Introducción a los Números Algebraicos Clase 12: Descomposición e inercia II

Gonzalo Tornaría

26 de abril, 2007

Podemos caracterizar el cuerpo de descomposición K^D y el cuerpo de inercia K^I de la siguiente manera:

Teorema 4.1.8. Las subextensiones K^D y K^I están caracterizadas por

- 1. K^D es la subextensión más grande tal que $e(\mathfrak{p}^D|p) = f(\mathfrak{p}^D|p) = 1$.
- 2. K^D es la subextensión más chica tal que $\mathfrak p$ es el único primo de K arriba de $\mathfrak p^D$.
- 3. K^I es la subextensión más grande tal que $e(\mathfrak{p}^I|p)=1$.
- 4. K^I es la subextensión más chica tal que $\mathfrak p$ es totalmente ramificado sobre $\mathfrak p^I$.

Corolario 4.1.9. Supongamos que $D_{\mathfrak{p}} \triangleleft G$, y sea $L \subseteq K$. Entonces p descompone completamente en L si y solo si $L \subseteq K^D$.

Las siguientes proposiciones permiten hacer razonamientos de inducción en cuerpos compuestos y clausuras normales, respectivamente.

Proposición 4.1.10. Sean K y L cuerpos de números, y sea p un primo racional.

- 1. Si p no ramifica en K ni en L, entonces p no ramifica en el cuerpo compuesto KL.
- 2. Si p descompone completamente en K y en L, entonces p descompone completamente en el cuerpo compuesto KL.

normal.

- 1. Si p no ramifica en K, entonces p no ramifica en L.
- 2. Si p descompone completamente en K, entonces p descompone completamente en L.

Proposición 4.1.11. Sea K un cuerpo de números, y sea L su clausura

4.2 Raíces d-ésimas y reciprocidad

Sea p un primo impar, y consideremos el cuerpo ciclotómico $\mathbb{Q}[\zeta_p]$, cuyo grupo de Galois $\operatorname{Gal}(\mathbb{Q}[\zeta_p]/\mathbb{Q})$ es cíclico de orden p-1. Se sigue que para todo $d \mid p-1$ existe una única subextensión $F_d \subseteq \mathbb{Q}[\zeta_p]$ de grado d sobre \mathbb{Q} . Además, $F_{d_1} \subseteq F_{d_2} \Leftrightarrow d_1 \mid d_2$.

Teorema 4.2.1. Sea $q \neq p$ primo impar, y sea $d \mid p-1$. Entonces q es una potencia d-ésima módulo p sii q descompone completamente en F_d .

Demostración. Sabemos que q descompone en $\mathbb{Q}[\zeta_p]$ como producto de g primos distintos de grado f, donde f es el orden de q módulo p. Por otra parte, como $(\mathbb{Z}/p)^{\times}$ es cíclico de orden p-1, las potencias d-ésimas módulo p son exactamente aquellos elementos cuyo orden es un divisor de (p-1)/d. Entonces las siguientes afirmaciones son equivalentes:

q es potencia d-ésima módulo p, $f \mid \frac{p-1}{d},$ $d \mid g,$ $F_d \subseteq F_q.$

Pero F_g es la única subextensión de $\mathbb{Q}[\zeta_p]/\mathbb{Q}$ de grado g, así que es el cuerpo de descomposición de q, y por 4.1.9 la última afirmación es equivalente a que q descomponga completamente en F_d .

Corolario 4.2.2 (Ley de Reciprocidad Cuadrática). Sean $q \neq p$ primos racionales impares. Entonces

$$\left(\frac{q}{p}\right) = \begin{cases} \left(\frac{p}{q}\right) & si \ p \equiv 1 \pmod{4} \ o \ si \ q \equiv 1 \pmod{4}, \\ -\left(\frac{p}{q}\right) & si \ p \equiv q \equiv 3 \pmod{4}a. \end{cases}$$

4

3

Demostración.
$$\left(\frac{q}{p}\right) = 1 \stackrel{4.2.1}{\Longleftrightarrow} q$$
 descompone completamente en $F_2 = \mathbb{Q}[\sqrt{p^*}]$ $\stackrel{5.2}{\Longleftrightarrow} \left(\frac{p^*}{q}\right) = 1$, etc.

4.3 Cuerpos finitos

Sea \mathbb{F} un cuerpo finito (en 2.5.7 vimos que todo dominio integral finito es un cuerpo). El subcuerpo primo de \mathbb{F} , es necesariamente $\mathbb{F}_p := \mathbb{Z}/p$ donde p es el menor entero positivo tal que $\underbrace{1+1+\ldots+1=0}_{p \text{ veces}}$. Es claro que p tiene

que ser primo, pues \mathbb{F} no tiene divisores de cero. Se sigue que \mathbb{F} tiene p^f elementos, donde $f = [\mathbb{F} : \mathbb{F}_n]$.

El grupo multiplicativo \mathbb{F}^{\times} es cíclico, pues lo es cualquier subgrupo finito del grupo multiplicativo de un cuerpo. A saber, sea d el exponente de \mathbb{F}^{\times} (el menor d>0 tal que $x^d=1$ para todo x). Como $X^d-1=0$ es un polinomio de grado d, tiene a lo sumo d raíces; se sigue que \mathbb{F}^{\times} es cíclico de orden $d=p^f-1$.

Todo elemento de \mathbb{F} es raíz del polinomio $X^{p^f} - X$, que es separable (su derivada es -1), y como \mathbb{F} tiene p^f elementos se sigue que $X^{p^f} - X$ descompone totalmente en \mathbb{F} . Es decir que \mathbb{F} es el cuerpo de descomposición de $X^{p^f} - X$ sobre \mathbb{F}_p , por lo tanto \mathbb{F} es el único cuerpo de orden p^f salvo isomorfismo, y además es Galois sobre \mathbb{F}_p .

El automorfismo de Frobenius de \mathbb{F} es un automorfismo τ dado por $\tau(x) = x^p$. Hay que verificar que τ es un automorfismo, utilizando el teorema del binomio (ver que τ es uno a uno, por lo tanto también sobreyectivo).

Observar que, como \mathbb{F}^{\times} es cíclico de orden p^f-1 , se sigue que τ^f es la identidad pero ninguna otra potencia de τ lo es. En otras palabras, τ genera un grupo cíclico de orden f. En particular \mathbb{F} tiene al menos f automorfismos diferentes, pero $[\mathbb{F}:\mathbb{F}_p]=f$; entonces \mathbb{F}/\mathbb{F}_p es Galois, con grupo de Galois cíclico generado por τ . Una consecuencia de esto es que para cada $d\mid f$ existe un único subcuerpo de grado d sobre \mathbb{F}_p .

4.4 El símbolo de Artin

Como antes, sea K una cuerpo de números normal sobre \mathbb{Q} , y supongamos que p es un primo racional no ramificado, y sea $\mathfrak{p} \mid p$. Por 4.1.4 tenemos un isomorfismo canónico $D_{\mathfrak{p}} \xrightarrow{\sim} \overline{G}$, donde $\overline{G} = \operatorname{Gal}(k_{\mathfrak{p}}/\mathbb{F}_p)$ es el grupo de Galois de una extensión de grado f de cuerpos finitos; luego \overline{G} es cíclico de orden

f, con el automorfismo de Frobenius como generador canónico. Entonces tenemos

Proposición 4.4.1. Existe un único automorfismo $\sigma = \sigma_{\mathfrak{p}} \in G$ tal que

$$\sigma(\alpha) \equiv \alpha^p \pmod{\mathfrak{p}},$$

para todo $\alpha \in \mathcal{O}_K$.

El automorfismo $\sigma_{\mathfrak{p}}$ del lema se llama automorfismo de Frobenius en \mathfrak{p} . Es un generador canónico del grupo de descomposición $D_{\mathfrak{p}}$, y lo denotaremos $\left\lceil \frac{K/\mathbb{Q}}{\mathfrak{p}} \right\rceil$.

Proposición 4.4.2. Sea $\sigma\mathfrak{p}$ otro primo arriba de p. Entonces

$$D_{\sigma \mathfrak{p}} = \sigma D_{\mathfrak{p}} \sigma^{-1}, \qquad y \qquad \left[\frac{K/\mathbb{Q}}{\sigma \mathfrak{p}}\right] = \sigma \left[\frac{K/\mathbb{Q}}{\mathfrak{p}}\right] \sigma^{-1}.$$

Concluimos que, si bien el automorfismo de Frobenius varía con \mathfrak{p} , su clase de conjugación no.

Definición 4.4.3. El símbolo de Artin

$$\left(\frac{K/\mathbb{Q}}{p}\right)$$

es la clase de conjugación de $\left[\frac{K/\mathbb{Q}}{\mathfrak{p}}\right]$ para cualquier $\mathfrak{p}\mid p$.

La clase de conjugación $\left(\frac{K/\mathbb{Q}}{p}\right)$ tiene una gran relación con la forma de la descomposición de p en K. Por ejemplo, si K es un cuerpo cuadrático, ya hemos visto que $\left(\frac{K/\mathbb{Q}}{p}\right)$ es trivial si p descompone y no trivial si p es inerte. Más en general

Proposición 4.4.4. Sea K/\mathbb{Q} normal, y sea p un primo racional. Entonces p descompone completamente en K sii $\left(\frac{K/\mathbb{Q}}{p}\right) = 1$.

Demostración. $\left(\frac{K/\mathbb{Q}}{p}\right) = 1$ es equivalente a $D_{\mathfrak{p}} = 1$ para todo $\mathfrak{p} \mid p$; en otras palabras $K^D = K$ y por lo tanto p descompone completamente en K. \square

En los ejercicios 51, 52 se estudia la relación entre $\left(\frac{K/QQ}{p}\right)$ y la descomposición de p en cuerpos cúbicos, y en los ejercicios 53, 56, 57, es necesario entender dicha relación en el caso de cuerpos de grado 4 y 5, dependiendo del grupo de Galois de la clausura normal.

Uno de los temas centrales en la Teoría de Cuerpos de Clases es entender el mapa

{ideales primos no ramificados}
$$\longrightarrow G$$

dado por el símbolo de Artin, llamado mapa de reciprocidad de Artin. En particular se trata de entender su imágen y núcleo, y encontrar extensiones especiales (cuerpos de clases) donde dicho mapa tenga propiedades particularmente importantes que permitan relacionar el grupo de Galois G con el grupo de clases de ideales, etc.

Como muestra enunciaremos (sin demostración) un teorema muy importante que explica la imágen del mapa de reciprocidad de Artin.

Teorema 4.4.5 (Cebotarev). Sea K/\mathbb{Q} normal, y sea $\langle \sigma \rangle$ la clase de conjugación de $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$. Entonces $\left(\frac{K/\mathbb{Q}}{p}\right) = \langle \sigma \rangle$ para infinitos primos racionales p. Más aún,

$$S = S_{\sigma} := \left\{ p : \left(\frac{K/\mathbb{Q}}{p} \right) = \langle \sigma \rangle \right\},$$

entonces S tiene densidad de Dirichlet

$$\frac{\#\langle\sigma\rangle}{\#\operatorname{Gal}(K/\mathbb{Q})}.$$

Corolario 4.4.6. La densidad de los primos racionales p que descomponen completamente en K es $1/[K:\mathbb{Q}]$.

Interpretemos el Teorema de Cebotarev en el caso de cuerpos ciclotómicos. Si $K=K_m$ es el m-ésimo cuerpo ciclotómico, entonces $\operatorname{Gal}(K_m/\mathbb{Q})=(\mathbb{Z}/m)^\times$, y el símbolo de Artin $\left(\frac{K_m/\mathbb{Q}}{p}\right)$ no es más que p mod m. Entonces el Teorema de Cebotarev dice que, dado $a\in(\mathbb{Z}/m)^\times$, los primos racionales $p\equiv a\pmod{m}$ son infinitos y tienen densidad $1/\varphi(m)$. En otras palabras, el Teorema de Cebotarev es una generalización del Teorema de Dirichlet de primos en progresiones aritméticas.