Why are Zoll metrics interesting?

Lucas Ambrozio

IMPA

Workshop Geometric Flows and Relativity - Punta del Este March 20th 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^3 are the great circles.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^3 are the great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll wrote down explicit formulas describing an infinite dimensional family of spheres of revolution in \mathbb{R}^3 ...

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^3 are the great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll wrote down explicit formulas describing an infinite dimensional family of spheres of revolution in \mathbb{R}^3 ...

... just like the Euclidean sphere,

The non-trivial geodesics of the Euclidean sphere in \mathbb{R}^3 are the great circles.

In his 1901 Doctoral Thesis under David Hilbert, Otto Zoll wrote down explicit formulas describing an infinite dimensional family of spheres of revolution in \mathbb{R}^3 ...

... just like the Euclidean sphere, *all of their unit-speed* geodesics are periodic, simple and have the same length!

Zoll's surfaces

Pictures by Mario Schulz.

ヘロト ヘロト ヘヨト ヘヨト

æ

Let M^n be a compact manifold (with no boundary), $n \ge 2$.

Definition

A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let M^n be a compact manifold (with no boundary), $n \ge 2$.

Definition

A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Model examples: spheres S^n and projective spaces (\mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n and CaP^2) with their canonical metrics.

Let M^n be a compact manifold (with no boundary), $n \ge 2$.

Definition

A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Model examples: spheres S^n and projective spaces (\mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n and CaP^2) with their canonical metrics.

More than a century of developments: see for instance *Manifolds all of whose geodesics are closed* by Arthur Besse...

Let M^n be a compact manifold (with no boundary), $n \ge 2$.

Definition

A Riemannian metric on M is called Zoll when all of its unit speed geodesics are periodic, simple and have the same period.

Model examples: spheres S^n and projective spaces (\mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n and CaP^2) with their canonical metrics.

More than a century of developments: see for instance Manifolds all of whose geodesics are closed by Arthur Besse...

... and still several interesting open problems about them!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In this talk, we will discuss two of these properties, regarding

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In this talk, we will discuss two of these properties, regarding

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- systoles vs area,

In this talk, we will discuss two of these properties, regarding

- systoles vs area,

- Lusternik-Schnirelmann theory.

In this talk, we will discuss two of these properties, regarding

- systoles vs area,

- Lusternik-Schnirelmann theory.

And we will see how they can inspire meaningful analogies in other variational theories.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Let (S^2, g) denote a Riemannian two-dimensional sphere.

- Let (S^2, g) denote a Riemannian two-dimensional sphere.
 - It contains nontrivial periodic geodesics (Birkhoff, 1917).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let (S^2, g) denote a Riemannian two-dimensional sphere.
 - It contains nontrivial periodic geodesics (Birkhoff, 1917).
 - $sys(S^2, g) =$ least length of nontrivial periodic geodesics.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let (S^2, g) denote a Riemannian two-dimensional sphere.
 - It contains nontrivial periodic geodesics (Birkhoff, 1917). - $sys(S^2, g) = least length of nontrivial periodic geodesics.$ - $sup_g \left(sys(S^2, g) / area(S^2, g)^{\frac{1}{2}} \right) < +\infty$ (Croke, 1989).

Let (S^2, g) denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917). - $sys(S^2, g) = \text{least length of nontrivial periodic geodesics.}$ - $\sup_g \left(sys(S^2, g) / area(S^2, g)^{\frac{1}{2}} \right) < +\infty$ (Croke, 1989).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conjecture (Calabi-Croke)

$$\sup_{g} \frac{sys(S^2,g)}{area(S^2,g)^{\frac{1}{2}}} = \sqrt{2\sqrt{3}}$$

Let (S^2, g) denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917). - $sys(S^2, g) = \text{least length of nontrivial periodic geodesics.}$ - $\sup_g \left(sys(S^2, g) / area(S^2, g)^{\frac{1}{2}} \right) < +\infty$ (Croke, 1989).

Conjecture (Calabi-Croke)

$$\sup_{g} \frac{sys(S^{2},g)}{area(S^{2},g)^{\frac{1}{2}}} = \sqrt{2\sqrt{3}} \sim 1.861...$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (S^2, g) denote a Riemannian two-dimensional sphere.

- It contains nontrivial periodic geodesics (Birkhoff, 1917). - $sys(S^2, g) = \text{least length of nontrivial periodic geodesics.}$ - $\sup_g \left(sys(S^2, g) / area(S^2, g)^{\frac{1}{2}} \right) < +\infty$ (Croke, 1989).

Conjecture (Calabi-Croke)

$$\sup_{g} \frac{sys(S^{2},g)}{area(S^{2},g)^{\frac{1}{2}}} = \sqrt{2\sqrt{3}} \sim 1.861...$$

Remark: Best upper bound so far: $4\sqrt{2}$ (R. Rotman, 2006).

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Theorem (Weinstein, 1974) If g is a Zoll metric on S², then $\frac{sys(S^2,g)}{area(S^2,g)^{\frac{1}{2}}} = \sqrt{\pi} \sim 1.772.$

Theorem (Weinstein, 1974) If g is a Zoll metric on S², then $\frac{sys(S^2,g)}{area(S^2,g)^{\frac{1}{2}}} = \sqrt{\pi} \sim 1.772.$

Using Symplectic Geometry techniques, A. Abbondandolo, B. Braham, U. Hryniewicz and P. Salomão showed:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Weinstein, 1974) If g is a Zoll metric on S², then $\frac{sys(S^2,g)}{area(S^2,g)^{\frac{1}{2}}} = \sqrt{\pi} \sim 1.772.$

Using Symplectic Geometry techniques, A. Abbondandolo, B. Braham, U. Hryniewicz and P. Salomão showed:

Theorem (A. Abbondandolo et al., 2018) If g_z is a Zoll metric on the 2-sphere, then there exists a C^3 -neighbourhood \mathcal{U} of g_z such that

$$rac{sys(S^2,g)}{area(S^2,g)^{rac{1}{2}}} \leq \sqrt{\pi} \quad \textit{for every} \quad g \in \mathcal{U},$$

and equality holds for $g \in U$ if and only if g Zoll.

Also, among just the metrics originally considered by Zoll...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Also, among just the metrics originally considered by Zoll...

Theorem (A. Abbondandolo et al., 2021) If Σ is a sphere of revolution in \mathbb{R}^3 , then

$$rac{ extsf{sys}(\Sigma^2,g)}{ extsf{area}(\Sigma^2,g)^{rac{1}{2}}} \leq \sqrt{\pi} \quad extsf{for every} \quad g \in \mathcal{U}$$

and equality holds for if and only if Σ is a Zoll sphere of revolution in \mathbb{R}^3 .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Theorem (Lusternik-Schnirelmann, 1920's) Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Theorem (Lusternik-Schnirelmann, 1920's) Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^2 has the homotopy type of \mathbb{RP}^3 . (Smale)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Lusternik-Schnirelmann, 1920's) Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^2 has the homotopy type of \mathbb{RP}^3 . (Smale)

Idea: LS identified critical levels ("widths")

Theorem (Lusternik-Schnirelmann, 1920's) Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^2 has the homotopy type of \mathbb{RP}^3 . (Smale)

Idea: LS identified critical levels ("widths")

$$\mathsf{0} < \omega_1(\mathsf{S}^2, \mathsf{g}) \leq \omega_2(\mathsf{S}^2, \mathsf{g}) \leq \omega_3(\mathsf{S}^2, \mathsf{g}) < +\infty,$$

Theorem (Lusternik-Schnirelmann, 1920's) Every Riemannian 2-sphere contains at least three periodic simple geodesics.

Remark: Space of embedded circles in S^2 has the homotopy type of \mathbb{RP}^3 . (Smale)

Idea: LS identified critical levels ("widths")

$$0 < \omega_1(S^2,g) \le \omega_2(S^2,g) \le \omega_3(S^2,g) < +\infty,$$

which are detected by a min-max procedure for *i*-parameter families of embedded circles, i = 1, 2, 3, ...

... and LS proved that either these three widths are different or there are infinitely many periodic simple geodesics.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
... and LS proved that either these three widths are different or there are infinitely many periodic simple geodesics.

Theorem (Mazzucchelli-Suhr, 2018) Let (S^2, g) be a Riemannian two-sphere. i) If $\omega_1(S^2, g) = \omega_2(S^2, g)$ or $\omega_2(S^2, g) = \omega_3(S^2, g)$, then there exists a periodic simple geodesic of length $\omega_2(S^2, g)$ through every point of S^2 .

A D N A 目 N A E N A E N A B N A C N

... and LS proved that either these three widths are different or there are infinitely many periodic simple geodesics.

Theorem (Mazzucchelli-Suhr, 2018) Let (S^2, g) be a Riemannian two-sphere. i) If $\omega_1(S^2, g) = \omega_2(S^2, g)$ or $\omega_2(S^2, g) = \omega_3(S^2, g)$, then there exists a periodic simple geodesic of length $\omega_2(S^2, g)$ through every point of S^2 .

ii) $\omega_1(S^2,g) = \omega_3(S^2,g)$ if, and only if, g is a Zoll metric.

Similar notions in other dimensions?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Similar notions in other dimensions?

Simple periodic geodesic = embedded S^1 with zero geodesic curvature = embedded S^1 that is critical point of the length functional.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Similar notions in other dimensions?

Simple periodic geodesic = embedded S^1 with zero geodesic curvature = embedded S^1 that is critical point of the length functional.

Embedded minimal spheres

= embedded spheres S^n , $n \ge 2$, with zero mean curvature.

= embedded sphere S^n , $n \ge 2$, that is critical point of the area functional

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spherical systole in dimension 3

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Theorem (Simon-Smith, 1981) Every Riemannian 3-sphere contains an embedded minimal 2-sphere.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Simon-Smith, 1981) Every Riemannian 3-sphere contains an embedded minimal 2-sphere.

It then makes sense to consider the "spherical systole":

 $S(S^3, g) = \inf \{ area(\Sigma, g) | \Sigma \text{ embedded} \$ minimal 2-sphere in $(S^3, g) \} > 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Systolic freedom

Example: $(S^3, can) =$ unit Euclidean 3-sphere equators = least area embedded minimal surfaces in (S^3, can) .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Systolic freedom

Example: $(S^3, can) =$ unit Euclidean 3-sphere equators = least area embedded minimal surfaces in (S^3, can) .

Theorem (A. - Montezuma (2018)) $\sup_{g} \frac{\mathcal{S}(S^{3},g)}{vol(S^{3},g)^{\frac{2}{3}}} = +\infty \dots$

Systolic freedom

Example: $(S^3, can) =$ unit Euclidean 3-sphere equators = least area embedded minimal surfaces in (S^3, can) .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (A. - Montezuma (2018))

$$\sup_{g} \frac{\mathcal{S}(S^{3},g)}{vol(S^{3},g)^{\frac{2}{3}}} = +\infty \dots$$

... even among Berger metrics with sec > 0.

Analogies with eigenvalues suggest to look for estimates inside conformal classes $[g_0] = \{g = e^{2f}g_0 \mid f \in C^{\infty}(S^3)\}$ of metrics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analogies with eigenvalues suggest to look for estimates inside conformal classes $[g_0] = \{g = e^{2f}g_0 \mid f \in C^{\infty}(S^3)\}$ of metrics.

Theorem (A. - Montezuma, 2018) If (S^3, g) is conformally flat and has positive Ricci curvature, then

$$\mathcal{S}(S^3,g) \leq \sqrt[3]{rac{16}{\pi}} \mathit{vol}(S^3,g)^{rac{2}{3}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Analogies with eigenvalues suggest to look for estimates inside conformal classes $[g_0] = \{g = e^{2f}g_0 \mid f \in C^{\infty}(S^3)\}$ of metrics.

Theorem (A. - Montezuma, 2018) If (S^3, g) is conformally flat and has positive Ricci curvature, then

$$\mathcal{S}(S^3,g) \leq \sqrt[3]{rac{16}{\pi}} \operatorname{vol}(S^3,g)^{rac{2}{3}}.$$

Equality holds if and only if g has constant seccional curvature.

A D N A 目 N A E N A E N A B N A C N

Analogies with eigenvalues suggest to look for estimates inside conformal classes $[g_0] = \{g = e^{2f}g_0 \mid f \in C^{\infty}(S^3)\}$ of metrics.

Theorem (A. - Montezuma, 2018) If (S^3, g) is conformally flat and has positive Ricci curvature, then

$$\mathcal{S}(S^3,g) \leq \sqrt[3]{rac{16}{\pi}} \operatorname{vol}(S^3,g)^{rac{2}{3}}.$$

Equality holds if and only if g has constant seccional curvature.

Proof: study how $S(S^3, g)$ varies along a the volume-preserving Yamabe Flow $g_t \in [can]$ and use the preserved condition $Ric_{g_t} > 0$ to guarantee $S(S^3, g_t)$ is realised by an index one minimal sphere.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem (A. - Montezuma, 2018) Assume (S^3 , g) has $Ric_g > 0$ and is local maximum of $S/vol^{\frac{2}{3}}$ inside its conformal class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (A. - Montezuma, 2018) Assume (S^3 , g) has $Ric_g > 0$ and is local maximum of $S/vol^{\frac{2}{3}}$ inside its conformal class. Then there exists a sequence { Σ_i } of embedded index one minimal 2-spheres with area $S(S^3, g)$ such that

$$\oint_{S^3} f \, dV_g = \lim_{k \to +\infty} \frac{1}{k} \sum_{i=1}^k \oint_{\Sigma_i} f \, dV_g \text{ for all } f \in C^0(S^3).$$

Theorem (A. - Montezuma, 2018) Assume (S^3 , g) has $Ric_g > 0$ and is local maximum of $S/vol^{\frac{2}{3}}$ inside its conformal class. Then there exists a sequence { Σ_i } of embedded index one minimal 2-spheres with area $S(S^3, g)$ such that

$$\int_{S^3} f \, dV_g = \lim_{k \to +\infty} \frac{1}{k} \sum_{i=1}^k \int_{\Sigma_i} f \, dV_g \text{ for all } f \in C^0(S^3).$$

Corollary: through each point of such (S^3, g) passes an embedded index one minimal two-sphere with area $S(S^3, g)$.

Theorem (A. - Montezuma, 2018) Assume (S³, g) has $Ric_g > 0$ and is local maximum of $S/vol^{\frac{2}{3}}$ inside its conformal class. Then there exists a sequence { Σ_i } of embedded index one minimal 2-spheres with area $S(S^3, g)$ such that

$$\oint_{S^3} f \, dV_g = \lim_{k \to +\infty} \frac{1}{k} \sum_{i=1}^k \oint_{\Sigma_i} f \, dV_g \text{ for all } f \in C^0(S^3).$$

Corollary: through each point of such (S^3, g) passes an embedded index one minimal two-sphere with area $S(S^3, g)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples??? All homogeneous metrics on S^3 satisfy the conclusion of the above theorem...

Further questions to be investigated

-) Could analogues of Zoll metrics play a role in the study of

$$S(S^3,g)/vol(S^3,g)^{\frac{2}{3}}$$
?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

-) Could analogues of Zoll metrics play a role in the study of

$$S(S^3,g)/vol(S^3,g)^{\frac{2}{3}}$$
?

-) Are there analogues of Zoll metrics in the theory of minimal (n-1)-spheres in Riemannian *n*-spheres, that are as abundant and interesting as Zoll metrics on two-spheres?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If g is Zoll metric on S^2 , then for every $(p, \ell) \in Gr_1(TS^2)$ there exists a unique embedded circle γ that is geodesic with respect to g, contains p and is tangent to ℓ at p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If g is Zoll metric on S^2 , then for every $(p, \ell) \in Gr_1(TS^2)$ there exists a unique embedded circle γ that is geodesic with respect to g, contains p and is tangent to ℓ at p.

It can be proven that the space of geodesics is parametrised by \mathbb{RP}^2 , and nearby geodesics are normal graphs onto each other. Moreover, all geodesics have the same length.

If g is Zoll metric on S^2 , then for every $(p, \ell) \in Gr_1(TS^2)$ there exists a unique embedded circle γ that is geodesic with respect to g, contains p and is tangent to ℓ at p.

It can be proven that the space of geodesics is parametrised by \mathbb{RP}^2 , and nearby geodesics are normal graphs onto each other. Moreover, all geodesics have the same length.

Higher dimensional model: (S^n, can) and family of totally geodesic equators

$$\Sigma_{\sigma} = \sigma^{\perp} \cap S^{n}, \quad \sigma \in \mathbb{RP}^{n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $Gr_{n-1}(TS^n) = \{(p,\pi) \mid \pi \subset T_pS^n(n-1)\text{-dim. linear subspace}\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $Gr_{n-1}(TS^n) = \{(p,\pi) \mid \pi \subset T_pS^n(n-1) \text{-dim. linear subspace}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\{\Sigma_{\sigma}\}\$ family of smoothly embedded S^{n-1} 's in S^n ,

$$Gr_{n-1}(TS^n) = \{(p,\pi) \mid \pi \subset T_pS^n(n-1) \text{-dim. linear subspace}\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\{\Sigma_{\sigma}\}$ family of smoothly embedded S^{n-1} 's in S^n , smoothly parametrised by $\sigma \in \mathbb{RP}^n$.

$$\mathit{Gr}_{n-1}(\mathit{TS}^n) = \{(p,\pi) \, | \, \pi \subset \mathit{T}_p \mathit{S}^n \, (n-1) \text{-dim. linear subspace} \}.$$

 $\{\Sigma_{\sigma}\}$ family of smoothly embedded S^{n-1} 's in S^n , smoothly parametrised by $\sigma \in \mathbb{RP}^n$.

Assumption 1: Given $(p, \pi) \in Gr_{n-1}(TS^n)$, there exists a unique $\sigma \in \mathbb{RP}^n$ s.t.

$$p \in \Sigma_{\sigma}$$
 and $T_p \Sigma_{\sigma} = \pi$.

$$\mathit{Gr}_{n-1}(\mathit{TS}^n) = \{(p,\pi) \, | \, \pi \subset \mathit{T}_p \mathit{S}^n \, (n-1) \text{-dim. linear subspace} \}.$$

 $\{\Sigma_{\sigma}\}$ family of smoothly embedded S^{n-1} 's in S^n , smoothly parametrised by $\sigma \in \mathbb{RP}^n$.

Assumption 1: Given $(p, \pi) \in Gr_{n-1}(TS^n)$, there exists a unique $\sigma \in \mathbb{RP}^n$ s.t.

$$p \in \Sigma_{\sigma}$$
 and $T_p \Sigma_{\sigma} = \pi$.

Assumption 2:

The assignment $(p, \pi) \mapsto \Sigma_{\sigma}$ is smooth (in graphical sense).

Mean curvature

Consider $\{\Sigma_{\sigma}\}_{\sigma \in \mathbb{RP}^n}$ a Zoll family in the *n*-sphere as before.

(ロ)、(型)、(E)、(E)、 E) の(()

Consider $\{\Sigma_{\sigma}\}_{\sigma \in \mathbb{RP}^n}$ a Zoll family in the *n*-sphere as before.

Given a Riemannian metric g on S^n , may define the generalised mean curvature vector map of the family $\{\Sigma_{\sigma}\}$:

$$ec{\mathcal{H}}(g, \{\Sigma_{\sigma}\}) \ : \ (p, \pi) \in \mathit{Gr}_{n-1}(S^n) \ \mapsto \ ec{\mathcal{H}}_g^{\Sigma_{\sigma}}(p) \in \mathit{T}_pS^n.$$

where Σ_{σ} is the unique element of the family with $\pi = T_p \Sigma_{\sigma}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider $\{\Sigma_{\sigma}\}_{\sigma \in \mathbb{RP}^n}$ a Zoll family in the *n*-sphere as before.

Given a Riemannian metric g on S^n , may define the generalised mean curvature vector map of the family $\{\Sigma_{\sigma}\}$:

$$ec{\mathcal{H}}(g,\{\Sigma_{\sigma}\})$$
 : $(p,\pi)\in Gr_{n-1}(S^n) \mapsto ec{\mathcal{H}}_g^{\Sigma_{\sigma}}(p)\in T_pS^n.$

where Σ_{σ} is the unique element of the family with $\pi = T_p \Sigma_{\sigma}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall: Σ_{σ} minimal in $(S^n, g) \Leftrightarrow \vec{H}_g^{\Sigma_{\sigma}} \equiv 0$.

Consider $\{\Sigma_{\sigma}\}_{\sigma \in \mathbb{RP}^n}$ a Zoll family in the *n*-sphere as before.

Given a Riemannian metric g on S^n , may define the generalised mean curvature vector map of the family $\{\Sigma_{\sigma}\}$:

$$ec{\mathcal{H}}(g,\{\Sigma_{\sigma}\})$$
 : $(p,\pi)\in Gr_{n-1}(S^n) \mapsto ec{\mathcal{H}}_g^{\Sigma_{\sigma}}(p)\in T_pS^n.$

where Σ_{σ} is the unique element of the family with $\pi = T_p \Sigma_{\sigma}$.

Recall: Σ_{σ} minimal in $(S^n, g) \Leftrightarrow \vec{H}_g^{\Sigma_{\sigma}} \equiv 0$.

Remark: If $\vec{H}(g, \{\Sigma_{\sigma}\}) \equiv 0$, then all Σ_{σ} have the same area.

(日)((1))

A new Zoll-like condition and a new problem

Find and understand geometry of solutions to $\vec{\mathcal{H}}(g, \{\Sigma_{\sigma}\}) \equiv 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples of solutions

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples of the form (g, {equators}).
 (Classification).

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

- Examples of the form (g, {equators}).
 (Classification).
- Perturbations of (*can*, {*equators*}).

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Examples of the form (g, {equators}).
 (Classification).
- Perturbations of (can, {equators}).
 (Generalises Gullemin's result on n = 2).

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Examples of the form (g, {equators}).
 (Classification).
- Perturbations of (*can*, {*equators*}).
 (Generalises Gullemin's result on n = 2).
 Remark: possible to perturb inside [*can*].

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

- Examples of the form (g, {equators}).
 (Classification).
- Perturbations of (*can*, {*equators*}).
 (Generalises Gullemin's result on n = 2).
 Remark: possible to perturb inside [*can*].
- Some examples have trivial isometry group,

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

- Examples of the form (g, {equators}).
 (Classification).
- Perturbations of (*can*, {*equators*}).
 (Generalises Gullemin's result on n = 2).
 Remark: possible to perturb inside [*can*].
- Some examples have trivial isometry group, arbitrarily close to *can*,

In a joint work with F. Marques and A. Neves (2021), we found non-trivial examples in all dimensions $n \ge 3$.

- Examples of the form (g, {equators}).
 (Classification).
- Perturbations of (*can*, {*equators*}).
 (Generalises Gullemin's result on n = 2).
 Remark: possible to perturb inside [*can*].
- Some examples have trivial isometry group, arbitrarily close to *can*, and inside [*can*]! (Answer to a question by Yau).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Back to Otto Zoll's original construction?

Are there *n*-spheres of revolution in \mathbb{R}^{n+1} that contain Zoll families of minimal (n-1)-spheres, for all $n \ge 3$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Riemannian 3-spheres with Zoll families of minimal 2-spheres do not necessarily maximise

$$\frac{\mathcal{S}(S^3,g)}{\operatorname{vol}(S^3,g)^{\frac{2}{3}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

in their respective conformal classes...

Riemannian 3-spheres with Zoll families of minimal 2-spheres do not necessarily maximise

$$\frac{\mathcal{S}(S^3,g)}{\operatorname{vol}(S^3,g)^{\frac{2}{3}}}$$

in their respective conformal classes...

... and yet ...

・ロト・西ト・西ト・西ト・日・ シック

Riemannian 3-spheres with Zoll families of minimal 2-spheres do not necessarily maximise

 $\frac{\mathcal{S}(S^3,g)}{\operatorname{vol}(S^3,g)^{\frac{2}{3}}}$

in their respective conformal classes...

... and yet ...

... they are very good candidates, and also abundant, curious geometric objects that deserve to be investigated further.

 (M^n, g) complete Riemannian manifold.

 (M^n, g) complete Riemannian manifold.

 Γ embedded circle in M.

- (M^n, g) complete Riemannian manifold.
- Γ embedded circle in M.
- $\mathcal{P}:=\mathsf{subsets}$ of $\Gamma\simeq\mathbb{S}^1$ with at most two elements.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- (M^n, g) complete Riemannian manifold.
- Γ embedded circle in M.
- $\mathcal{P} :=$ subsets of $\Gamma \simeq \mathbb{S}^1$ with at most two elements.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Δ := subsets of Γ with exactly one element.

 (M^n, g) complete Riemannian manifold.

- Γ embedded circle in M.
- $\mathcal{P} :=$ subsets of $\Gamma \simeq \mathbb{S}^1$ with at most two elements.
- $\Delta :=$ subsets of Γ with exactly one element.

Consider the bounded functional

$$\rho: \{x, y\} \in \mathcal{P}/\Delta \mapsto d_g(x, y) \in [0, +\infty).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma $\mathcal{P} \simeq \textit{M\"obius band}, \ \partial \mathcal{P} = \Delta.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma $\mathcal{P} \simeq \textit{M\"obius band}, \ \partial \mathcal{P} = \Delta.$ $\mathcal{P}/\Delta \simeq \mathbb{RP}^2.$

Lemma $\mathcal{P} \simeq M \ddot{o} bius \ band, \ \partial \mathcal{P} = \Delta.$ $\mathcal{P}/\Delta \simeq \mathbb{RP}^2.$

If ρ is smooth (away from [Δ]), LS theory finds two critical values for ρ ,

$$0 < \mathcal{S}(\Gamma) \leq diam(\Gamma),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and guarantees there are infinitely many non-trivial critical points of ρ if equality holds.

Lemma $\mathcal{P} \simeq \textit{M\"obius band}, \ \partial \mathcal{P} = \Delta.$ $\mathcal{P}/\Delta \simeq \mathbb{RP}^2.$

If ρ is smooth (away from [Δ]), LS theory finds two critical values for ρ ,

$$0 < \mathcal{S}(\Gamma) \leq diam(\Gamma),$$

and guarantees there are infinitely many non-trivial critical points of ρ if equality holds.

Remark: in this case non-trivial critical point of ρ if and only if the minimising geodesic joining them is orthogonal to Γ .

$$S(\Gamma) = \inf_{\text{sweepout}} \max_{t \in [0,1]} d_g(p_t, q_t),$$

$$S(\Gamma) = \inf_{\text{sweepout}} \max_{t \in [0,1]} d_g(p_t, q_t),$$

where a sweepout is a family $\{p_t, q_t\} \subset \Gamma$, $t \in [0, 1]$, such that

$$S(\Gamma) = \inf_{\text{sweepout}} \max_{t \in [0,1]} d_g(p_t, q_t),$$

where a sweepout is a family $\{p_t, q_t\} \subset \Gamma$, $t \in [0, 1]$, such that

i)
$$p_0 = q_0$$
 and $p_1 = q_1$;

$$S(\Gamma) = \inf_{\text{sweepout } t \in [0,1]} \max_{t \in [0,1]} d_g(p_t, q_t),$$

where a sweepout is a family $\{p_t, q_t\} \subset \Gamma$, $t \in [0, 1]$, such that

i)
$$p_0 = q_0$$
 and $p_1 = q_1$;

ii)
$$t \in [0, 1] \mapsto p_t \in \Gamma$$
 and $t \in [0, 1] \mapsto q_t \in \Gamma$ are continuous functions; and

$$S(\Gamma) = \inf_{\text{sweepout } t \in [0,1]} \max_{t \in [0,1]} d_g(p_t, q_t),$$

where a sweepout is a family $\{p_t, q_t\} \subset \Gamma$, $t \in [0, 1]$, such that

i)
$$p_0 = q_0$$
 and $p_1 = q_1;$

- ii) $t \in [0,1] \mapsto p_t \in \Gamma$ and $t \in [0,1] \mapsto q_t \in \Gamma$ are continuous functions; and
- iii) There are arcs $C_t \subset \Gamma$ with $C_0 = \{p_0\}$, $C_1 = \Gamma$ and C_t with extremities $\{p_t, q_t\}$ such that $t \mapsto C_t$ is continuous.

But, in general, ρ is not a smooth function (away from $[\Delta])!$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But, in general, ρ is not a smooth function (away from [Δ])!

In a joint work with R. Montezuma and R. Santos (2023), we proposed a definition of regular/critical point of ρ and proved the generalisation of Lusternik-Schnirelmann theorem in this degree of generality.

But, in general, ρ is not a smooth function (away from $[\Delta])!$

In a joint work with R. Montezuma and R. Santos (2023), we proposed a definition of regular/critical point of ρ and proved the generalisation of Lusternik-Schnirelmann theorem in this degree of generality.

If $\Gamma = \partial \Omega$, Ω totally convex embedded 2-disc, and natural geometric extra assumptions, we can also characterise minimising geodesics with extremities at a critical point of ρ at the level $S(\Gamma)$.

Regular and critical points of ρ

Definition A point $\{p,q\} \in \mathcal{P}$ is a regular point of ρ when there exists $(v,w) \in T_p \Gamma \times T_q \Gamma$

such that, for every minimising geodesic γ joining \mathbf{p} and $\mathbf{q},$

 $\langle w,
u_{\gamma}(q)
angle + \langle v,
u_{\gamma}(p)
angle < 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Regular and critical points of ρ

Definition A point $\{p,q\} \in \mathcal{P}$ is a regular point of ρ when there exists $(v,w) \in T_p\Gamma \times T_q\Gamma$

such that, for every minimising geodesic γ joining ${\bf p}$ and ${\bf q},$

$$\langle {m w},
u_\gamma({m q})
angle + \langle {m v},
u_\gamma({m p})
angle < {m 0}.$$

A point $\{p,q\} \in \mathcal{P}$ is a critical point of ρ if it is not regular.

Regular and critical points of ρ

Definition A point $\{p,q\} \in \mathcal{P}$ is a regular point of ρ when there exists $(v,w) \in T_p\Gamma \times T_q\Gamma$

such that, for every minimising geodesic γ joining ${\bf p}$ and ${\bf q},$

$$\langle oldsymbol{w},
u_\gamma(oldsymbol{q})
angle + \langle oldsymbol{v},
u_\gamma(oldsymbol{p})
angle < \mathsf{0}.$$

A point $\{p,q\} \in \mathcal{P}$ is a critical point of ρ if it is not regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Motivation: first variation formula of length for γ .

From the analogy with Zoll metrics...

From the analogy with Zoll metrics...

... the case $S(\Gamma) = diam(\Gamma)$ should be special!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

From the analogy with Zoll metrics...

... the case $S(\Gamma) = diam(\Gamma)$ should be special!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In fact...

... if Γ is a plane convex curve, ...

From the analogy with Zoll metrics...

... the case $S(\Gamma) = diam(\Gamma)$ should be special!

In fact...

... if Γ is a plane convex curve, then $\mathcal{S}(\Gamma) = diam(\Gamma) \Leftrightarrow$

 Γ is a curve of constant width.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From the analogy with Zoll metrics...

... the case $S(\Gamma) = diam(\Gamma)$ should be special!

In fact...

```
... if \Gamma is a plane convex curve, ...
... then S(\Gamma) = diam(\Gamma) \Leftrightarrow
\Gamma is a curve of constant width.
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This theory thus suggests a meaningful generalisation of this classical notion to arbitrary geometries.
Thank you!