On rank jumps on families of elliptic curves

Cecília Salgado, RUG and UFRJ

The new results are from distinct collaborations with Dan Loughran (Bath- UK) and Renato Dias (UFRJ)

Plan

- Motivation
- Definitions and examples
- The problem and different methods
- More on the geometric method
- What's next?

Ranks of elliptic curves

Let k be a number field and E/k an elliptic curve.

$$E: y^2 = x^3 + ax + b$$
, with $a, b \in k$.

Mordell-Weil Theorem: $E(k) \simeq \mathbb{Z}^{r(a,b)} \oplus Tors_{a,b}$.

Consider a family of elliptic curves:

$$(\star)$$
 $E_t: y^2 = x^3 + a(t)x + b(t)$, with $a(t), b(t) \in k[t]$.

For $t \in k$ such that $\Delta(t) \neq 0$, we have $E_t(k) \simeq \mathbb{Z}^{r_t} \oplus Tors_t$.

Natural Question: How does r_t behave as t varies?

TODAY: We'll use surfaces to deal with this question.

Elliptic surface

A smooth projective surface S is called an elliptic surface if

$$\exists \pi: S \to B, s.t.$$

- $\pi^{-1}(t)$ is a smooth curve of genus 1, for almost all $t \in B$
- $\exists \sigma: B \to S$, a section

We suppose moreover that

- there is at least one singular fiber
- π is relatively minimal

Elliptic surface

A smooth projective surface S is called an elliptic surface if

$$\exists \pi: S \to B, s.t.$$

- $\pi^{-1}(t)$ is a smooth curve of genus 1, for almost all $t \in B$
- $\exists \sigma: B \to S$, a section

We suppose moreover that

- there is at least one singular fiber
- π is relatively minimal

$$Y^2 = X^3 + aX + b$$
; $a, b \in k(B)$

In orange: a multisection

Why do we care?

Elliptic surfaces appear in many places

- Shioda-Tate: $NS(S)/T \simeq MW(\pi)$
- Zariski density/potential density (Bogomolov-Tschinkel, S.- van Luijk)
- k-unirationality of conic bundles (Kollár-Mella)
- Dense sphere packings (Shioda, Elkies)
- Error correcting codes (S. Várilly-Alvarado Voloch)
- High rank elliptic curves over Q (Elkies record: 28)

An example

Rational elliptic surfaces

Consider F, G two plane cubics. Then

 $F \cap G = 9$ points counted with multiplicities and we have

Arithmetic of elliptic surfaces

Given a number field k

The Mordell-Weil theorem tells us that:

• For the special fibers $E_t := \pi^{-1}(t)$ with $t \in B(k)$:

$$E_t(k) = \mathbb{Z}^{r_t} \oplus \operatorname{Tors}_t$$
.

• For the generic fiber:

$$\mathscr{E}_{\eta}(k(B)) = \mathbb{Z}^r \oplus \text{Tors.}$$

From now on: rank = Mordell-Weil rank, and r_t denotes the rank of the special fiber E_t and r denotes the rank of the generic fiber.

Ranks of elliptic curves in families

$$(\star)$$
 $E_t: y^2 = x^3 + a(t)x + b(t)$, with $a(t), b(t) \in k[t]$.

Natural Question: How does r_t behave as t varies?

Given $i \in \mathbb{N}$ and $\mathcal{G}_i := \{t \in \mathbb{P}^1(k); r_t = i\} \subset \mathbb{P}^1(k)$, what can we say about $\#\mathcal{G}_i$?

Néron-Silverman's Specialization Theorem: $r_t \ge r$ for all but finitely many t.

So
$$i < r \Rightarrow \#\mathcal{G}_i < \infty$$
.

What about \mathcal{G}_i , for $i \geq r$?

We'll look at $\mathcal{F}_{r+i} := \{t \in \mathbb{P}^1(k); r_t \geq r+i\}$.

Ranks of elliptic curves in families

Néron and Silverman Specialization Theorems tell us that:

 $r_t \ge r$, for all but finitely many $t \in B(k)$.

More precisely:

Néron: outside a THIN set.

Silverman: outside a set of bounded height.

Can we say more?

When $r_t > r$ we say that the rank jumps.

TODAY: Does the rank jump? Where and how large is the jump?

Methods

- Root Numbers
- Height Theory
- Base change

Root numbers

Given an elliptic curve E/k. The root number of E is the sign of the functional equation:

$$\tilde{L}(E,s) = W(E) \tilde{L}(E,2-s).$$

Parity conjecture: $W(E) = (-1)^{rank(E)}$.

In other words: The parity of the rank of an elliptic curve over a number field is determined by its root number.

Variation of the root number ⇒ Rank jump

Constant root number with different "parity" from the generic rank \Rightarrow Rank jump.

Variation of root numbers in families

Isotrivial families (Rohrlich, Gouvêa, Mazur, Várilly-Alvarado, Dokchitser^2, Desjardins)

Ex:
$$Y^2 = X^3 - (1 + T^4)X$$
, $W(E_t) = -1, \forall t$ and hence $\#\mathscr{F}_{r+1} = \infty$.

Non-isotrivial families

Expected: Both +1 and -1 occur infinitely often.

Holds under major conjecture and known under hypothesis on the degree of the coefficients.

Height theory approach

Definition: $P \in E_t(\mathbb{Q})$ is a division point if $\exists n \in \mathbb{N}$ s.t. $n \cdot P \in \operatorname{Sec}(\pi)(\mathbb{Q})$.

Let $U \subset S$ be a Zariski open. We denote by U_{div} the set of division points in U.

Idea: Count division points of bounded height on fibers and compare with total count (of bounded height).

Billard (2000): Let S be a Q-rational elliptic surface and $D \subset S$ an ample divisor. There is $\delta > 0$ s.t. $\forall U \subset S$

$$N(U(\mathbb{Q}), H_D, B) \gg B^{\delta}$$
 and $N(U_{div}(\mathbb{Q}), H_D, B) \ll B^{\delta/2}$

Corollary (Billard): $\#\mathcal{F}_{r+1} = \infty$.

Geometric approach: base change

- π_C is an elliptic fibration
- Sections of π induce sections of π_C
- New section $\sigma_C: C \to S \times_B C$
- Hence $\operatorname{rk}(S_C(k(C))) \ge r = \operatorname{rk}(S(k(B)))$
- If σ_C independent of sections of π then:

For $t \in \varphi(C(k)) \subset B(k)$ we have $r_t \ge r + 1$.

Interesting when $\#C(k) = \infty$ because then we get rank jump on an infinite set!

Making sure that the rank jumps

Surfaces with many rational curves

- A key Lemma in (S.2011) shows that if $dim |C| \ge 1$ and C is not a fiber component then all but finitely many curves in |C| make the rank jump after base change by it.
- TO DO: Give hypothesis to assure that S contains linear systems of curves with $\#C(k)=\infty$.
- Good candidate: *k*—unirational surfaces!

Rank jumps by base changing

• S. (2011): If S is k—unirational then

$$\#\mathcal{F}_{r+1} = \infty$$
.

• S. (2011) If moreover S has two conic bundle structures then

$$\#\mathcal{F}_{r+2} = \infty$$
.

What about the quality of these sets?

Quality - Expectation

Silverman conjectured in the 80's that

$$r_t = r \text{ or } r + 1,$$

for $100\,\%$ of the fibers when ordered by height

Infinite set

Our GOAL

Density

Quality - Expectation

• Silverman conjectured in the 80's that:

$$r_t = r \text{ or } r + 1,$$

for $100\,\%$ of the fibers when ordered by height

Infinite set NOT THIN

Density

Thin Sets

Given an algebraic variety V over k. A subset $T \in V(k)$ is said to be:

- Of type 1 if it is contained in a proper Zariski closed subset.
- Of type 2 if is contained in the image of the k-points of a dominant morphism of degree at least 2

$$\phi: W \to V$$
, so $T \subset \phi(W(k)) \subset V(k)$.

T is called THIN if it is contained in a finite union of subsets of types 1 and 2.

V is said to satisfy the HILBERT PROPERTY over k, if V(k) is not thin.

Examples

A. Over number fields, \mathbb{P}^n satisfies the Hilbert Property, for all n.

B. The set of \square 's in a number field is THIN. Indeed, they lie in the image of the

degree 2 map $t \mapsto t^2$.

Our contribution

Thm. A (Loughran, S. 2019): Let $\pi:S\to \mathbb{P}^1$ be a geometrically rational elliptic surface such that π admits a bisection of arithmetic genus zero then

$$\mathcal{F}_{r+1} = \{ t \in \mathbb{P}^1(k); r_t \ge r+1 \} \text{ is not thin.}$$

Thm. B (Loughran, S. 2019): If moreover π has at most one non-reduced fiber OR admits a 2-torsion section defined over k, then

$$\mathcal{F}_{r+2} = \{t \in \mathbb{P}^1(k); r_t \ge r+2\}$$
 is not thin.

Our contribution

Thm. C (Dias, S. 2021): Let $\pi:S\to \mathbb{P}^1$ be a geometrically rational elliptic surface such that one of the following holds:

- i) It has a non-reduced fibre of type II^* , III^* or I_n^* , for $1 \le n \le 4$;
- ii) It has a non-reduced fibre of type IV^*, I_1^* or I_0^* and a reducible reduced singular fibre;

then,

$$\mathcal{F}_{r+3} = \{t \in \mathbb{P}^1(k); r_t \ge r+3\}$$
 is not thin.

An example (due to Rohrlich)

Consider an elliptic curve $E: y^2 = x^3 + ax + b$ with rk(E(k)) = 1. Then

 $S: ty^2 = x^3 + ax + b$ is an elliptic surface fibered over the t-line. Moreover we have r=0 and $r_t=1$, for $t=\square$. Thus

 $\#\mathcal{F}_{r+1} = \infty$ BUT the set $\{t \in \mathbb{P}^1(k); t = s^2, \text{ for some } s \in k\}$ is thin!

Using the hypothesis

Thm. A (Loughran, S. 2019): Let $\pi:S\to \mathbb{P}^1$ be a geometrically rational elliptic surface such that π admits a bisection of genus zero then

$$\{t \in \mathbb{P}^1(k); r_t \ge r+1\}$$
 is not thin.

- Since $h^1(S)=0$ and C is a bisection of genus zero, Riemann-Roch gives that C moves, i.e., $\dim |C|\geq 1$. Moreover $C'\simeq \mathbb{P}^1_k$ for infinitely many curves in |C|.
- This together with $K_S^2=0$ can be used to show that S is k-unirational.
- At that point we can use a curve in |C| to prove: $\#\mathcal{F}_{r+1} = \infty$.

BUT...

The set is thin!

 $\varphi(C(k))$ is a set of type 2 and hence THIN!

STRATEGY: Consider all curves in |C| at once!

Remember that given any finite number of covers of the base, we have to find a curve in |C| that has a k-point mapped to a point outside of their image.

How does one show that a subset T of the line is NOT THIN?

We have to check that given a finite number of arbitrary covers

$$\phi_i: Y_i \to \mathbb{P}^1, i = 1, \dots, n$$

there exists $t \in (\mathbb{P}^1(k) \cap T) \setminus (\bigcup_i \phi_i(Y_i(k)))$.

Avoiding the covers

Given a finite number of covers $\psi_i: Y_i \to B$ we have to find $P \in C'(k)$ such that

 $\varphi(P) \notin \bigcup \psi_i(Y_i(k))$.

If $Y_i \times_B C'$ is an integral curve then

Hurwitz formula tells us that $g(Y_i \times_B C') \ge 1$.

Since $C' \simeq \mathbb{P}^1_k$ satisfies the Hilbert Property,

there is a $P \in C'(k) \setminus \tilde{\psi}_i((Y_i \times_B C')(k))$, i.e.,

 $\varphi(P) \in B \setminus (\bigcup_i \psi_i(Y_i(k)))$.

BUT HOW CAN WE MAKE SURE THAT $Y_i \times_R C'$ is integral?

Integral fibre products

Linearly disjoint function field extensions

- Recall that k(C')/k(B) is a quadratic extension.
- Given $k(Y_i)/k(B)$ a finite number of extensions, then there are only finitely many quadratic sub-extensions. Thus
- If the set $\{k(C')/k(B); C' \in |C|, \#C(k) \neq \emptyset\}$ has infinitely many isomorphism classes of quadratic extensions then there are infinitely many $C' \in |C|$ s.t. $C' \times_B Y_i$ is smooth.
- If the ramification of $C' \to B$ varies this is certainly true! This is the case when there is at most one non-reduced fibre.

More than one non-reduced fibre

Same ramification but non-isomorphic field extensions

• There is only one configuration of reducible fibres with more than one non-reduced fibre, namely $(2I_0^*)$. Its ("almost") Weierstraß equation is of the form:

 $Y^2 = g(t)f(x)$, with f, g separable of degrees 3 and \leq 2, respectively.

- A bisection of genus zero is given by the curve C_{x_0} : $Y^2 = g(t)f(x_0)$, for any choice of x_0 with $f(x_0) \neq 0$.
- The map $C_{x_0} \to B$ ramifies at the zeroes of g(t), for all x_0 .

HOW DO WE SHOW THAT $k(C_{\chi_0})/k(B)$ are linearly disjoint?

HOW DO WE SHOW THAT $k(C_{\chi_0})/k(B)$ are linearly disjoint?

A secret about the surface that I didn't tell you yet

- $k(C_{x_0}) = k(t)(\sqrt{f(x_0)g(t)})$. Assume that f(x) takes only finitely many values modulo squares. Then we can write
- $S(k) = \bigcup_{d \in F} S_d(k) \text{ , where } F \text{ is a finite set and}$ $S_d(k) := \{(x, y, t) \in S(k); f(x) = dw^2, \text{ for some } w \in k\}.$
- The sets $S_d(k)$ are THIN! Hence S(k) is also thin.
- BUT this is in contradiction with the fact that S is a Châtelet surface which is known to satisfy the **Hilbert Property** (thanks to Colliot-Thélène and Sansuc).

Directions

More on the quality of the sets for which the rank jumps?

Fibrations on abelian varieties.

Non-geometrically rational elliptic surfaces, e.g. K3! (Renato Dias).

Obrigada! Gracias!