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Introduction

As unique factorization domains, the integer numbers and the polynomials
over finite fields share many properties. Results on the decomposition of
integers into prime integers can be similarly derived for the decomposition
of polynomials over finite fields into irreducible factors.

For example: for g a prime power, it is well-known that a polynomial of
degree n over [Fy is irreducible with probability close to 1/n. Can we have
more results like we do have for the decomposition of integers into primes?

This takes us to counting polynomials over finite fields satisfying some
properties. For that, we (briefly) review a methodology from analytic
combinatorics adapted to polynomials over finite fields.
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We consider monic univariate polynomials over a finite field IF,. We want:

@ to count polynomials with special forms;
@ to explain the decomposition of polynomials into irreducible factors;

@ to study probabilistic properties of polynomials that can be used to
understand the behaviour of algorithms; and

@ to estimate average-case analysis of algorithms.

We exemplify the methodology studying largest and smallest degree
irreducible factors and their relations to Dickman and Buchstab functions.

We briefly comment on other relations between famous number theoretic
theorems and conjectures (like the existence of infinitely many twin primes,
Goldbach problems, etc) and polynomials over finite fields.

Finally, we also provide a (long) list of references for further consultation.
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Relations between integers and polynomials
@ How many irreducible factors a random polynomial has?
@ How often will it be squarefree or k-free?

@ What is the expected largest (smallest) degree among its irreducible
factors?

@ How is the degree distribution among its irreducible factors?

@ How often a polynomial is m-smooth (all irreducible factors of degree
at most m)?

@ How often two polynomials are m-smooth and coprime?

@ How is the degree distribution among the irreducible factors of the
gcd of several polynomials?
These sort of results can be obtained with a general framework from
analytic combinatorics. This methodology is easy to adapt to diverse
polynomial counting problems.
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Analytic combinatorics

Analytic combinatorics is based on:
@ the symbolic method for generating functions, and
@ asymptotic methods for the derivation of the results.

The main reference for this research area is the book:

Analytic Combinatorics
by Philippe Flajolet and Robert Sedgewick
Cambridge University Press, 2009.

Winner of the 2019 Leroy P. Steele Prize for Mathematical Exposition
of the American Mathematical Society.
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Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick
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General framework

Let /, be the number of monic irreducible polynomials of degree n over F.

The generating functions of monic irreducible polynomials and monic
polynomials are

I(z) = Z Ihz", and

n>1
P(z)=[[@+2 + 2%+ )i =J[(a - )"
=1 =1

Since [z"]P(z) is q", we have P(z) = (1 — gqz)~!, and these relations

implicitly determine 1,
1
n
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From

o
1_1'*’1‘
Tl

we get

log —— = > (I)log(1 —Z) =Y '(JZ,J).

j>1 j>1

Expanding the log and equating coefficients we get

a" _ 5~
n k
k|n
MGabius inversion formula gives

1

== u(k)gk.
n

k|n

The probability of a polynomial of degree n be irreducible is close to 1/n.
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Parameters and multivariate generating functions

As usual, we consider bivariate generating functions to take care of critical
parameters of the problems we are interested in. Asymptotic analysis is
then used to extract coefficient information.

Example: number of irreducible factors. Let

P(uz) = [J(L+uz + 2% + ) =[]0 uz) ™
= =

where [u™z"]|P(u, z) is the number of polynomials of degree n with m
irreducible factors.

Differentiating P(u,z) =>_;>; ajju'z/ two times with respect to the
parameter u, putting v = 1 and extracting the nth coefficient
asymptotically gives expectation log n and standard deviation +/log n.
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Theorem. Let 0, be a random variable counting the number of
irreducible factors of a random polynomial of degree n over F, where each
factor is counted with its order of multiplicity.

© The mean value of Q, is asymptotic to log n (Berlekamp; Knuth).

@ The variance of Q, is asymptotic to log n (Knopfmacher and
Knopfmacher; Flajolet and Soria).

© For any two real constants A < p,
]. H —t2/2
Pr{logn+)\\/logn<§2n<Iogn—l—,u\/logn}%\—5 e dt.
T JA

@ The distribution of Q, admits exponential tails (Flajolet and Soria).
@ A local limit theorem holds (Gao and Richmond).
@ For all m, Pr{Q, = m} is known (Cohen; Car; Hwang).
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Singularity analysis
Theorem. Let f be a complex function analytic in a domain
D={z:lz| < 5| Arg(z = 5)| > 5~}

where s; > s, n and s are three positive real numbers. Assume that, with
o(u) = u*log’ uand a ¢ {0,~1,-2,...}, we have

1
f(z)~a<1_z/s> asz—sin D. (1)
Then the Maclaurin coefficients of f satisfy, as n — oo,
n —no(n)
[2'1F(2) ~ 57" 20 2)

Singularity analysis (Flajolet and Odlyzko 1990) entails that if the
generating function f(z) behaves as in (1) when z is close to the dominant
singularity s then, asymptotically, the n-th Maclaurin coefficient of f(z)
behaves as in (2). In our case s = 1/q.
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A simplified picture of a random polynomial

A random polynomial over [ of degree n:

@ is irreducible with probability tending to 0 as n — oc;
e is k-free with probability 1 — 1/g%1;

@ has log n irreducible factors (concentrated);

has no linear factors with asymptotic probability ranging from 0.25 to
0.3678... as g grows;

@ has irreducible factors of distinct degree with asymptotic probability
between 0.6656... and e = 0.5614... as g — oc;
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A simplified picture of a random polynomial (cont)

@ has cin expected kth largest degree irreducible factor, where
c =0.62433..., o =0.20958. .., c3 = 0.08831... and the
remaining irreducible factors have small degree (here ¢ is
Dickman-Golomb's constant);

@ has expected first and second smallest degree factors asymptotic to
e 7 logn and e "log? n/2 (not concentrated);

@ has limiting distribution for the total degree of the gcd of several
polynomials following a geometric distribution, and for the number of
(distinct) irreducible factors in the gcd following very closely Poisson
distributions when g > 64;

and so on.
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Polynomials with all of their irreducible factors with degree not greater
than certain bound m, the m-smooth polynomials, play a central role in
algorithms for computing discrete logarithms.

Odlyzko (1985) provides an asymptotic estimate when n — oo for the case
g = 2 and n'/100 < m < 99/100 ysing the saddle point method.

Car (1987) gives an asymptotic expression in terms of the Dickman
function that holds for m large with respect to n, typically
m > c nloglog n/ log n.

Soundararajan (1998) completes the full range 1 < m < n by giving more
precise boundaries. He also shows that the number of smooth polynomials
behaves like the Dickman function when m > /nlog n.
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Definition. The Dickman function, p(u), is the unique continuous
solution of the difference-differential equation

p(u)y =1 0<u<l,
up (u) = —p(u—1) u>1.

Theorem. For p the Dickman function, the main term of the number

Ng(n, m) of m-smooth polynomials of degree n over Fq is " p (2).

Remarks. The error term depends on the range of m as a function of n.

Proof (Sketch).

The generating function S,,(z) of m-smooth polynomials is

Sm(z) = ﬁ (1_12k>l
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The Cauchy formula implies
n 1 dz
Nyt m) = [715(2) = 5 [ Sn(2) o7

where the contour C is chosen to be z = e~ 1/1H10 7 <9 < x.
The change of variable z = e="/" gives

1 1—nim h/n 1 dh
Mo =55 [ S ()
For r,[,’;](z) =3 4om k2", we have

Sm(z) = JJa-2"% JJ@-z29k

k>1 k>m
2] (3]
1 ey mi(2)  rm(2)
= 1_qzexp< rm'(2) > 3
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The estimate Iy = g¥/k + O(g*/?/k) gives

k
(1] Z)_ z —m/2 1
rm | — —g — 4+ O(q for |z| < =,

k>m

il z) B ( 1 > .
sup rm | = | =0 ———= for j > 2.
121<1/q (q gmu—b)

Lemma (Gourdon 1996).

and,

Let rm(z) =D kam % Then,

rm(e™") = E(mh) + O (;) :

where E is the exponential integral function defined by

+00 ,—s
E(a):/ ° s

S
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Then, for n = m/n,

1 1+nim e—E(/J,h)—i—O(l/m)

N, —— e dh.
lmm) =d" 210 Jy_pin n(1—e=h/n) )

Let 1(z) = —1— — L. Then, the main term of Ny(n, m) is

l—e—2

; 1 1+inm —E(,u,h) h
q 2—7” - -|' 1/J dh.

The study of these integrals gives for the main term of Ng(n, m)

1 [ltinm o—E(uh)

b e’ dh.

q"

27” 1—inm
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The Laplace transform p(s) of the Dickman function satisfies
sp(s) = e E(). Therefore, it can be shown that

1 Itico [ a—E(v) w
p(U) = 2—7_” /l_ioo ( » e’ dv.

Finally,

1+4i —E(ph 14i —E v
i_ e El )eh dh = 1 / > v ev/1 ﬂ
2mi 1—ioco h 1—ioco V/:u 1%

e
270 J1 oo
= ()
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Theorem. The largest degree D,[,1] among the irreducible factors of a
random polynomial of degree n over [ satisfies

n _l m log n
Pr(D} _m)_mf< )+o< )

n m?
where f(u) = p(1/pu — 1) is a related to the Dickman function:

1 1+ico ,—E(uh)
F(u) = /1 € 7 e=mh gp,

T 2mi Jisiee  h

Proof (Sketch). Similar to the previous proofs but considering
Sm(z) — Sm—1(2) in the role of 5,,(2). ]

The study of the largest and second largest degree of a random polynomial
is relevant for average—case analysis of factoring algorithms.
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Theorem. The two largest degrees D,[,I] and D,[,2] of the distinct factors
of a random polynomial of degree n over I, satisfy
(i) for0 < m<n,

[ 2] B m log n
Pr(Df! = m D < m/2) = L1 (7 )+O<m2>’
where g1(p) is expressed in terms of the exponential integral E as
1 14ico o—E(uh/2)
(1=mh gp-
auln) =5 - /1_’_00 e dh;
(i) for0 < mp < my <n,
1 mp m log n
Pr(DY = mi, DF = my) = 82 (71’ J) +0 ( £ ) ;

mimoy n n ma m%

where ga(p1, p12) is
1 1+ico e*E(M2h)
_ = RN ¢ Sy Y LIPS
&, p12) i /1_ioo €

Similar results to the above theorems hold for the joint distribution of the
jth largest distinct irreducible factors.
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Related decomposition of
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The smallest irreducible factor
The Buchstab function is the unique continuous solution of the
difference-differential equation

uw(u) =1 1<u<?,
(vw(v))=w(u—1) u>2

Theorem. The smallest degree S, among the irreducible factors of a
random polynomial of degree n over I, satisfies

Lu(2)4+0(&)  if m=O0(g2s),
B p - m ogn
Pr(S, > m) = { % w(2)+0 ('c,’ni:) otherwise.

As for largest degree irreducible factors, there are similar results for the
joint distribution of the jth smallest distinct irreducible factors.
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Free of small and large degree irreducible factor

Friedlander (1976) studies numbers free from small and large primes.

Let Ng(n, mi, mo) be the number of polynomials of degree n over Fgq with
all irreducible factors of degree bigger than my and less than m;.

Using the well-known estimate for the Dickman function (see, for example,
Tenenbaum 1996)

— o (14o(1))ulogu _
p(u) =e ;U=

one can prove estimates for Nq(n, m, mp) when my is constant, and when
my varies with n (and always m; tending to infinity with n).
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Free of small and large degree irreducible factor (cont.)

Theorem. The number Ng(n, mi, m2) of monic polynomials of degree n
over [Fy with all irreducible factors with degree between my and my, with
my fixed and log n < my < n, satisfies

Nq(n, my, m2) — qne—(l—l-o(l))mL1 IOgmil‘

Theorem. The number Ng(n, my, mo) with my, mo — oo,
mie~ "™ <« my, < cmy for any constant ¢ < 1, and 2(logn)?> < my < n,
satisfies

Nq(n, my, m2) = q"e_(1+0(1))ul log U17

where u; = n/mj.
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Random decomposable combinatorial structures

We presented here results for the decomposition of polynomials over finite
fields into irreducible factors. Analytic combinatorics can be used to study
general properties of decomposable combinatorial structures like

@ permutations;

@ polynomials over finite fields;

@ some combinatorial problems like children’s yards;
e random mappings (functional digraphs, patterns);
@ some classes of graphs (2-regular graphs);

@ and so on.

These problems have generating functions that can be expressed in the
so-called exp—log class.
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Generating functions
Let C(z) be the GF for the components, and

L(z)=) L, % U(z) =) Upz"

the EGF and the OGF for the labelled and unlabelled structures.
Then, L(z) =exp(C(z)), and

22 23
U(z)=exp<C(z)+C(2)+C(3)+--->.

For instance, we get for U(z)

e}

oo 1 Ck
k 2k Ce __

k=1 k=1

2k
= exp (Zlog(l—zk)—Ck> = exp (ch2k+ZCkz2+"'>-
k k k
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Examples

@ Cycles in permutations

1
exp Iogl_z .

e Random mappings (functional digraphs)

+H(u—eaUﬂ).

where H(v) is analytic at v = 0 with H(0) = 0.
@ 2-regular graphs

e (L, Lz 2
1oz “P\2 127274 )

@ Irreducible factors of polynomials over a finite field I,

L e lo 1
—— = eX .
1—gqgz P g1—qz
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Asymptotic analysis

Definition. Let A(v, 0) be the region |z| < 1+ v minus the region
larg (z—1)| <6, with v > 0and 0 < § < /2. C(z) is of logarithmic
type with multiplicity constant a > 0 if

C(z) = alog < - _12 /p> +R(2),

R(z) analytic in A(v,0), and as z — p in A(v, 0)

R(z) = K+ O0((1-2/p)")
with 0 < o < 1 and K a complex constant.
H(z) is in the exp-log class if H(z) = exp(C(z)) and C(Z) is of

logarithmic type.
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Asymptotic analysis (cont.)

Hence,

eR(2) eX L o
H(z)_(1—z/p)a_(1—z/p)a+o<<m> >

Flajolet & Odlyzko's singularity analysis entails

e T )
p" T(a) ’

[2"C(z) = % (% +0 (,,11+a>) .

[2"1H(z) =
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General results

Results have been provided for the probability that of the jth size
component, for expectation, variance and higher moments of the jth size
component, for the probability that the jth size component of an object of
size n be equal to m, 1 < m < n, for joint distributions, etc.

e Goncharov (1942, 1962): cycle distribution in permutations;
@ Stepanov (1969): distributions in random mappings;

e Knuth & Trabb-Pardo (1976): permutations and numbers;

o Flajolet & Soria (1990, 1993): number of components;

@ Arratia, Barbour, Stark & Tavaré (1990's): probabilistic approach;
e Gourdon, Flajolet, Panario (1996): largest size of components;

@ Panario and Richmond (2001): smallest size of components.
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Other relations between integers and polynomials

Several classical number theoretic problems have been translated to
polynomials. For example,

primes and irreducibles in arithmetic progression,
twin primes and irreducibles,
generalized Riemann hypothesis,

Goldbach problems over finite fields,

Waring problem over finite fields.

Advances have happened on these problems. For a precise account and
references see the Chapter 13.1 in the book of the next slide
(shameless advertisement coming. . .)
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Some important advances

Asymptotic uniform distribution in arithmetic progression have been known
in some case (like prescribed first and last coefficients).

The twin primes conjecture has been proved for all finite fields of order
bigger than 2. Also, generalizations (to more than 2 irreducibles, or to
irreducible not as close as possible) have not been proved yet.

There have been some results about additive properties for polynomials
related to Goldbach conjecture like the generalization to sum of three
irreducibles, but there are open problems.

Several recent results in number theory have not been fully translated into

polynomials over finite fields yet, including studies of divisors, irreducibles
in small gaps, digital functions for polynomials; etc.
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