Factorización de polinomios sobre cuerpos de funciones

Felipe Voloch

Laten

Noviembre 2021

Resumo

Si K/k es un cuerpo de funciones en una variable, describimos un algoritmo general para factorizar polinomios en una variable con coeficientes en K. El algoritmo es lo suficientemente flexible para encontrar factores sujetos a restricciones adicionales, por ejemplo, para encontrar todas las raíces que pertenecen a un dado k-subespacio de dimensión finita de K más eficientemente. También proporciona una prueba de irreductibilidad determinista en tiempo polinomial.

Algoritmo de Factorizacion Generico

Los algoritmos antiguos siguen el siguiente modelo:

 \mathcal{O} dominio con cuerpo de fracciones K. Factore $G(T) \in K[T]$.

- Escoje un ideal maximal appropriado $\mathfrak{m}\subset\mathcal{O}$.
- Factore G(T) in $\mathcal{O}/\mathfrak{m}[T]$.
- Levante factorization a $\mathcal{O}/\mathfrak{m}^k[T]$ para grande k.
- Recupere una factorización en K[T] a partir de ella.

Nuestro algoritmo - inicio

- Cuerpo de funciones K/k of characteristic p > 0
- $G(T) \in K[T]$ monico, separable, de grado s.
- k-espacios vectoriales de dimension finita $V_i\subset K, i=0,\ldots r-1$, con una k-basis $\{\alpha_{ij}\}$ para cada $V_i,r< s$.

La salida es un factor monico de G(T) de la forma $H(T) = \sum_{i=0}^{r} b_i T^i, b_i \in V_i$ o prueba de que no existe.

Caso especial

Caso especial más importante:

$$G(X,T) \in \mathbb{F}_q[X,T]$$
 polinomio en dos variables, $K = \mathbb{F}_q(X)$,

 $\deg G = s$. Factor $\deg G$ de grado r:

$$H(X,T) = \sum_{i=0}^{r} b_i(X)T^i, b_i \in \mathbb{F}_q[X], \deg b_i \leq r - i.$$

Relación de dependencia linear entre los X^iT^j , $i+j\leq r$ en la curva H=0.

Si
$$G(X,T) = 0$$
, $dT/dX = -G_X/G_T$, etc.

Derivadas de Hasse

 $D^{(i)}$, $i \ge 0$, k-operadores lineares en K satisfaciendo:

$$D^{(i)} \circ D^{(j)} = \binom{i+j}{j} D^{(i+j)},$$

$$D^{(i)}(uv) = \sum_{j=0}^{i} D^{(j)}(u) D^{(i-j)}(v).$$

 $D^{(i)}(\phi)$ pueden seer computados como polinomios en ϕ si $G(\phi)=0$. Sean $\phi_0,\ldots,\phi_m\in R$ los $\alpha_{ij}\phi^i$ en alguna orden. Los $\phi_0,\ldots,\phi_m\in K$ son linearmente independentes sobre k si e solo si existen inteiros $0=\varepsilon_0<\cdots<\varepsilon_m$ con $(D^{(\varepsilon_i)}(\phi_j))$ de rango maximal m+1.

Nuestro algoritmo

```
R = K[T]/(\mathfrak{m}^q, G(T)). Computaciones hechas en R.
Ache una cota \Delta para \varepsilon_i
Intente la eliminación gaussiana en M=(D^{(i)}(\phi_j))_{\substack{i=0,...,D\\i=0,...,m}}
if Some pivot P(T) is not invertible then
    Replace G(T) by D(T) = \gcd(G(T), P(T)) and G(T)/D(T)
end if
if M has full rank then
    return G(T) has no factor of required form
else
    return a_i s.t. \sum_{i=0}^m a_i D^{(i)}(\phi_i) = 0, i = 0, 1, ..., \Delta, a_0 = 1.
end if
```

Teorema

El algoritmo acima retorna, en tiempo polinomial determinista en p, s, Δ un certificado de que G(T) no tiene un factor de la forma requerida, o una descomposición de R como suma directa de anillos R' tales que, para cada sumando R', el algoritmo genera elementos u_{ii} de R' que son constantes en cada sumando de la descomposicin de R' en anillos locales y a partir de los cuales se puede construir un factor de G(T) de la forma requerida o un certificado de que no hay tal factor. En particular, el algoritmo proporciona una prueba de irreductibilidad absoluta en tiempo polinomial en la característica p para p polinomialmente acotado en s, Δ .

Ejemplo

Factor linear de $F(X,T) \in k[x,t]$. Existe solo si $D^{(2)}(\phi) = 0$ (i $D^{(p^j)}(\phi) = 0$ para $p^j \le \deg F$) para una raiz $F(X,\phi) = 0$. Note $D^{(2)}(\phi) = -(F_{XX}F_T^2 - 2F_{XT}F_XF_T + F_{TT}F_T^2)/F_T^3$ evaluada at ϕ .

Si eso vale, factor linear es

$$T - \phi = T - D(\phi)X - (\phi - D(\phi)X) = T - aX - b$$

ambos $a = D(\phi), b = \phi - D(\phi)x$ son localmente constante.

GRACIAS