Introducción a los Números Algebraicos Clase 11: Descomposición e inercia

Gonzalo Tornaría

24 de abril, 2007

Descomposición e inercia

Grupo de descomposición y grupo de inercia

Sea K un cuerpo de números de grado n, y asumamos que K/\mathbb{Q} es normal. En tal caso denotaremos $G = \operatorname{Gal}(K/\mathbb{Q})$ su grupo de Galois. Sea p un primo racional, y fijemos \mathfrak{p} un primo de K sobre p. Recordemos que, por tratarse de una extensión normal, $e = e(\mathfrak{p}|p)$ y $f = f(\mathfrak{p}|p)$ son independientes de \mathfrak{p} (3.5.7), y tenemos n = efq donde q es el número de distintos primos de Ksobre p (3.5.3).

Definición 4.1.1. El grupo de descomposición de p es

$$D_{\mathfrak{p}} := \{ \sigma \in G : \sigma \mathfrak{p} = \mathfrak{p} \}.$$

El arupo de inercia de \mathfrak{p} es

$$I_{\mathfrak{p}} := \{ \sigma \in G : \sigma \alpha \equiv \alpha \pmod{\mathfrak{p}} \mid \forall \alpha \in \mathfrak{O}_K \}.$$

Como G actúa transitivamente en los q ideales primos sobre p (3.5.6), se sigue que $[G:D_{\mathfrak{p}}]=g$, o lo que es lo mismo, $\#D_{\mathfrak{p}}=ef$. En efecto, hay una correspondencia biyectiva entre las coclases de $D_{\mathfrak{p}}$ y los ideales primos sobre p dada por $\sigma D_{\mathfrak{p}} \mapsto \sigma \mathfrak{p}$ (verificar que es una biyección).

Denotaremos $k_{\mathfrak{p}} := \mathfrak{O}_K/\mathfrak{p}$ al cuerpo residual en \mathfrak{p} , que es una extensión de grado f sobre $\mathbb{F}_p := \mathbb{Z}/p$. Como los automorfismos $\sigma \in D_{\mathfrak{p}}$ dejan fijo \mathfrak{p} , hay un mapa natural

$$D_{\mathfrak{p}} \longrightarrow \overline{G} := \operatorname{Gal}(k_{\mathfrak{p}}/\mathbb{F}_p)$$

$D_n \longrightarrow \overline{G} := \operatorname{Gal}(k_n/\mathbb{F}_n).$

Extensiones relativas

Hasta ahora hemos trabajado con cuerpos de números pensados como extensiones de Q. Resulta natural extender la teoría de normas y trazas, bases enteras, discriminantes, descomposición de primos, etc. al caso de extensiones relativas de cuerpos de números K/L. No desarrollaremos la teoría en general, que podría tomarse como un ejercicio (con dificultades técnicas) a partir de la teoría para extensiones de \mathbb{Q} , pero veremos algunas definiciones y un pequeño resultado que nos serán de utilidad.

cuyo núcleo es justamente $I_{\mathfrak{p}}$ (es fácil ver que $I_{\mathfrak{p}} \subseteq D_{\mathfrak{p}}$). En particular $I_{\mathfrak{p}} \triangleleft D_{\mathfrak{p}}$. Se sigue que $D_{\mathfrak{p}}/I_{\mathfrak{p}}$ es isomorfo a un subgrupo de \overline{G} . Veremos que, en

efecto $D_{\mathfrak{p}}/I_{\mathfrak{p}} \cong \overline{G}$; equivalentemente, dado que $\#\overline{G} = f$, que $\#I_{\mathfrak{p}} = e$.

Sea K/L una extensión de cuerpos de números, y sean $\mathfrak{p} \mid \mathfrak{q}$ primos de \mathcal{O}_K y \mathcal{O}_L respectivamente (necesariamente $\mathfrak{g} = \mathfrak{p} \cap L$). Podemos estudiar la factorización de \mathfrak{q} en \mathfrak{O}_K (en realidad, se trata de la factorización de $\mathfrak{q}\mathfrak{O}_K$, para que sea ideal de \mathcal{O}_K).

El exponente de p en dicha descomposición será el *índice de ramificación* de \mathfrak{p} sobre \mathfrak{q} , denotado $e(\mathfrak{p}|\mathfrak{q})$. Por otra parte, existe una extensión natural de los cuerpos residuales $k_{\mathfrak{p}}/k_{\mathfrak{q}}$ (donde $k_{\mathfrak{p}} = \mathcal{O}_K/\mathfrak{p}$ y $k_{\mathfrak{q}} = \mathcal{O}_L/\mathfrak{q}$). El grado de dicha extensión será el grado de inercia o grado residual de p sobre q, denotado $f(\mathfrak{p}|\mathfrak{q})$. Notar que $N(\mathfrak{p}) = N(\mathfrak{q})^f$.

Proposición 4.1.2. Sea K/L/M una torre de cuerpos, y sean $\mathfrak{p}|\mathfrak{q}|\mathfrak{r}$ respectivos primos. Entonces

$$e(\mathfrak{p}|\mathfrak{r}) = e(\mathfrak{p}|\mathfrak{q}) e(\mathfrak{q}|\mathfrak{r}), \qquad y \qquad f(\mathfrak{p}|\mathfrak{r}) = f(\mathfrak{p}|\mathfrak{q}) f(\mathfrak{q}|\mathfrak{r}).$$

Demostración. Para la primer parte, escribir $\mathfrak{r} = \mathfrak{q}^{e(\mathfrak{q}|\mathfrak{r})} \cdots$, y $\mathfrak{q} = \mathfrak{p}^{e(\mathfrak{p}|\mathfrak{q})} \cdots$, sustituir, y usar factorización única para concluir que $\mathfrak{r} = \mathfrak{p}^{e(\mathfrak{p}|\mathfrak{q})e(\mathfrak{q}|\mathfrak{r})} \cdots$

Para la segunda parte, observar que hay una torre de cuerpos residuales $k_{\rm p}/k_{\rm g}/k_{\rm r}$ y usar la correspondiente propiedad del grado en torres.

Ahora volvemos a los grupos de descomposición e inercia. Denotemos K^{I} al cuerpo fijo por $I_{\mathfrak{p}}$, y K^{D} al cuerpo fijo por $D_{\mathfrak{p}}$ (ambos dependen de \mathfrak{p} , aunque la notación no lo indique), y denotemos $\mathfrak{p}^I := \mathfrak{p} \cap K^I$, y $\mathfrak{p}^D := \mathfrak{p} \cap K^D$. Entonces tenemos una torre de cuerpos $K/K^I/K^D/\mathbb{Q}$, con correspondientes ideales primos $\mathfrak{p} \mid \mathfrak{p}^I \mid \mathfrak{p}^D \mid p$.

4

Teorema 4.1.3. Los grados de las extensiones en la torre $K/K^I/K^D/\mathbb{Q}$ son $[K:K^I]=e, [K^I:K^D]=f, \ y \ [K^D:\mathbb{Q}]=g.$ Además, $\mathfrak{p}|\mathfrak{p}^I$ es totalmente ramificado, $y \ \mathfrak{p}^I|\mathfrak{p}^D$ es inerte.

Demostración. Ya observamos que $[G:D_{\mathfrak{p}}]=g$, de modo que $[K^D:\mathbb{Q}]=g$. Además, como $D_{\mathfrak{p}}=\mathrm{Gal}(K/K^D)$ deja fijo \mathfrak{p} se sigue que \mathfrak{p} es el único primo de K arriba de \mathfrak{p}^D , y por lo tanto $e(\mathfrak{p}|\mathfrak{p}^D)=e$, $f(\mathfrak{p}|\mathfrak{p}^D)=f$.

Para terminar la demostración consideremos $k_{\mathfrak{p}} := \mathfrak{O}_K/\mathfrak{p}$ como extensión de $k_{\mathfrak{p}^I} := \mathfrak{O}_{K^I}/\mathfrak{p}^I$ de grado $f(\mathfrak{p}|\mathfrak{p}^I)$. Necesitamos probar que dicha extensión es trivial, pues esto implica que $f(\mathfrak{p}|\mathfrak{p}^I) = 1 \Rightarrow f(\mathfrak{p}^I|\mathfrak{p}^D) = f$, luego $\#(D_{\mathfrak{p}}/I_{\mathfrak{p}}) = [K^D : K^I] \geq f$, pero como $D_{\mathfrak{p}}/I_{\mathfrak{p}} \hookrightarrow \overline{G}$, que tiene orden f, se sigue que . $\#(D_{\mathfrak{p}}/I_{\mathfrak{p}}) = [K^D : K^I] = f$, y $e(\mathfrak{p}^I|\mathfrak{p}^D) = 1 \Rightarrow e(\mathfrak{p}|\mathfrak{p}^I) = e$.

Sea entonces $\alpha \in \mathcal{O}_K$, y consideremos $g(X) = \prod_{\sigma \in I} (X - \sigma \alpha)$, que tiene coeficientes en \mathcal{O}_{K^I} y anula α . Reduciendo módulo \mathfrak{p} tenemos la factorización $\overline{g} = (X - \overline{\alpha})^{\# I_{\mathfrak{p}}}$ en $k_{\mathfrak{p}}$, y como $k_{\mathfrak{p}}/k_{\mathfrak{p}^I}$ es separable (cuerpos finitos son perfectos) se sigue que $\overline{\alpha} \in k_{\mathfrak{p}^I}$.

Corolario 4.1.4. El mapa natural $D_{\mathfrak{p}} \to \overline{G}$ induce un isomorfismo

$$D_{\mathfrak{p}}/I_{\mathfrak{p}} \stackrel{\sim}{\longrightarrow} \overline{G}.$$

Demostración. Es un mapa inyectivo entre grupos de igual orden.

Corolario 4.1.5. Supongamos que $D_{\mathfrak{p}} \triangleleft G$. Entonces p descompone completamente en K^D .

Demostración. Pues $e(\mathfrak{p}^D|p) = f(\mathfrak{p}^I|p) = 1$, y como $D_{\mathfrak{p}} \triangleleft G$ lo mismo vale para cualquier primo arriba de p (pues $D_{\mathfrak{p}}$ es siempre el mismo).

Ejemplo 4.1.6. $\mathbb{Q}[\sqrt{-23}] \subseteq K_{23}$, p=2. Sabemos que p descompone en $\mathbb{Q}[\sqrt{-23}]$ como producto de dos primos de grado 1, pues $\left(\frac{-23}{2}\right)=1$.

Otra forma de verlo es observar que 2 mod 23 tiene orden 11 (el orden divide a 22, y $\left(\frac{2}{23}\right) = 1$, se sigue que el orden es 1 o 11). Entonces $2 = \mathfrak{p}_1\mathfrak{p}_2$ en K_{23} , donde \mathfrak{p}_i son primos de grado 11. Por lo tanto $D_{\mathfrak{p}_1} = D_{\mathfrak{p}_2}$ es el único subgrupo de $(\mathbb{Z}/23)^{\times}$ de índice 2, y $K_D = \mathbb{Q}[\sqrt{-23}]$.

Ejemplo 4.1.7. $K = \mathbb{Q}[i, \sqrt{2}, \sqrt{5}]$, de grado 8 normal sobre \mathbb{Q} , con grupo de Galois $G \cong (\mathbb{Z}/2)^3$, donde los automorfismos están dados por

$$i, \sqrt{2}, \sqrt{5} \mapsto \pm i, \pm \sqrt{2}, \pm \sqrt{5}.$$

Consideramos p=5. Conocemos la descomposición de p en cuerpos cuadráticos, a saber:

- p descompone en $\mathbb{Q}[\sqrt{i}]$ pues $\left(\frac{-1}{5}\right) = 1$,
- p es inerte en $\mathbb{Q}[\sqrt{2}]$ pues $(\frac{2}{5}) = -1$,
- p ramifica en $\mathbb{Q}[\sqrt{5}]$.

Entonces, en K, necesariamente p descompone con e=f=g=2. Ahora es claro que $K^D=\mathbb{Q}[i]$ (pues es un cuerpo intermedio de grado g=2 en el que p descompone completamente) y K^I (pues es un cuerpo intermedio de grado fg=2 donde 5 no ramifica).

Ejemplo 4.1.8. $K = \mathbb{Q}[\alpha, \zeta_3]$, con $\alpha = \sqrt[3]{19}$, normal sobre \mathbb{Q} , grupo de Galois $G \cong S_3$ que actúa como permutaciones del conjunto $\{\alpha, \zeta_3 \alpha, \zeta_3^2 \alpha\}$ de raíces de $X^3 - 19$. Consideremos p = 3. Sabemos que $(p) = (1 - \zeta_3)^2$ en $\mathbb{Q}[\zeta_3]$, y puede verse que $(p) = \mathfrak{p}^2\mathfrak{q}$ en $\mathbb{Q}[\alpha]$, donde $\mathfrak{p} = (3, \beta)$, $\mathfrak{q} = (3, \beta - 1)$, con $\beta = \frac{1+\alpha+\alpha^2}{3} \in \mathfrak{O}_K$.

Entonces, en K, necesariamente la descomposición de p tiene e par, y $g \geq 2$, luego e = 2, g = 3, f = 1, y se tiene $\mathfrak{p} = \mathfrak{p}_1\mathfrak{p}_2$ y $\mathfrak{q} = \mathfrak{p}_3^2$, con $(1 - \zeta_3) = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.

Luego $\#D_{\mathfrak{p}_i}=ef=2$, generado por un automorfismo que deja fijo \mathfrak{p}_i e intercambia los otros primos de K arriba de p. Entonces $K^D=K^I$ es un cuerpo de grado 3 sobre \mathbb{Q} , para cada \mathfrak{p}_i , pero son todos distintos.

Además, se ve que (3) no descompone completamente en ninguno de los K^D . Por ejemplo, el cuerpo de descomposición correspondiente a \mathfrak{p}_3 es $\mathbb{Q}[\alpha]$, por cuanto el automorfismo de K no trivial que fija $\mathbb{Q}[\alpha]$ deja fijo \mathfrak{q} (por ser primo de $\mathbb{Q}[\alpha]$) y por lo tanto deja fijo \mathfrak{p}_3 también. A posteriori, se ve que el mismo automorfismo intercambia \mathfrak{p}_1 y \mathfrak{p}_2 .