Introducción a los Números Algebraicos Clase 8: Cuerpos ciclotómicos

Gonzalo Tornaría

12 de abril, 2007

6 Cuerpos ciclotómicos

Sea m un entero positivo, y sea $\zeta_m := e^{\frac{2\pi i}{m}}$ (una raíz primitiva m-ésima de la unidad. Observar que ζ_m es raíz del polinomio $X^m - 1 = 0$, y lo mismo es cierto para todas las potencias de ζ_m , de las cuales hay m distintas, a saber $\{\zeta_m, \zeta_m^2, \ldots, \zeta_m^m = 1\}$. Se concluye que $K_m := \mathbb{Q}[\zeta_m]$ es el cuerpo de descomposición de $X^m - 1$, y por lo tanto es una extensión de Galois de \mathbb{Q} , que llamamos m-ésimo cuerpo ciclotómico o alternativamente cuerpo ciclotómico de raíces m-ésimas de la unidad.

6.1 El grupo de Galois

Denotemos $G_m := \operatorname{Gal}(K_m/\mathbb{Q})$ el grupo de automorfismos de K_m .

Proposición 6.1.1. Existe un monomorfismo $\theta: G_m \to (\mathbb{Z}/m)^{\times}$ tal que para $\sigma \in G$

$$\sigma(\zeta_m) = \sigma_m^{\theta(\sigma)}.$$

Demostración. Como ζ_m es raíz de X^m-1 , entonces $\sigma(\zeta_m)$ también lo será, y se sigue que $\sigma(\zeta_m)=\zeta_m^{\theta(\sigma)}$, donde $\theta(\sigma)$ es un entero bien definido módulo m. Es claro que $\sigma\mapsto\theta(\sigma)$ es multiplicativo, y como G es un grupo se sigue que la imagen de θ está contenida en $(\mathbb{Z}/m)^{\times}$. Finalmente, si $\theta(\sigma)\equiv 1\pmod{m}$, se sigue que $\sigma(\zeta_m)=\zeta_m$, luego $\sigma=1$ pues ζ_m genera K_m/\mathbb{Q} , de modo que θ es invectivo.

Decimos que una extensión K/\mathbb{Q} es *abeliana* si es normal su grupo de Galois es abeliano.

Corolario 6.1.2. K_m/\mathbb{Q} es una extensión abeliana, $y[K_m:\mathbb{Q}] \mid \varphi(m)$.

Este corolario tiene una suerte de recíproco, el Teorema de Kronecker-Weber, que afirma que cualquier extensión abeliana de $\mathbb Q$ está contenida en un cuerpo ciclotómico!

Definición 6.1.3. Sea $\Phi_m(X) := \prod_{i \in (\mathbb{Z}/m)^{\times}} (X - \zeta_m^i)$ el *m-ésimo polinomio ciclotómico*.

Las raíces de $\Phi_m(X)$ son precisamente las raíces m-ésimas primitivas de la unidad. Puesto que todos los conjugados de ζ_m son raíces m-ésimas primitivas, y lo mismo puede decirse de cualquier raíz m-ésima primitiva, se sigue que $\Phi_m(X) \in \mathbb{Z}[X]$.

Es claro que el grado de $\Phi_m(X)$ es $\varphi(m)$.

Mostraremos ahora que θ es sobreyectivo; equivalentemente, $[K_m : \mathbb{Q}] = \varphi(m)$, o $\Phi_m(X)$ es irreducible.

Lema 6.1.4. Si $p \nmid m$ es primo, entonces ζ_m^p es conjugado a ζ_m .

Demostración. Sea $f(X) \in \mathbb{Z}[X]$ el polinomio minimal de ζ_m . Entonces $X^m - 1 = f(X)g(X)$ con $f(X), g(X) \in \mathbb{Z}[X]$ mónicos. Es claro que ζ_m^p es raíz de $X^m - 1$. Debemos probar que ζ_m^p es raíz de f(X). Supongamos por el contrario, que ζ_m^p es raíz de g(X). Entonces ζ_m es raíz de $g(X^p)$, de modo que $f(X) \mid g(X^p)$.

Considerando estos polinomios módulo p, y debido a que $g(X^p) \equiv g(X)^p$ (mod p), concluimos que $\overline{f}(X) \mid \overline{g}(X)^p$ en $(\mathbb{Z}/p)[X]$, que es un dominio de factorización única. Entonces $\overline{f}(X)$ y $\overline{g}(X)$ tienen un factor común, cuyo cuadrado divide a $\overline{X^m-1}=\overline{f}(X)\overline{g}(X)$. Pero esto es imposible, pues la derivada de $\overline{X^m-1}$ es $\overline{m}X^{m-1}\not\equiv 0\pmod{p}$ (pues $p\nmid m$).

Teorema 6.1.5. El polinomio ciclotómico $\Phi_m(X)$ es irreducible.

Demostración. Alcanza probar que todo ζ_m^i con $\operatorname{mcd}(i,m)=1$ es conjugado a ζ_m . En efecto, esto se sigue de aplicar el Lema reiteradas veces a los factores primos de i (y observar que ζ_m conjugado a ζ_m^p implica ζ_m^j conjugado a ζ_m^{jp} , etc.)

Corolario 6.1.6. El mapa θ es sobreyectivo, $[K_m : \mathbb{Q}] = \varphi(m)$, y el grupo de Galois G_m es canónicamente isomorfo a $(\mathbb{Z}/m)^{\times}$.