(\Gamma) \text { should be special! }
$$

In fact...
... if Γ is a plane convex curve, ...
... then $\mathcal{S}(\Gamma)=\operatorname{diam}(\Gamma) \Leftrightarrow$
Γ is a curve of constant width.

This theory thus suggests a meaningful generalisation of this classical notion to arbitrary geometries.

Thank you!

