On rank jumps on families of elliptic curves

Cecília Salgado, RUG and UFRJ

The new results are from distinct collaborations with Dan Loughran (Bath- UK) and Renato Dias (UFRJ)

Plan

- Motivation
- Definitions and examples
- The problem and different methods
- More on the geometric method
- What's next?

Ranks of elliptic curves

Let k be a number field and E / k an elliptic curve.
$E: y^{2}=x^{3}+a x+b$, with $a, b \in k$.
Mordell-Weil Theorem: $E(k) \simeq \mathbb{Z}^{r(a, b)} \oplus$ Tors $_{a, b}$.
Consider a family of elliptic curves:

$$
\text { (} \star \text {) } E_{t}: y^{2}=x^{3}+a(t) x+b(t) \text {, with } a(t), b(t) \in k[t] \text {. }
$$

For $t \in k$ such that $\Delta(t) \neq 0$, we have $E_{t}(k) \simeq \mathbb{Z}^{r_{t}} \oplus$ Tors $_{t}$.
Natural Question: How does r_{t} behave as t varies?
TODAY: We'll use surfaces to deal with this question.

Elliptic surface

A smooth projective surface S is called an elliptic surface if
$\exists \pi: S \rightarrow B$, s.t.

- $\pi^{-1}(t)$ is a smooth curve of genus 1 , for almost all $t \in B$
- $\exists \sigma: B \rightarrow S$, a section

We suppose moreover that

- there is at least one singular fiber
- π is relatively minimal

Elliptic surface

A smooth projective surface S is called an elliptic surface if $\exists \pi: S \rightarrow B$, s.t.

- $\pi^{-1}(t)$ is a smooth curve of genus 1 , for almost all $t \in B$
- $\exists \sigma: B \rightarrow S$, a section

We suppose moreover that

- there is at least one singular fiber
- π is relatively minimal

$$
Y^{2}=X^{3}+a X+b ; \quad a, b \in k(B)
$$

In orange: a multisection

Why do we care?

Elliptic surfaces appear in many places

- Shioda-Tate: $\operatorname{NS}(S) / T \simeq \operatorname{MW}(\pi)$
- Zariski density/potential density (Bogomolov-Tschinkel, S.- van Luijk)
- k-unirationality of conic bundles (Kollár-Mella)
- Dense sphere packings (Shioda, Elkies)
- Error correcting codes (S. - Várilly-Alvarado - Voloch)
- High rank elliptic curves over \mathbb{Q} (Elkies - record: 28)

An example

Rational elliptic surfaces

Consider F, G two plane cubics. Then
$F \cap G=9$ points counted with multiplicities and we have

$$
\begin{gathered}
\text { Blow up } \\
(x: y: z) \mapsto(F(x, y, z): G(x, y, z))
\end{gathered}
$$

Arithmetic of elliptic surfaces

Given a number field k

The Mordell-Weil theorem tells us that:

- For the special fibers $E_{t}:=\pi^{-1}(t)$ with $t \in B(k)$:

$$
E_{t}(k)=\mathbb{Z}^{r_{t}} \oplus \operatorname{Tors}_{t} .
$$

- For the generic fiber:

$$
\mathscr{E}_{\eta}(k(B))=\mathbb{Z}^{r} \oplus \text { Tors. }
$$

From now on: rank = Mordell-Weil rank, and r_{t} denotes the rank of the special fiber E_{t} and r denotes the rank of the generic fiber.

Ranks of elliptic curves in families

(太) $E_{t}: y^{2}=x^{3}+a(t) x+b(t)$, with $a(t), b(t) \in k[t]$.
Natural Question: How does r_{t} behave as t varies?
Given $i \in \mathbb{N}$ and $\mathscr{G}_{i}:=\left\{t \in \mathbb{P}^{1}(k) ; r_{t}=i\right\} \subset \mathbb{P}^{1}(k)$, what can we say about $\# \mathscr{G}_{i}$?

Néron-Silverman's Specialization Theorem: $r_{t} \geq r$ for all but finitely many t.
So $i<r \Rightarrow \# \mathscr{G}_{i}<\infty$.
What about \mathscr{G}_{i}, for $i \geq r$?
We'll look at $\mathscr{F}_{r+i}:=\left\{t \in \mathbb{P}^{1}(k) ; r_{t} \geq r+i\right\}$.

Ranks of elliptic curves in families

Néron and Silverman Specialization Theorems tell us that:

$$
r_{t} \geq r, \text { for all but finitely many } t \in B(k)
$$

More precisely:
Néron: outside a THIN set.
Silverman: outside a set of bounded height.

Can we say more?

When $r_{t}>r$ we say that the rank jumps.
TODAY: Does the rank jump? Where and how large is the jump?

Methods

- Root Numbers
- Height Theory
- Base change

Root numbers

Given an elliptic curve E / k. The root number of E is the sign of the functional equation:
$\tilde{L}(E, s)=W(E) \tilde{L}(E, 2-s)$.
Parity conjecture: $W(E)=(-1)^{\operatorname{rank}(E)}$.
In other words: The parity of the rank of an elliptic curve over a number field is determined by its root number.

Variation of the root number \Rightarrow Rank jump
Constant root number with different "parity" from the generic rank \Rightarrow Rank jump.

Variation of root numbers in families

Isotrivial families (Rohrlich, Gouvêa, Mazur, Várilly-Alvarado, Dokchitser^2, Desjardins)

Ex: $Y^{2}=X^{3}-\left(1+T^{4}\right) X, W\left(E_{t}\right)=-1, \forall t$ and hence $\# \mathscr{F}_{r+1}=\infty$.

Non-isotrivial families

Expected: Both +1 and -1 occur infinitely often.
Holds under major conjecture and known under hypothesis on the degree of the coefficients.

Height theory approach

Definition: $P \in E_{t}(\mathbb{Q})$ is a division point if $\exists n \in \mathbb{N}$ s.t. $n \cdot P \in \operatorname{Sec}(\pi)(\mathbb{Q})$.
Let $U \subset S$ be a Zariski open. We denote by $U_{d i v}$ the set of division points in U.
Idea: Count division points of bounded height on fibers and compare with total count (of bounded height).

Billard (2000): Let S be a \mathbb{Q}-rational elliptic surface and $D \subset S$ an ample divisor. There is $\delta>0$ s.t. $\forall U \subset S$
$N\left(U(\mathbb{Q}), H_{D}, B\right) \gg B^{\delta}$ and $N\left(U_{d i v}(\mathbb{Q}), H_{D}, B\right) \ll B^{\delta / 2}$
Corollary (Billard): $\#^{r+1}{ }=\infty$.

Geometric approach: base change

- π_{C} is an elliptic fibration

- Sections of π induce sections of π_{C}
- New section $\sigma_{C}: C \rightarrow S \times_{B} C$
- Hence $\operatorname{rk}\left(S_{C}(k(C))\right) \geq r=\operatorname{rk}(S(k(B)))$
- If σ_{C} independent of sections of π then:

For $t \in \varphi(C(k)) \subset B(k)$ we have $r_{t} \geq r+1$.
Interesting when $\# C(k)=\infty$ because then we get rank jump on an infinite set!

Making sure that the rank jumps

Surfaces with many rational curves

- A key Lemma in (S.2011) shows that if $\operatorname{dim}|C| \geq 1$ and C is not a fiber component then all but finitely many curves in $|C|$ make the rank jump after base change by it.
- TO DO: Give hypothesis to assure that S contains linear systems of curves with $\# C(k)=\infty$.
- Good candidate: k-unirational surfaces!

Rank jumps by base changing

- S. (2011): If S is k-unirational then

$$
\# \mathscr{F}_{r+1}=\infty .
$$

- S. (2011) If moreover S has two conic bundle structures then

$$
\# \mathscr{F}_{r+2}=\infty .
$$

What about the quality of these sets?

Quality - Expectation

- Silverman conjectured in the 80's that

$$
r_{t}=r \text { or } r+1 \text {, }
$$

for 100% of the fibers when ordered by height

Quality - Expectation

- Silverman conjectured in the 80's that:

$$
r_{t}=r \text { or } r+1
$$

for 100% of the fibers when ordered by height

Thin Sets

Given an algebraic variety V over k. A subset $T \in V(k)$ is said to be:

- Of type 1 if it is contained in a proper Zariski closed subset.
- Of type 2 if is contained in the image of the k-points of a dominant morphism of degree at least 2

$$
\phi: W \rightarrow V, \text { so } T \subset \phi(W(k)) \subset V(k) .
$$

T is called THIN if it is contained in a finite union of subsets of types 1 and 2.
V is said to satisfy the HILBERT PROPERTY over k, if $V(k)$ is not thin.

Examples

A. Over number fields, \mathbb{P}^{n} satisfies the Hilbert Property, for all n.
B. The set of \square 's in a number field is THIN. Indeed, they lie in the image of the degree 2 map $t \mapsto t^{2}$.

Our contribution

Thm. A (Loughran, S. 2019): Let $\pi: S \rightarrow \mathbb{P}^{1}$ be a geometrically rational elliptic surface such that π admits a bisection of arithmetic genus zero then

$$
\mathscr{F}_{r+1}=\left\{t \in \mathbb{P}^{1}(k) ; r_{t} \geq r+1\right\} \text { is not thin. }
$$

Thm. B (Loughran, S. 2019): If moreover π has at most one non-reduced fiber OR admits a 2-torsion section defined over k, then

$$
\mathscr{F}_{r+2}=\left\{t \in \mathbb{P}^{1}(k) ; r_{t} \geq r+2\right\} \text { is not thin. }
$$

Our contribution

Thm. C (Dias, S. 2021): Let $\pi: S \rightarrow \mathbb{P}^{1}$ be a geometrically rational elliptic surface such that one of the following holds:
i) It has a non-reduced fibre of type $I I^{*}, I I I^{*}$ or I_{n}^{*}, for $2 \leq n \leq 4$;
ii) It has a non-reduced fibre of type $I V^{*}, I_{1}^{*}$ or I_{0}^{*} and a reducible reduced singular fibre;
then,

$$
\mathscr{F}_{r+3}=\left\{t \in \mathbb{P}^{1}(k) ; r_{t} \geq r+3\right\} \text { is not thin. }
$$

An example (due to Rohrlich)

Consider an elliptic curve $E: y^{2}=x^{3}+a x+b$ with $\operatorname{rk}(E(k))=1$. Then
$S: t y^{2}=x^{3}+a x+b$ is an elliptic surface fibered over the t-line. Moreover we have $r=0$ and $r_{t}=1$, for $t=\square$. Thus
$\# \mathscr{F}_{r+1}=\infty$ BUT the set $\left\{t \in \mathbb{P}^{1}(k) ; t=s^{2}\right.$, for some $\left.s \in k\right\}$ is thin!

Using the hypothesis

Thm. A (Loughran, S. 2019): Let $\pi: S \rightarrow \mathbb{P}^{1}$ be a geometrically rational elliptic surface such that π admits a bisection of genus zero then

$$
\left\{t \in \mathbb{P}^{1}(k) ; r_{t} \geq r+1\right\} \text { is not thin. }
$$

- Since $h^{1}(S)=0$ and C is a bisection of genus zero, Riemann-Roch gives that C moves, i.e., $\operatorname{dim}|C| \geq 1$. Moreover $C^{\prime} \simeq \mathbb{P}_{k}^{1}$ for infinitely many curves in $|C|$.
- This together with $K_{S}^{2}=0$ can be used to show that S is k-unirational.
- At that point we can use a curve in $|C|$ to prove: $\# \mathscr{F}_{r+1}=\infty$.

BUT...

The set is thin!

$\varphi(C(k))$ is a set of type 2 and hence THIN!

STRATEGY: Consider all curves in $|C|$ at once!

Remember that given any finite number of covers of the base, we have to find a curve in $|C|$ that has a k-point mapped to a point outside of their image.

How does one show that a subset T of the line is NOT THIN?

We have to check that given a finite number of arbitrary covers

$$
\phi_{i}: Y_{i} \rightarrow \mathbb{P}^{1}, i=1, \cdots, n
$$

there exists $t \in\left(\mathbb{P}^{1}(k) \cap T\right) \backslash\left(\cup_{i} \phi_{i}\left(Y_{i}(k)\right)\right)$.

Avoiding the covers

Given a finite number of covers $\psi_{i}: Y_{i} \rightarrow B$ we have to find $P \in C^{\prime}(k)$ such that
$\varphi(P) \notin \cup \psi_{i}\left(Y_{i}(k)\right)$.

If $Y_{i} \times{ }_{B} C^{\prime}$ is an integral curve then
Hurwitz formula tells us that $g\left(Y_{i} \times{ }_{B} C^{\prime}\right) \geq 1$.
Since $C^{\prime} \simeq \mathbb{P}_{k}^{1}$ satisfies the Hilbert Property, there is a $P \in C^{\prime}(k) \backslash \tilde{\Psi}_{i}\left(\left(Y_{i} \times_{B} C^{\prime}\right)(k)\right)$, i.e., $\varphi(P) \in B \backslash\left(\cup_{i} \psi_{i}\left(Y_{i}(k)\right)\right)$.

BUT HOW CAN WE MAKE SURE THAT $Y_{i} \times{ }_{B} C^{\prime}$ is integral?

Integral fibre products

Linearly disjoint function field extensions

- Recall that $k\left(C^{\prime}\right) / k(B)$ is a quadratic extension.
- Given $k\left(Y_{i}\right) / k(B)$ a finite number of extensions, then there are only finitely many quadratic sub-extensions. Thus
- If the set $\left\{k\left(C^{\prime}\right) / k(B) ; C^{\prime} \in|C|, \# C(k) \neq \varnothing\right\}$ has infinitely many isomorphism classes of quadratic extensions then there are infinitely many $C^{\prime} \in|C|$ s.t. $C^{\prime} \times_{B} Y_{i}$ is smooth.
- If the ramification of $C^{\prime} \rightarrow B$ varies this is certainly true! This is the case when there is at most one non-reduced fibre.

More than one non-reduced fibre

Same ramification but non-isomorphic field extensions

- There is only one configuration of reducible fibres with more than one nonreduced fibre, namely $\left(2 I_{0}^{*}\right)$. Its ("almost") Weierstraß equation is of the form:

$$
Y^{2}=g(t) f(x), \text { with } f, g \text { separable of degrees } 3 \text { and } \leq 2 \text {, respectively. }
$$

- A bisection of genus zero is given by the curve $C_{x_{0}}: Y^{2}=g(t) f\left(x_{0}\right)$, for any choice of x_{0} with $f\left(x_{0}\right) \neq 0$.
- The map $C_{x_{0}} \rightarrow B$ ramifies at the zeroes of $g(t)$, for all x_{0}.

HOW DO WE SHOW THAT $k\left(C_{x_{0}}\right) / k(B)$ are linearly disjoint?

HOW DO WE SHOW THAT $k\left(C_{x_{0}}\right) / k(B)$ are linearly disjoint?

A secret about the surface that I didn't tell you yet

- $k\left(C_{x_{0}}\right)=k(t)\left(\sqrt{f\left(x_{0}\right) g(t)}\right)$. Assume that $f(x)$ takes only finitely many values modulo squares. Then we can write
- $S(k)=\bigcup S_{d}(k)$, where F is a finite set and

$$
S_{d}(k): \stackrel{d \in F}{=}\left\{(x, y, t) \in S(k) ; f(x)=d w^{2}, \text { for some } w \in k\right\} .
$$

- The sets $S_{d}(k)$ are THIN! Hence $S(k)$ is also thin.
- BUT this is in contradiction with the fact that S is a Châtelet surface which is known to satisfy the Hilbert Property (thanks to Colliot-Thélène and Sansuc).

Directions

- More on the quality of the sets for which the rank jumps?
- Fibrations on abelian varieties.
- Non-geometrically rational elliptic surfaces, e.g. K3! (Renato Dias).

Obrigada! Gracias!

