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Introduction



1. For q = ps a prime power, Fq denotes the finite field with q

elements.

2. For each positive integer n, Fqn is the unique n-degree

extension of Fq.

3. For any finite field F, the multiplicative group F∗ is cyclic.

4. Any generator of F∗ is a primitive element of F. (if q = p is

a prime, primitive elements are just primitive roots mod p).

5. Primitive elements are remarkable elements in the

multiplicative structure of finite fields, and are widely used in

applications (e.g. the Discrete Logarithm Problem).
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But finite fields have another important structure...

We observe that Fqn can be regarded as an Fq-vector space (of

dimension n).

For each β ∈ Fqn , let Vβ be the Fq-vector space generated by the

Fq-Galois conjugates of β:

β, βq, . . . , βq
n−1
.

Definition
An element α ∈ Fqn is normal over Fq if Vα = Fqn , that is, the

Fq-Galois conjugates of α comprise an Fq-basis for Fqn .
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Normal elements are quite useful in the arithmetic of finite

fields.This is mainly due to the fact that some exponentianions are

easy to compute:

β =
n−1∑
i=0

ciα
qi ∼ (c0, . . . , cn−1)⇒

βq =
n−1∑
i=0

ciα
qi+1 ∼ (c1, . . . , cn−1, c0).

We can combine primitivity and normality...
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Theorem (Primitive Normal Basis Theorem)
For any prime power q and any n ≥ 2, there exists an element

α ∈ Fqn that is simultaneously primitive and normal (over Fq).

1. First proof by Lenstra and Schoof (Math. Comp. - 86’) with

the help of computers.

2. Computer-free proof by Cohen and Huczynska (Proc. LMS -

03’).

3. Main tool: character sum formula for the indicator function of

primitive and normal elements (additive and multiplicative

characters of finite fields), and bounds on character sums.
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k-normal elements



Motivated by the concept of normal elements of finite fields, in

2013 Huczynska, Mullen, Panario and Thomson introduced the

notion of k-normal elements:

Definition
An element α ∈ Fqn is k-normal over Fq, if the Fq-vector space Vα

generated by the elements

α, αq, . . . , αqn−1
,

is of dimension n − k.

1. we always have 0 ≤ k ≤ n;

2. k = 0 recovers the normal elements, that is, 0-normal

elements are just the usual normal elements;

3. k = n implies α = 0.
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Motivated by the Primitive Normal Basis Theorem, in the same

paper the authors proposed the following problem:

Problem
For what pairs (k, n) can we guarantee the existence of an element

α ∈ Fqn that is primitive and k-normal over Fq?

1. case k = 0 is the Primitive Normal Basis Theorem;

2. (R. and Thomson, FFA - 18’) positive answer if k = 1 for

arbitrary q and n ≥ 3 (the case n = 2 is a genuine exception

for arbitray q) ;

3. (J. Aguirre and V. Neumann, FFA 21’) positive answer for

k = 2 iff n ≥ 5 and gcd(q3 − q, n) > 1, or n = 4 and q ≡ 1

(mod 4).

4. negative answer for k = n and k = n − 1 (this is mentioned

in the 2013 paper).
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In this talk we discuss the previous problem, providing some

asymptotic results.

An important related problem is the description of the triples

(q, n, k) for which there exist elements of Fqn that are k-normal

(over Fq).
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We start noticing that k-normality depends on the base field:

1. Let F16 = F2(β) with β4 + β + 1 = 0.

2. β is 1-normal over F2:

〈β, β2, β4, β8〉F2 = 〈1, β, β2〉F2 .

3. β is 0-normal over F4.

Observe that if we want to compute the dimension of

Vα = {α, αq, . . . , αqn−1}, it is interesting to consider the Fq-linear

combinations of such elements that vanish.
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The Fq-order of an element

The latter can be nicely explored through the Fq[x ]-module

structure of finite fields:

Definition
For a polynomial f (x) =

∑
aix

i ∈ Fq[x ] and α ∈ Fqn , set

f ◦ α =
∑

aiα
qi .

Some properties:

1. (f + g) ◦ α = (f ◦ α) + (g ◦ α);

2. (f · g) ◦ α = f ◦ (g ◦ α)

3. f ◦ 0 = 0.

In particular, the set Iα = {g ∈ Fq[x ] | g ◦ α = 0} is an ideal of

Fq[x ].
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For α ∈ Fqn , we have that αqn = α, hence xn − 1 ∈ Iα.Since,

Fq[x ] is a PID, we obtain the following result:

Theorem
For each α ∈ Fqn there exists a monic polynomial mα ∈ Fq[x ] (the

Fq-order of α) generating the ideal Iα. Moreover, mα(x) is a

divisor of xn − 1.

Example
Let F16 = F2(β) with β4 = β + 1. Then β has F2-order

x3 + x2 + x + 1 = x4−1
x−1 , and F4-order x2 − 1.
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The converse is also true:

Theorem
For a monic divisor f ∈ Fq[x ] of xn − 1, there exist Φq(f ) elements

α ∈ Fqn such that mα = f , where Φq(f ) is the Euler Totient

function for polynomials.

Proof: Inclusion-exclusion argument, noticing that the equation

f ◦ α = 0,

has qdeg(f ) solutions in Fqn , and such solutions are elements of

Fq-order F (monic) with F |f .

φ(n) = n
∏
P|n

(
1− 1

P

)
−→ Φq(f ) = qdeg(f )

∏
g|f

g irreducible

(
1− 1

qdeg(g)

)
.
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The Fq-order determines the normality:

Theorem
An element α ∈ Fqn is k-normal over Fq iff the Fq-order of α is a

polynomial of degree n − k.

Proof: The Rank-Nullity Theorem applied to the (surjective) map

ϕα :
Fq[x ]

(xn − 1)Fq[x ]
→ Vα = 〈α, αq, . . . , αqn−1〉Fq ,

with ϕα(g) = g ◦ α, noticing that

kerϕα = {mα·H | deg(H) < n−deg(mα)} ⇒ dimFq kerϕα = n−deg(mα).

In particular, an element β ∈ Fqn is normal over Fq if and only if

its Fq-order equals xn − 1.
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Corollary
The number of k-normal elements in Fqn (over Fq) equals∑

f |xn−1
deg(f )=n−k

Φq(f ),

where the sum is over the monic divisors of xn − 1 of degree n− k.

In particular, k-normal elements exist if and only if xn − 1 has a

divisor of degree k over Fq!

Observe that 1, x − 1, x
n−1
x−1 and xn − 1 are divisors of xn − 1, hence

we always have k-normal elements for k = 0, 1, n − 1, n.
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Example

1. if n is a prime and q is a primitive root (mod n), we only

have k-normal elements for k = 0, 1, n − 1, n.

2. if n is a power of p = Char(Fq), we have k-normal elements

every 0 ≤ k ≤ n.

The second case deserves special attention...

A natural number N is ϕ-practical if every integer 1 ≤ k ≤ N can

be written as a sum of terms ϕ(d) with d |N (no repetitions

allowed). In other words, the polynomial xN − 1 has divisors (over

Q) of every possible degree!
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Motivated by the latter, a natural number N is Fq-practical if the

polynomial xn − 1 has divisors (over Fq) of every possible degree.

Distribution of practical numbers (up to T � 1):

1. ϕ-practical numbers: CT
logT (C. Pomerance, L.Thompson and

A. Weingartner, Acta Arith. 16’)

2. Fp-practical numbers (p is prime), under GRH:

O
(
T
√

log logT
logT

)
(L. Thompson, IJNT 13’).

Describing the Fq-practical numbers seems to be a very difficult

problem...
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But we can still find large classes of them:

Theorem (R. 19’)
Let n be a positive integer with rad(n)|p(q − 1). Then n is

Fq-practical.

Proof: induction on the number of prime factors of n, using a

classical result on the factorization of cyclotomic polynomials over

finite fields (the inductive step is constructive).

Example

1. n = 2s is always Fq-practical;

2. n = 3s is Fq-practical if q ≡ 0, 1 (mod 3).
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Character sum method



A recurrent problem in the theory of finite fields is the existence of

elements in finite fields with special properties. In general, we have

two (structured) subsets A,B ⊂ F (encoding these properties) and

we want to prove that

A ∩ B 6= ∅.

In other words, if 1X stands for the indicator function of a set

X ⊆ F (1 at elements of X and 0 elsewhere), we want to verify

that (one of the equivalent expressions)∑
x∈Fqn

1A(x) · 1B(x),
∑
x∈A

1B(x),

is positive.
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Most of the works consider the sets of primitive elements, squares

(or perfect powers), normal elements, trace zero, etc.

In the case of primitive elements, the indicator function can be

expressed by means of multiplicative characters of finite fields

(Vinogradov):

1P(w) =
φ(qn − 1)

qn − 1

∑
t|qn−1

µ(t)

φ(t)

∑
ord(η)=t

η(w).

In particular, the number of primitive elements in a set S depends

heavily on the sums ∑
w∈S

η(w),

where η is a multiplicative character.Any nontrivial bound on the

previous sum (= o(#S)) provides estimates on the number of

primitive elements in S ... 19



In particular, we may prove the following result:

Theorem
Let S ⊆ Fqn and suppose that there exists M > 0 such that∣∣∣∣∣∑

w∈S
η(w)

∣∣∣∣∣ ≤ M,

for every nontrivial multiplicative character η of Fqn . Then the

number PS of primitive elements in S satisfies

PS =
φ(qn − 1)

qn − 1
(#S + R) ,

where |R| ≤W (qn − 1) ·M and W (qn − 1) is the number of

squarefree divisors of qn − 1.
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1. Robin’s bound provides W (qn − 1) ≤ q
0.96n

log log(qn−1) , and it is the

main bound employed in asymptotic results.

2. In general, we consider S a ”structured” set, where we have

nontrivial bounds on character sums (Weil’s Bound, Mixed

character sums, Gauss sums and bounds on affine spaces).

3. For complete results, computational calculations may be

required (but still very limiting, since the factorization of large

numbers can be hard).We also have a ”sieve” version of the

previous result, introduced by Cohen and Huczynska in 2003

(it replaces the function W by a (typically) smaller one).

21



Weil’s bounds

Lemma
Let η be a multiplicative character of Fqs of order r > 1 and

F ∈ Fqs [x ] be a monic polynomial of positive degree such that F is

not of the form g(x)r for some g ∈ Fqs [x ]. Suppose that e is the

number of distinct roots of F in its splitting field over Fqs . For

every a ∈ Fqs , ∣∣∣∣∣∣
∑
c∈Fqs

η(aF (c))

∣∣∣∣∣∣ ≤ (e − 1)qs/2.

Lemma
Let η be a multiplicative character of Fqs of order d 6= 1 and χ a

non-trivial additive character of Fqs . If F ,G ∈ Fqs [x ] are such that

F has exactly m roots and deg(G ) = n with

gcd(d , deg(F )) = gcd(n, q) = 1, then∣∣∣∣∣∣
∑
c∈Fqs

η(F (c))χ(G (c))

∣∣∣∣∣∣ ≤ (m + n − 1)qs/2.
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Results



We now dicuss the existence of primitive k-normal elements,

following two approaches:

1. produce k-normal elements from normal elements, and employ

Weil’s bound;

2. consider Fq-vector spaces with a large proportion of k-normal

elements, and employ a special bound on character sums over

vector spaces (that imply a large proportion of primitive

elements there).
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For the first approach, we need the following result:

Lemma
Let β ∈ Fqn be a normal element over Fq. If f ∈ Fq[x ] is a

k-degree divisor of xn − 1, then the element

α = f ◦ β,

has Fq-order xn−1
f , hence it is k-normal over Fq.

In particular, if N and P denote the sets of normal and primitive

elements in Fqn , respectively, there exists a primitive k-normal

element if ∑
y∈Fqn

1N (y) · 1P(f ◦ y) > 0.
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It turns out that we have a similar character sum formula for the

indicator function 1N of normal elements (now using additive

characters):

1N (w) =
Φq(xn − 1)

qn

∑
E |xn−1

µq(E )

Φq(E )

∑
Ord(χ)=F

χ(w).

In particular, we obtain a mixed sum (additive and multiplicative

characters multiplied, with polynomial arguments).The term f ◦ y
is a polynomial expression of degree qk in y .
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We directly verify that we are under the conditions to use Weil’s

bound, and we obtain that, for each pair of characters (η, χ) (not

both trivial), the following inequality holds:∣∣∣∣∣∣
∑
y∈Fqn

χ(y) · η(f ◦ y)

∣∣∣∣∣∣ ≤ qk+n/2.

In particular, we obtain the following result:

Theorem (R., Rev. Mat. Iberoamericana 19’)
Suppose that there exist elements in Fqn that are k-normal over

Fq. Let W (qn − 1) and W (xn − 1) be the number of squarefree

divisors of qn − 1 and xn − 1 (over Fq), respectively. If

qn/2−k >W (qn − 1)W (xn − 1),

then at least one of these k-normal elements of Fqn is also

primitive.
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The previous theorem generalizes the ideas employed in the

complete result for k = 1 (R. and Thomson 18’), and it is also used

in the complete result for k = 2 (J. Aguirre and V. Neumann 21’).

We observe that the theorem only gives a sufficient condition...
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The proof that no (n − 1)-normal element can be primitive only

uses the fact that the Fq-order of any such element is a binomial

x − δ.This can be extended as follows:

Lemma
Let α ∈ F∗qn be an element whose Fq-order divides a binomial

xd − δ ∈ Fq[x ] with d < n. Then α is not primitive.

Proof. We have that 0 = (xd − δ) ◦ α = αqd − δα. In particular,

αqd−1 = δ ∈ F∗q and so

α(qd−1)(q−1) = 1.

But (qd − 1)(q − 1) < qn − 1 for d < n, hence α cannot be

primitive.

Necessary condition: xn − 1 has a divisor of degree n − k that

does not divide any binomial xd − δ ∈ Fq[x ] with d < n.
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The other approach goes as follows: suppose that F is a divisor of

xn − 1 of degree n − k. The equation

F ◦ y = 0,

determines an Fq-vector space VF ⊆ Fqn of dimension n − k (so it

has qn−k elements).

1. In this vector space, Φq(F ) ≥ (q − 1)n−k of such elements

have Fq-order F (hence are k-normal over Fq).

2. Recall that F cannot divide a binomial xd − δ (otherwise, VF
would not have any primitive element).

3. The latter implies that VF satisfies a special property: for any

α ∈ VF with Fq-order F , we have that Fq(αq−1) = Fqn .
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We observe that αq−1 = αq · α−1 and α, αq ∈ VF .

In particular, VF contains elements y , z such that Fq(yz−1) = Fqn

(n-good). We have a nontrivial bound for vector spaces satisfying

the latter...

Theorem (R. 20’)
Let V ⊆ Fqn be an Fq-vector space of dimension t and suppose

that there exist y , z ∈ V with Fq(yz−1) = Fqn . Then for every

nontrivial multiplicative character η of Fqn we have that∣∣∣∣∣∣
∑
y∈V

η(y)

∣∣∣∣∣∣ ≤ nqt−1/2.

If q →∞, the bound is nontrivial for n = o(
√
q).
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We may derive the following result:

Lemma
Let n be a positive integer and ε > 0. Then there exists a constant

c = c(ε, n) such that, for any prime power q > c and any n-good

Fq-vector space V ⊆ Fqn of dimension t, the number of primitive

elements in V is at least qt−ε.

In particular, if n is fixed, q is large enough and F ∈ Fq[x ] is a

divisor of xn − 1 of degree n − k not dividing any binomial (of

degree < n), then:

1. we have at least qn−k−1/2 primitive elements in VF ;

2. we have at least (q − 1)n−k elements in VF that are k-normal.

3. we are done if

qn−k−1/2 + (q − 1)n−k > qn−k = #VF .
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We obtain the following criterion:

Theorem
Fix n > 1 an integer and let k < n. There exists a constant c = cn

such that, for any prime power q > c, the following are equivalent:

1. Fqn contains a primitive k-normal element;

2. there exists a divisor F ∈ Fq[x ] of xn − 1 of degree n − k not

dividing any binomial (of degree < n).

In particular, there exist primitive (p − 2)-normal elements in Fqp if

q is large enough (not expected).
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The last result tells us that if n fixed and q is large, the existence

of primitive k-normal elements reduces to study the factorization

of xn − 1 over Fq (degree distribution, divisors dividing binomials,

etc).

The latter is being explored in collaboration with F. Brochero

(UFMG, Brazil) and Sávio Ribas (UFOP, Brazil).
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