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The surfaces of revolution of Otto Zoll

The non-trivial geodesics of the Euclidean sphere in R3 are the
great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll
wrote down explicit formulas describing an infinite dimensional
family of spheres of revolution in R3...

... just like the Euclidean sphere, all of their unit-speed
geodesics are periodic, simple and have the same length!
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Zoll’s surfaces

Pictures by Mario Schulz.



Zoll metrics

Let Mn be a compact manifold (with no boundary), n ≥ 2.

Definition
A Riemannian metric on M is called Zoll when all of its unit
speed geodesics are periodic, simple and have the same period.

Model examples: spheres Sn and projective spaces (RPn, CPn,
HPn and CaP2) with their canonical metrics.

More than a century of developments: see for instance
Manifolds all of whose geodesics are closed by Arthur Besse...

... and still several interesting open problems about them!
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More reasons to investigate Zoll metrics?

Aside from having obviously interesting dynamical properties,
Zoll metrics have interesting variational/geometric properties.

In this talk, we will discuss two of these properties, regarding

- systoles vs area,

- Lusternik-Schnirelmann theory.

And we will see how they can inspire meaningful analogies in
other variational theories.
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Systoles of Riemannian 2-spheres

Let (S2, g) denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917).

- sys(S2, g) = least length of nontrivial periodic geodesics.

- supg

(
sys(S2, g)/area(S2, g)

1
2

)
< +∞ (Croke, 1989).

Conjecture (Calabi-Croke)

sup
g

sys(S2, g)

area(S2, g)
1
2

=

√
2
√

3 ∼ 1.861...

Remark: Best upper bound so far: 4
√

2 (R. Rotman, 2006).
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Systoles of Zoll Riemannian 2-spheres - I

Theorem (Weinstein, 1974)
If g is a Zoll metric on S2, then sys(S2,g)

area(S2,g)
1
2

=
√
π ∼ 1.772.

Using Symplectic Geometry techniques, A. Abbondandolo, B.
Braham, U. Hryniewicz and P. Salomão showed:

Theorem (A. Abbondandolo et al., 2018)
If gz is a Zoll metric on the 2-sphere, then there exists a
C 3-neighbourhood U of gz such that

sys(S2, g)

area(S2, g)
1
2

≤
√
π for every g ∈ U ,

and equality holds for g ∈ U if and only if g Zoll.
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Systoles of Zoll Riemannian 2-spheres - II

Also, among just the metrics originally considered by Zoll...

Theorem (A. Abbondandolo et al., 2021)
If Σ is a sphere of revolution in R3, then

sys(Σ2, g)

area(Σ2, g)
1
2

≤
√
π for every g ∈ U

and equality holds for if and only if Σ is a Zoll sphere of
revolution in R3.
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Lusternik-Schnirelmann theory

Theorem (Lusternik-Schnirelmann, 1920’s)
Every Riemannian 2-sphere contains at least three periodic
simple geodesics.

Remark: Space of embedded circles in S2 has the homotopy
type of RP3. (Smale)

Idea: LS identified critical levels (“widths”)

0 < ω1(S2, g) ≤ ω2(S2, g) ≤ ω3(S2, g) < +∞,

which are detected by a min-max procedure for i -parameter
families of embedded circles, i = 1, 2, 3,...
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LS widths of Zoll spheres

... and LS proved that either these three widths are different
or there are infinitely many periodic simple geodesics.

Theorem (Mazzucchelli-Suhr, 2018)
Let (S2, g) be a Riemannian two-sphere.

i) If ω1(S2, g) = ω2(S2, g) or ω2(S2, g) = ω3(S2, g), then
there exists a periodic simple geodesic of length ω2(S2, g)
through every point of S2.

ii) ω1(S2, g) = ω3(S2, g) if, and only if, g is a Zoll metric.
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Similar notions in other dimensions?

Simple periodic geodesic
= embedded S1 with zero geodesic curvature

= embedded S1 that is critical point of the length functional.

Embedded minimal spheres
= embedded spheres Sn, n ≥ 2, with zero mean curvature.
= embedded sphere Sn, n ≥ 2, that is critical point of the

area functional
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Spherical systole in dimension 3

Theorem (Simon-Smith, 1981)
Every Riemannian 3-sphere contains an embedded minimal
2-sphere.

It then makes sense to consider the “spherical systole”:

S(S3, g) = inf {area(Σ, g) |Σ embedded

minimal 2-sphere in (S3, g)
}
> 0.
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Systolic freedom

Example: (S3, can) = unit Euclidean 3-sphere
equators = least area embedded minimal surfaces in (S3, can).

Theorem (A. - Montezuma (2018))

sup
g

S(S3, g)

vol(S3, g)
2
3

= +∞ ...

... even among Berger metrics with sec > 0.
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A sharp inequality

Analogies with eigenvalues suggest to look for estimates inside
conformal classes [g0] = {g = e2f g0 | f ∈ C∞(S3)} of metrics.

Theorem (A. - Montezuma, 2018)
If (S3, g) is conformally flat and has positive Ricci curvature,
then

S(S3, g) ≤ 3

√
16

π
vol(S3, g)

2
3 .

Equality holds if and only if g has constant seccional curvature.

Proof : study how S(S3, g) varies along a the volume-preserving

Yamabe Flow gt ∈ [can] and use the preserved condition Ricgt > 0

to guarantee S(S3, gt) is realised by an index one minimal sphere.
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Properties of maximising metrics?

Theorem (A. - Montezuma, 2018)
Assume (S3, g) has Ricg > 0 and is local maximum of S/vol 2

3

inside its conformal class.Then there exists a sequence {Σi} of
embedded index one minimal 2-spheres with area S(S3, g)
such that

−
∫
S3

f dVg = lim
k→+∞

1

k

k∑
i=1

−
∫

Σi

f dVg for all f ∈ C 0(S3).

Corollary: through each point of such (S3, g) passes an
embedded index one minimal two-sphere with area S(S3, g).

Examples??? All homogeneous metrics on S3 satisfy the
conclusion of the above theorem...
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Further questions to be investigated

-) Could analogues of Zoll metrics play a role in the study of

S(S3, g)/vol(S3, g)
2
3 ?

-) Are there analogues of Zoll metrics in the theory of minimal
(n − 1)-spheres in Riemannian n-spheres, that are as abundant
and interesting as Zoll metrics on two-spheres?
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Zoll families of (n − 1)-spheres - I

If g is Zoll metric on S2, then for every (p, `) ∈ Gr1(TS2)
there exists a unique embedded circle γ that is geodesic with
respect to g , contains p and is tangent to ` at p.

It can be proven that the space of geodesics is parametrised by
RP2, and nearby geodesics are normal graphs onto each other.
Moreover, all geodesics have the same length.

Higher dimensional model: (Sn, can) and family of totally
geodesic equators

Σσ = σ⊥ ∩ Sn, σ ∈ RPn.
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Zoll families of (n − 1)-spheres - II

Grn−1(TSn) = {(p, π) |π ⊂ TpS
n (n − 1)-dim. linear subspace}.

{Σσ} family of smoothly embedded Sn−1’s in Sn, smoothly
parametrised by σ ∈ RPn.

Assumption 1:
Given (p, π) ∈ Grn−1(TSn), there exists a unique σ ∈ RPn s.t.

p ∈ Σσ and TpΣσ = π.

Assumption 2:
The assignment (p, π) 7→ Σσ is smooth (in graphical sense).
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Mean curvature

Consider {Σσ}σ∈RPn a Zoll family in the n-sphere as before.

Given a Riemannian metric g on Sn, may define the
generalised mean curvature vector map of the family {Σσ}:

~H(g , {Σσ}) : (p, π) ∈ Grn−1(Sn) 7→ ~HΣσ
g (p) ∈ TpS

n.

where Σσ is the unique element of the family with π = TpΣσ.

Recall: Σσ minimal in (Sn, g) ⇔ ~HΣσ
g ≡ 0.

Remark: If ~H(g , {Σσ}) ≡ 0, then all Σσ have the same area.
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A new Zoll-like condition and a new problem

Find and understand geometry of solutions to

~H(g , {Σσ}) ≡ 0.



Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we
found non-trivial examples in all dimensions n ≥ 3.

− Examples of the form (g , {equators}).
(Classification).

− Perturbations of (can, {equators}).
(Generalises Gullemin’s result on n = 2).
Remark: possible to perturb inside [can].

− Some examples have trivial isometry group, arbitrarily
close to can, and inside [can]!
(Answer to a question by Yau).
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Back to Otto Zoll’s original construction?

Are there n-spheres of revolution in Rn+1 that contain Zoll
families of minimal (n − 1)-spheres, for all n ≥ 3?



Summary

Riemannian 3-spheres with Zoll families of minimal 2-spheres
do not necessarily maximise

S(S3, g)

vol(S3, g)
2
3

in their respective conformal classes...

... and yet ...

... they are very good candidates, and also abundant, curious
geometric objects that deserve to be investigated further.
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Back to Lusternik-Schnirelmann theory

(Mn, g) complete Riemannian manifold.

Γ embedded circle in M .

P := subsets of Γ ' S1 with at most two elements.

∆ := subsets of Γ with exactly one element.

Consider the bounded functional

ρ : {x , y} ∈ P/∆ 7→ dg (x , y) ∈ [0,+∞).
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LS theory for distance functions - I

Lemma
P ' Möbius band, ∂P = ∆.

P/∆ ' RP2.

If ρ is smooth (away from [∆]), LS theory finds two critical
values for ρ,

0 < S(Γ) ≤ diam(Γ),

and guarantees there are infinitely many non-trivial critical
points of ρ if equality holds.

Remark: in this case non-trivial critical point of ρ if and only
if the minimising geodesic joining them is orthogonal to Γ.
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The critical value S(Γ)

S(Γ) = inf
sweepout

max
t∈[0,1]

dg (pt , qt),

where a sweepout is a family {pt , qt} ⊂ Γ, t ∈ [0, 1], such that

i) p0 = q0 and p1 = q1;

ii) t ∈ [0, 1] 7→ pt ∈ Γ and t ∈ [0, 1] 7→ qt ∈ Γ are
continuous functions; and

iii) There are arcs Ct ⊂ Γ with C0 = {p0}, C1 = Γ and Ct

with extremities {pt , qt} such that t 7→ Ct is continuous.
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LS theory for distance functions - II

But, in general, ρ is not a smooth function (away from [∆])!

In a joint work with R. Montezuma and R. Santos (2023), we
proposed a definition of regular/critical point of ρ and proved
the generalisation of Lusternik-Schnirelmann theorem in this
degree of generality.

If Γ = ∂Ω, Ω totally convex embedded 2-disc, and natural
geometric extra assumptions, we can also characterise
minimising geodesics with extremities at a critical point of ρ at
the level S(Γ).
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Regular and critical points of ρ

Definition
A point {p, q} ∈ P is a regular point of ρ when there exists

(v ,w) ∈ TpΓ× TqΓ

such that, for every minimising geodesic γ joining p and q,

〈w , νγ(q)〉+ 〈v , νγ(p)〉 < 0.

A point {p, q} ∈ P is a critical point of ρ if it is not regular.

Motivation: first variation formula of length for γ.
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LS theory for distance functions - III

From the analogy with Zoll metrics...

... the case S(Γ) = diam(Γ) should be special!

In fact...

... if Γ is a plane convex curve, ...

... then S(Γ) = diam(Γ) ⇔
Γ is a curve of constant width.

This theory thus suggests a meaningful generalisation of this
classical notion to arbitrary geometries.
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Thank you!


