Curvas bielípticas

Francesc Bars (UAB)

Seminario LaTeN, 25/XI/2021

Curvas bielípticas

Francesc Bars (UAB)

Seminario LaTeN, 25/XI/2021

Curvas bielípticas

 $X_{|K|}$ curva lisa y proyectiva definida sobre un campo de números K.

 g_X género de X

X(K) el conjunto de puntos K-racional

 \overline{K} una clausura algebraica fija de K, y siempre L/K ext. finita $L \subseteq \overline{K}$.

Por un teorema de Faltings:

$$|X(K)| = \infty \Rightarrow g_X \le 1.$$

El opuesto es falso : Si $g \le 1$, puede suceder $X(K) = \emptyset$.

Si
$$|X(K)| > 0$$
 y $g_X = 0$, entonces $|X(K)| = \infty$.

Si
$$|X(K)| > 0$$
 y $g_X = 1$, puede ser $|X(K)| < \infty$.

Puntos Cuadráticos

Sea $g_X > 1$, y denotemos

$$\Gamma_2(X,K) := \cup_{[L:K] \le 2} X(L).$$

Suponemos que X tiene una involución u definida sobre K que cumple $g_{X_u} \leq 1$ donde $X_u := X/u$ (curva hiperelíptica o bielíptica sobre K, respectivamente).

Si
$$|X_u(K)| = \infty \Rightarrow |\Gamma_2(X,K)| = \infty$$
.

El opuesto es cierto (Abramovich-Harris-Silverman).

Un resultado más débil es el que sigue

Teorema (Harris-Silverman)

Supongamos $g_X \ge 2$. Entonces $\exists L/K$ extension finita de cuerpos con $|\Gamma_2(X,L)| = \infty$ si i solo si C es hiperelíptica o bielíptica (i.e., tiene morfismo de grado 2 sobre \overline{K}

$$\varphi: X \to \mathbb{P}^1$$
; or E

a la recta projectiva o a una curva elíptica)

En general para cuerpos globales k tenemos:

Proposición

Supongamos $g_X \geq 2$. Entonces,

- (i) X_k es hiperelíptica sil existe una involución (hiperelíptica) $w \in \operatorname{Aut}(X_{\overline{k}})$, con $2g_X + 2$ puntos fijos. En particular, si X_k es hiperelíptica, entonces w es única, definida sobre una ext. finita puramente inseparable ℓ/k de k, y se le llama la involución hiperelíptica de X_k .
- (ii) X_k es bielíptica sil existe una involución (bielíptica) $\tilde{w} \in \operatorname{Aut}(X_{\overline{k}})$, con $2g_X 2$ puntos fijos. Si X_k es bielíptica y $g_X \geq 6$, entonces existe una única involución bielíptica, la cual pertenece al centro de $\operatorname{Aut}(X_{\overline{k}})$ y está definida sobre una ext. finita puramente inseparable ℓ de k.

Proposición (Accola-Landman, Harris-Silverman)

Si X es bielíptica y $f: X \to X'$ mapeo finito entonces X' es bielíptica o hiperelíptica o $g_{X'} \le 1$.

Teorema (Schweizer)

 X_k definida sobre un cuerpo global \overline{k} de char=p>0, conservativa sobre k. Supongamos $g_X\geq 3$ y $Jac(X_k\times_k\overline{k})$ no tiene no non-cero imagenes homomorficas definidas sobre $\overline{\mathbb{F}}_{q=p^n}$, entonces, existe L/k finita cumpliendo $|\Gamma_2(X,L)|=\infty$ sil X es bielíptica o hiperelíptica.

 X_K una curva no-singular plana de grado d, i.e. $X_K imes \overline{K}$ isomorfa a F(X,Y,Z)=0 con $F \in \overline{K}[X,Y,Z]$ monico de grado d.

$$g_X = \frac{(d-1)(d-2)}{2}$$

Suponemos $d \ge 4$

 X_K tiene un modelo plano no-singular sobre K si (d,3)=1.

Fenomeno asimptótico

Equaciones de Fermat $X_K: X^p + Y^p = Z^p$ con $p \ge 5$ primo, donde el último teorema de Fermat asimptótica afirma (con resultados de Siksek, Freitas,...):

• $\exists B_K$ cumpliendo $\forall p > B_K$ las solucions de la equacion de Fermat sobre K satisface xyz = 0.

En esta charla, estamos interesados en finitud o no de puntos cuadráticos gonalidad de $X_K \otimes_K \overline{K}$ es d-1

Corolario

 X_K curva no-singular plana de grado $d \geq 6$, entonces no es bielíptica o hiperelíptica, en particular

$$|\Gamma_2(X,L)| < \infty$$

Corolario (Fenómeno Asimptótico, Badr-B.)

 X_K curva no-singular plana de grado $d \geq 5$. Entonces, el número de extensiones cuadrads $K \subset K' \subset \overline{K}$ donde $X(K') \neq X(K)$ son un número finito. En particular, $F_d: X^d + Y^d - Z^d = 0$ con $d \geq 5$ satisface que $F_d(\mathbb{Q}) = F_d(\mathbb{Q}(\sqrt{D})$ para todo inter libre de cuadrados D a excepción de un conjunto finito de valores D.

 \mathcal{M}_g espacio de moduli, que representa $\overline{K}\text{-clases}$ de isomorfismo de curvas no-singulares planas de género g

 $\mathcal{M}_g^{pl}(G)\subset \mathcal{M}_g$ con G grupo finito no-trivial donde sus \overline{K} -puntos son \overline{K} -isomorfos a curvas planas no-singulares X con $Aut_{\overline{K}}(X)\cong G$.

Lercier-Ritzenthaler-Rovetta-Sijsling introdujeron nociones de familias completa, finita y representativa para los stratas anteriores.

Una família $\mathcal C$ es completa sobre K para $\mathcal M_g^{Pl}(G)$ si para toda extension L/K y cualquier L-punto [C]/L en el estrato, existe un modelo plano no-singular para C definido sobre L en la familia $\mathcal C$. Decimos geometricamente completo si $\mathcal C\otimes_K\overline K$ es completo.

Teorema (Badr-B.)

Sea C una cuártica (K,\overline{K}) -plana y no-singular. Entonces, C es bielíptica sil $C\otimes_K \overline{K}\in \widetilde{\mathcal{M}_3^{Pl}}(G)(\overline{K})$ con $G=\mathbb{Z}/2,\mathbb{Z}/2\times\mathbb{Z}/2,\mathbb{Z}/6,S_3,D_4,GAP(16,13),S_4,GAL(48,33),GAP(96,64)$ o $PSL_2(\mathbb{F}_7)$.

Table: Families geométricamente completas y bielípticas

$\operatorname{Aut}(C_{\overline{k}})$	Families	Restricciones
$\mathbb{Z}/2\mathbb{Z}$	$Z^4 + Z^2 L_{2,Z}(X,Y) + L_{4,Z}(X,Y)$	$L_{2,Z}(X,Y) \neq 0, not below$
$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	$Z^4 + Z^2(bY^2 + cX^2) + (X^4 + Y^4 + aX^2Y^2)$	$a \neq \pm b \neq c \neq \pm a$
$\mathbb{Z}/6\mathbb{Z}$	$Z^4 + aZ^2Y^2 + (X^3Y + Y^4)$	$a \neq 0$
S_3	$(X^3 + Y^3)Z + X^2Y^2 + aXYZ^2 + bZ^4$	$a \neq b, ab \neq 0$
D_4	$Z^4 + bXYZ^2 + (X^4 + Y^4 + aX^2Y^2)$	$b \neq 0, \pm \frac{2a}{\sqrt{1-a}}$
GAP(16, 13)	$Z^4 + (X^4 + Y^4 + aX^2Y^2)$	$\pm a \neq 0, 2, 6, 2\sqrt{-3}$
S_4	$Z^4 + aZ^2(Y^2 + X^2) + (X^4 + Y^4 + aX^2Y^2)$	$a \neq 0, \frac{-1 \pm \sqrt{-7}}{2}$
GAP(48, 33)	$Z^4 + (X^4 + Y^4 + (4\zeta 3 + 2)X^2Y^2)$	_
GAP(96, 64)	$Z^4 + (X^4 + Y^4)$	_
$\mathbf{PSL_2}(\mathbb{F}_7)$	$X^3Y + Y^3Z + Z^3X$	_

Conjetura

Fijamos un estrato del tipo $\widehat{\mathcal{M}}_3^{\mathrm{Pl}}(G)$, donde todos sus $\overline{\mathbb{Q}}$ -puntos son bielipticos. Entonces, en $\widehat{\mathcal{M}}_3^{\mathrm{Pl}}(G)(\mathbb{Q})$ hay un conjunto infinito \mathcal{E} (resp. \mathcal{D}) de clases de \mathbb{Q} -isomorfismo de curvas cuadricas no-singulars sobre \mathbb{Q} , cumpliendo que $\Gamma_2(C,\mathbb{Q})$ es un conjunto finito (resp. infinito).

Usando la teoria de twist en curvas planas no singulares obtenemos:

Proposición (Badr-B.)

La conjectura para $G = \mathbb{Z}/6$ y G = GAP(15, 13) es cierta.

Ideas atacar la conjetura, caso $\mathbb{Z}/6$

Familia representativa

$$C_a: aZ^4 + Y^2(Y^2 + aZ^2) + X^3Y = 0,$$

donde $a \neq 0,4$, es una familia representativa sobre k para $\mathcal{M}_3^{\mathrm{Pl}}(\mathbb{Z}/6\mathbb{Z})$. i.e., cualquier cuártica plana no-singular C sobre k con grupo de automorfismo isomorfo a $\mathbb{Z}/6\mathbb{Z}$ tiene un modelo plano no-singular en \mathcal{C}_a para un único $a \in k$, i.e., existe una extensión finita L/k en \overline{k} donde $C \otimes_k L$ es L-isomorfo a una única ecuación $aZ^4 + Y^2(Y^2 + aZ^2) + X^3Y = 0$ para cierto $a \in k$. En particular, $\Gamma_2(C,L) = \Gamma_2(aZ^4 + Y^2(Y^2 + aZ^2) + X^3Y = 0, L)$.

Una familia con cociente elíptico de rango positivo

Considerese $aZ^4+Y^2(Y^2+aZ^2)+X^3Y=0$ con $a\in\mathbb{Q}\setminus\{0,4\}.$

Entonces $C_a/\langle diag(\tilde{1},1,-1)\rangle$ es una curva elíptica de rango positivo sobre $\mathbb Q$. En particular, $\mathcal C_a$ con $a\in\mathbb Q\setminus\{0,4\}$ es una familia infinita de curvas bielípticas planas no singulares sobre $\mathbb Q$ con grupo automorfismo $\mathbb Z/6\mathbb Z$, y $\Gamma_2(\mathcal C_a,\mathbb Q)$ es un conjunto infinito. $E/\mathbb Q:z^2=x^3-a^3(1-a/4)$ tiene el punto de no-torsion $P_a:=(x,z)=(a,a^2/2)$.

Una familia con cociente elíptico de rango cero

Usando PhD Elisa Lorenzo, sobre twists de cuádricas, consideramos la familia de todos los twists sobre $\mathbb Q$ de C_a :

$$C_{A,n,m}: Am^2Z^4 + mY^2Z^2 + nX^3Y + Y^4 = 0,$$

donde $(A, n, m) \in k^* \times k^*/{k^*}^3 \times k^*/{k^*}^2$ lo satisface. $\mathcal{C}_{A(t), n(t), m} : A(t)m^2Z^4 + mY^2Z^2 + n(t)X^3Y + Y^4 = 0$ donde

 $A(t) := (108t^2 + 1)/4 \text{ y } n(t) := 4/t(108t^2 + 1), \text{ para } t = a/b \in \mathbb{Q}^* \text{ con } a, b \in \mathbb{Q}^*$

impares y coprimos.

la familia $A, n, m \in k^*$:

 \mathbb{Q} -Isomorfo a: $z^2=x^3-27$, tiene rango 0 sobre \mathbb{Q} .

(A(t),n(t),m) y (A(t'),n(t'),m') con $A(t)\neq A(t')$ no son $\overline{\mathbb{Q}}$ -isomorfas.

Curvas modulares Classicas

Т

- Son curvas algebraicas que corresponden a cierto problema de moduli para curvas elípticas con información adicional.
- Sobre \mathbb{C} , $X_{\Gamma,\mathbb{C}}$ corresponde a una superfície de Riemann definida completando en las cuspides a

$$\mathbb{H}/\Gamma$$

 Γ es un subgrupo modular de $SL_2(\mathbb{R})$ commensurable con $SL_2(\mathbb{Z})$.

Uno de los mas conocidos son $\Gamma(N) \leq \Gamma_1(N) \leq \Gamma_\Delta(N) \leq \Gamma_0(N) \leq SL_2(\mathbb{Z})$ correspondiendo a mapeos naturales

$$X(N)_{\mathbb{C}} \to X_1(N)_{\mathbb{C}} \to X_{\Delta}(N)_{\mathbb{C}} \to X_0(N)_{\mathbb{C}}$$

y cada una de estas curvas modulares son curvas algebraicas definidas sobre $\mathbb Q$ con buena reducción cuando $p \nmid N$.

Si X_{Γ} es bielíptica o hiperelíptica, existe una involución en $Aut(X_{\Gamma})$. Siempre $Norm_{SL_2(\mathbb{R})}\Gamma/\Gamma \leq Aut(X_{\Gamma})$ Para $X_0(N)$, con $N \neq 37,63,198$:

$$Norm_{SL_2(\mathbb{R})}\Gamma_0(N)/\Gamma_0(N) = Aut(X_0(N)),$$

donde

$$\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \operatorname{SL}_2(\mathbb{Z}) | c \equiv 0 \pmod{N} \right\}$$

y para cada d|N con (N,N/d)=1 tenemos $w_d=\frac{1}{\sqrt{d}}\begin{pmatrix} da & b \\ Nc & dk \end{pmatrix}\in SL_2(\mathbb{R})$ involuciones de Atkin-Lehner en $Aut(X_0(N))$ y

$$\langle \{w_d\}_{d||N} \rangle \le Aut(X_0(N)).$$

14 / 54

El caso bielíptico modular

Para curvas clásicas modulares, fueron determinadas la bielipticidad o no a partir del nivel N en las famílias:

- las curvas X₀(N) (B., 1999).
- *X*₁(*N*) (Jeon-Kim 2004)
- las curvas X(N) (Jeon-Kim, B.-Kontogeorgis-Xarles 2013)
- las curvas intermedias $X_{\Delta}(N)$ (Jeon-Kim-Schweizer 2017).
- las curvas $X_0^+(N) = X_0(N)/\langle w_N \rangle$ (Jeon 2018).

En un conjunto de trabajos, estudiamos $X_0^{W_N}(N) = X_0(N)/W_N$, donde W_N un subgrupo no trivial de B(N) el grupo formado por todas las involuciones de Atkin-Lehner en $X_0(N)$, con $W_N \neq \langle w_N \rangle$.

Las curvas hiperelípticas $X_0^{W_N}(N)$ fueron determinados en diferentes trabajos por Hasegawa y Hashimoto (\sim 1997), y Hasegawa (\sim 1999).

Después de encontrar las curvas bielípticas (usualmente con poco trabajo), uno puede determinar los N cumpliendo que $|\Gamma_2(X_0^{W_N}(N),\mathbb{Q})|=\infty$.

Notación

- $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$
- ullet B(N) grupo inv. Atkin-Lehner, $n={\mathsf{n}}^{\mathsf{o}}$ primos $p\mid N$, $|B(N)|=2^n$.
- $\bullet \ X_0^*(N) = X_0(N)/B(N), \ X^{W_N}(N) = X_0(N)/W_N \ \text{con} \ W_N \leq B(N).$
- ullet g_N , g_N^* y $g_N^{W_N}$ género de $X_0(N)$, $X_0^*(N)$ y $X_0^{W_N}(N)$ respectivamente.
- $J_0(N) = \operatorname{Jac}(X_0(N)), \ J_0^*(N) = \operatorname{Jac}(X_0^*(N)) \ \text{y} \ J_0^{W_N}(N) = \operatorname{Jac}(X_0^{W_N}(N)).$
- New_N conjunto de formas nuevas normalidas en $S_2(\Gamma_0(N))^{\text{new}}$.
- $\operatorname{New}_N^* = \operatorname{New}_N^{B(N)}$ subconjunto de New_N invariante por B(N).
- Para $f \in \text{New}_N$,
 - A_f es la v.a. asociada por Shimura a f,
 - $a_m(f)$ es el coeficiente m-ésimo de expansion de Fourier f en q,
 - K_f el cuerpo de números totalmente real $\mathbb{Q}(\{a_m(f)\}_m)$.
- \bullet ψ la función de Dedekind.
- $\sigma_0(M)$ el número de divisores positivos de M.
- $A \vee B \vee A$ v.a. sobre K, $A \stackrel{K}{\sim} B$ denota isogonea sobre K.

Algunos resultados sobre $X_0(N)$

Sabemos

- el mapeo $S_2(\Gamma_0(N)) \cap K[[q]] \to \Omega^1_{X_0(N)/K}$, $h \mapsto h(q)dq/q$ es un \simeq .
- $J_0(N) \stackrel{\mathbb{Q}}{\sim} \prod_{M|N} \prod_{f \in \text{New}_M \setminus G_{\mathbb{Q}}} A_f^{\sigma_0(N/M)}$.
- el conjunto $\cup_{M|N} \cup_{f \in \text{New}_M} \{f(q^d) \colon d|N/M\}$ es una base para $S_2(\Gamma_0(N))$. En particular,

$$g_N = \sum_{M|N} |\operatorname{New}_M| \sigma_0(N/M).$$

• para un primo $p \nmid N$ y $f \in \text{New}_M$, el polinomio característico del Frob_p actuando en el módulo de Tate de A_f es (Eichler-Shimura)

$$\prod_{\sigma \colon K_f \hookrightarrow \overline{\mathbb{Q}}} x^2 - a_p(f^{\sigma})x + p.$$

• for $p \nmid N$, $|X_0(N)(\mathbb{F}_{p^x})| = p^n + 1 - \sum_{i=1}^{2g_n} \alpha_i^n$, donde

$$\prod_{i=1}^{2g_N} (x - \alpha_i) = \prod_{M \mid N} \prod_{f \in \text{New}} (x^2 - a_p(f)x + p)^{\sigma_0(N/M)}.$$

$X_0^*(N)$, con N libre de cuadrados

Si N libre de cuadrados:

- $J_0^*(N) \stackrel{\mathbb{Q}}{\sim} \prod_{M|N} \prod_{f \in \text{New}_M^* \setminus G_{\mathbb{Q}}} A_f$.
- $\operatorname{End}_{\mathbb{Q}}(J_0^*(N)) \otimes \mathbb{Q} = \operatorname{End}_{\overline{\mathbb{Q}}}(J_0^*(N)) \otimes \mathbb{Q} \simeq \prod_j K_j$, con K_i cuerpo de números totalmente real.
- $\operatorname{Aut}(X_0^*(N)) = \operatorname{Aut}_{\mathbb{Q}}(X_0^*(N)) \hookrightarrow \prod_i K_i \Rightarrow \operatorname{Aut}(X_0^*(N)) \simeq (\mathbb{Z}/2\mathbb{Z})^m$.

Sea E/\mathbb{Q} c.e. y $f_E \in \text{New}_M$ la forma modular asociada a E. Decimos que el par (N, E) es bielíptico si E es \mathbb{Q} -isógeno a un cociente bielíptico de $X_0^*(N)$. Entonces,

$$\mathsf{cond}(E) = M|N, \, f_E \in \mathrm{New}_M^* \,\, \mathsf{y} \,\, \mathbb{Q} \sum_{d|N/M} d\, f_E(q^d) dq/q = \mathsf{pullback} \,\, \mathsf{de} \,\, \Omega^1_{E/\mathbb{Q}}.$$

Lemma

Supongamos que (N,E) es bielíptico. Para un primo $p \nmid N$, tenemos las siguientes desigualdades:

$$\text{(a) } \frac{\psi(N)}{2^n} \leq 12 \frac{2|E(\mathbb{F}_{p^2})|-1}{p-1} \,, \text{ (b) } g_N^* \leq 2 \frac{|E(\mathbb{F}_{p^2})|}{p-1} \,, \text{ (c) } g_N \leq 2^{n+1} \frac{|E(\mathbb{F}_{p^2})|}{p-1} \,.$$

Observese: $|E(\mathbb{F}_{p^2})| = (p+1)^2 - a_p(f_E)^2 \le (p+1)^2$.

Cribas, N libre de cuadrados

Gracias al lema obtenemos un conjunto finito $\mathcal C$ de posibles candidatos de N (argumento de Ogg).

- Segunda criba (tablas de Cremona): Substituir $\mathcal C$ por el conjunto $\mathcal P$ de pares (N,E), donde $N\in\mathcal C$ y $E/\mathbb Q$ es una c.e. con $f_E\in\operatorname{New}_M^*$, for M|N. Aplicamos el lema con $|E(\mathbb F_{p^2})|$.
- Tercera criba (tablas de Cremona): Si N=M, borrar los pares en \mathcal{P} donde la parametrización fuerte de Weil para E no divida 2^{n+1} .
- Cuarta criba: Para $p \nmid N$, ponemos

$$P_p(n) := \text{mod} \, [(\sum_{d \mid n} \mu(n/d) | X_0^*(N)(\mathbb{F}_{p^n}) |) / n, 2]$$

donde $\mathrm{mod}\,[r,2]\in\{0,1\}$ (denota modulo 2) y μ la función Moebius. Si $X_0^*(N)$ tiene una involución u/\mathbb{Q} , entonces

$$\sum_{n=0}^{k} (2n+1)P_p(2n+1) \le 2g_N^* + 2, \ \forall k \ge 0.$$

Borramos los pares (N, E) en que falla la desigualdad.

Quinta criba: borrar los pares donde

Caso hiperelíptico, N libre de cuadrados

Hasegawa, Hashimoto

 $X_0^*(N)$ hiperelíptica y N libre de cuadrados $\Leftrightarrow g_N^* = 2$.

Proposición

Sea N libre de cuadrados y $g_N^*=2$. La curva $X_0^*(N)$ es bielíptica, sil, $J_0^*(N) \overset{\mathbb{Q}}{\sim} E_1 \times E_2$ donde E_1 E_2 son cocientes bielípticos. En dicha situación, si $\omega_i \in \Omega^1_{X_0^*(N)/\mathbb{Q}}, \ 1 \leq i \leq 2$, es el pulback de las diferenciales regulares de E_i , las funciones $x = \omega_1/\omega_2$ y $y = dx/\omega_2$ satisfacen la relacion $y^2 = P(x)$ con $P(t) \in \mathbb{Q}[t]$ de grado 6. El grupo de automorfisme corresponde a $(x,y) \mapsto (\pm x, \pm y)$.

Proposición

Para N libre de cuadrados y $g_N^*=2$. $X_0^*(N)$ es bielíptica sil, $N\in\{106,122,129,158,166,215,390\}$. En estos casos, $\operatorname{Aut}(X_0^*(N))$ es el grupo de Klein.

Pares no-hiperelípticos, N libre de cuadrados

Después de las cribas, los pares que faltan trabajar (N,E), ordenados por género són, (siempre $g_N^*>2$):

N	g_N^*	E
178	3	89a
183	3	61a
185	3	37a
246	3	82a, 123b
249	3	83a, 249b
258	3	43a, 129a
282	3	141d
290	3	145a
303	3	101a
310	3	155c
318	3	53a, 106b
430	3	43a, 215a
455	3	65a
462	3	77a, 154a
510	3	102a

N	g_N^*	E
202	4	101a
262	4	131a
354	4	118a
366	4	61a,
		122a
370	4	185c,
		370a
399	4	57a
426	4	142b
546	4	91a
570	4	57a,
		190b,
		285b

N	g_N^*	E
237	5	79a
402	5	201c
438	5	219a
645	5	129a
		215a
714	5	238b
798	5	399a
910	5	91a,
		455a
690	6	138a
858	6	143a,
		286c
870	7	145a,
	'	290a

Un teorema de Petri

Fijemos una inmersioń de K en \mathbb{C} . Denotemos por $K_h[x_1,\cdots,x_g]$ el subespacio de polinomios homogeneos de $K[x_1,\cdots,x_g]$.

Teorema de Petri (i)

Sea X/K una curva no-singular y no-hipereliptica con $g_X>2$ y ω_1,\cdots,ω_g una base de $\Omega^1_{X/K}$. La curva X es obtenida como los zeros comunes de los polinomios en el K-e.v.

$$\mathcal{L} = \{ Q \in K_h[x_1, \cdots, x_g] \colon Q(\omega_1, \cdots, \omega_g) = 0 \}.$$

Escribid $h_i = \omega_i/\omega_g \in K(X)$, $1 \le i \le g-1$.

En particular $K(X)=K(h_1,\cdots,h_{g-1})$ y h_i satisface $Q(h_1,\cdots,h_{g-1},1)=0$, $Q\in\mathcal{L}.$

Teorema de Petri

Para i > 1, denotad $\mathcal{L}_i = \{Q \in \mathcal{L} : \deg Q = i\}$.

Obsérvese $\dim \mathcal{L}_i \leq \dim \mathcal{L}_{i+1}$, ya que $x_j \mathcal{L}_i \subseteq \mathcal{L}_{i+1} \, \forall j \leq g$.

Teorema de Petri

Sea X/K curva no-hipereliptica con $g_X>2$ y ω_1,\cdots,ω_g una base de $\Omega^1_{X/K}.$ X corresponde a los zeros comunes de los polinomios en el K-espacio vectorial

$$\mathcal{L} = \{Q \in K_h[x_1, \cdots, x_g] \colon Q(\omega_1, \cdots, \omega_g) = 0\}.$$

Mas concretamente,

- Si $g_X=3$, $\dim \mathcal{L}_2=\dim \mathcal{L}_3=0$, $\mathcal{L}_4=K\cdot Q(x_1,x_2,x_3)\neq \{0\}$ y, para $i\geq 4$, \mathcal{L}_i són multiples de Q. Los ceros de \mathcal{L} son los que corresponden a Q (cuártica plana no-singular).
- Si $g_X > 3$, $\dim \mathcal{L}_2 = (g-3)(g-2)/2$ y los ceros de \mathcal{L} son los ceros en \mathcal{L}_2 y \mathcal{L}_3 . Si X no es trigonal o no es una quintica no-singular, los ceros comunes para todos los elementos de \mathcal{L} son los zeros de \mathcal{L}_2 .

Si $g_X=4$ y X no hipereliptica, su gonalidad es 3. En dicha situación $\dim \mathcal{L}_2=1$ y $\dim \mathcal{L}_3=5$. Por tant, un modelo para X es dado por un polinomio $Q_2\in \mathcal{L}_2$ ($Q_2\neq 0$) y un polinomio $Q_3\in \mathcal{L}_3$ que no es múltiple de Q_2 .

Involuciones no-hiperelipticas

Sea $u \in Aut_K(X)$ (X no hipereliptica con $g_X > 2$), entonces

$$Q(u^*(\omega_1), \cdots, u^*(\omega_g)) = 0, \quad \forall Q \in \mathcal{L}.$$

Si u es una involución y $\{\omega_i\}$ es una base de vectores propios, i.e. $u^*(\omega_i)=\varepsilon_i\omega_i$ con $\varepsilon_i=\pm 1$, entonces

$$Q(\varepsilon_1 x_1, \cdots, \varepsilon_g x_g) \in \mathcal{L}, \quad \forall Q \in \mathcal{L}.$$
 (1)

Conversely, si la condición (1) se satisface, entonces el mapeo

$$u \colon \omega_i \mapsto \varepsilon_i \omega_i$$
 or $v \colon \omega_i \mapsto -\varepsilon_i \omega_i$, $1 \le i \le g$, es una involución de X .

Para $X=X_0^*(N),\ J_0^*(N)\stackrel{\mathbb{Q}}{\sim}\prod A_{f_i}.$ Porqué u actua en cada A_{f_i} por $\pm\operatorname{Id}$, una base de $\Omega^1_{X_0^*(N)/\mathbb{Q}}$ como union de base de $\Omega^1_{A_{f_i}/\mathbb{Q}}$ son eigenvectors para u.

Proposición

Supongamos $X_0^*(N)$ no hiperelíptica. Tomemos $\omega_1,\cdots,\omega_{g_N^*}$ una base de $\Omega^1_{X_0^*(N)/\mathbb{Q}}$ como antes, cumpliendo que ω_1 es la diferencial asociada a la c.e. E. El par (N,E) es bielíptico sil,

$$Q(-x_1, x_2, \cdots, x_{g_N^*-1}, x_{g_N^*}) \in \mathcal{L}_i \,\forall Q \in \mathcal{L}_i \,\forall i \ge 2.$$

Involuciones bielípticas

La relación (2) es caracterizada por una X/\mathbb{Q} como sigue:

• Si
$$g_X=3$$
 y $\mathcal{L}_4=\langle Q_4(x_1,x_2,x_3)
angle$:
$$Q(-x_1,x_2,x_3)\in\mathcal{L}\,, \forall Q\in\mathcal{L}\Leftrightarrow Q_4(x_1,x_2,x_3)=Q_4(-x_1,x_2,x_3)$$

$$\begin{array}{c} \bullet \ \operatorname{Si} \ g_X > 3 \\ Q(-x_1, \cdots, x_g) \in \mathcal{L}_2 \ , \forall Q \in \mathcal{L}_2 \\ & \qquad \qquad \\ Q(x_1, \cdots, x_g) = Q(-x_1, \cdots, x_g) \ , \forall Q \in \mathcal{L}_2 \ . \end{array}$$

$$\begin{array}{c} \mathsf{y} \\ Q(-x_1, \cdots, x_g) \in \mathcal{L}_3 \ , \forall Q \in \mathcal{L}_3 \\ & \qquad \qquad \\ Q(x_1, \cdots, x_g) - Q(-x_1, \cdots, x_g) \in x_1 \cdot \mathcal{L}_2 \ , \forall Q \in \mathcal{L}_3 \ . \end{array}$$

Curvas bielliptic usando el teorema de Petri

Generalizemos el criterio anterior para determinar cuando una curva no-hiperelíptica lisa X/K es bielíptica sobre K o no.

Proposición

Sea $\operatorname{Jac}(X) \overset{\kappa}{\sim} E^m \times A$, con E una curva elíptica y A v.a. cumpliendo que no tiene E como cociente definido sobre K. Sea $I_{g-m} \in M_{g-m}(K)$ la matriz identidaad y $\{\omega_i\}$ una base de $\Omega^1_{X/K}$ s.t. $\omega_1, \cdots, \omega_m$ y $\omega_{m+1}, \cdots, \omega_g$ son base de los pullbacks de $\Omega^1_{E^m/K}$ y $\Omega^1_{A/K}$ resp. Entonces, el par (X,E) es bielíptico sobre K sil, existe una matriz $\mathcal{A} \in \operatorname{GL}_m(K)$ que satisface

$$Q((-x_1, x_2, \cdots, x_g) \cdot \mathcal{B}) \in \mathcal{L}'_i \ \forall Q \in \mathcal{L}_i \ y \ \forall i \ge 2,$$
(3)

$$\begin{array}{l} \text{donde } \mathcal{B} \text{ es la matriz } \left(\begin{array}{c|c} \mathcal{A} & 0 \\ \hline 0 & I_{g-m} \end{array} \right) \in \operatorname{GL}_g(K) \text{ y} \\ \mathcal{L}_i' = \{Q((x_1, x_2, \cdots, x_g) \cdot \mathcal{B})) \colon Q \in \mathcal{L}_i\}. \end{array}$$

Nota: $(\omega_1',\cdots,\omega_m')=\mathcal{A}^{-1}(\omega_1,\cdots,\omega_m)$ es una base por eigenvectores de u en $\Omega^1_{E^m/K}$, con $u(\omega_1')=\omega_1'$ and $u(\omega_j')=-\omega_j'$ para $j\neq 1$.

Curvas bielípticas para $X_0^*(N)$, y puntos cuadráticos, N libre de cuadrados

Teorema

Sea N>1 un natural libre de cuadrados. La curva modular $X_0^*(N)$ es bielíptica $(g_N^*\geq 2)$ sil, N aparece en la tabla siguiente

g_N^*	N
2	106, 122, 129, 158, 166, 215, 390
3	$\left[178, 183, 246, 249, 258, 290, 303, 318, 430, 455, 510\right]$
4	370

Para dichos valores de N, ${\rm Aut}(X_0^*(N))$ tiene orden 2 si $g_N^*>2$ y es el grup de Klein cuando $g_N^*=2$.

A más, $|\Gamma_2(X_0^*(N),\mathbb{Q})|=\infty$ sil, N es en la anterior lista o en

 $\begin{array}{l} \{67, 73, 85, 93, 103, 106, 107, 115, 122, 129, 133, 134, 146, 154, 158, 161, \\ 165, 166, 167, 170, 177, 178, 183, 186, 191, 205, 206, 209, 213, 215, 221, \\ 230, 246, 249, 255, 258, 266, 285, 286, 287, 290, 299, 303, 318, 330, 357, \\ 370, 390, 430, 455, 510\} \,. \end{array}$

N no libre de cuadrados. Pasos preliminares

Lema

Sea p un primo. Si para un entero $k \ge 2$, $X_0^*(p^k \cdot M)$ es bielíptica, entonces $X_0^*(p^{k-2} \cdot M)$ es hiperelíptica, bielíptica o tiene género ≤ 1 .

Corolario

Sea N>1 s.t. $g_N^*\geq 2$. Sea M el mayor entero libre de cuadrados s.t. M|N y $val_p(N)$ es impar por cada primo p|M. Si $X_0^*(N)$ es bieliptico, entonces $X_0^*(M)$ es bieliptico o $g_M^* \le 2$.

Proposición [Jeon]

Let be $N=p^k$ with p prime, k>1 and $g_N^*\geq 2$. Then, $X_0^*(N)$ is bielliptic iff $N=121=11^2$, or $N=128=2^7$ ($q_{121}^*=2$ and $q_{128}^*=3$).

Lemma

Sea (N, E) bielíptico sobre \mathbb{Q} . Para un primo $p \nmid N$, se satisfacen las designaldades

(a)
$$\frac{\psi(N)}{2^n} \le 12 \frac{2|E(\mathbb{F}_{p^2})|-1}{p-1}$$
, (b) $g_N^* \le 2 \frac{|E(\mathbb{F}_{p^2})|}{p-1}$, (c) $g_N \le 2^{n+1} \frac{|E(\mathbb{F}_{p^2})|}{p-1}$.

N no libre de cuadrados, $J_0^*(N)/\mathbb{Q}$ and $\Omega^1(X_0^*(N))$

• Una de las principales diferencias con N libre de cuadrados es en la descomposición de $J_0^*(N)$ sobre $\mathbb Q.$

Para N general, M|N y $f \in \text{New}_M$, escribamos $H_f = \langle f(q^d) : d|N/N \rangle$.

• N libre de cuadrados y $H_f^{B(N)}
eq \{0\} \Leftrightarrow f \in \operatorname{New}_M^*$. En esta situación, $\dim H_f = 1$ y

$$H_f = \langle \sum_{d|N/M} w_d(f(q)) \rangle = \langle \sum_{d|N/M} df(q^d) \rangle.$$

• Si N no libre cuadrados y $H_f^{B(N)} \neq \{0\}$, puede ocurrir $f \notin \text{New}_M^*$ or $n_f := \dim H_f > 1$.

Por tanto en la descomposición de $J_0^*(N)$,

$$J_0^*(N) \stackrel{\mathbb{Q}}{\sim} \prod_{M|N} \prod_{f \in \text{New}_M/G_{\mathbb{Q}}} A_f^{n_f},$$

puede aparecer $n_f>1$. Necesitamos determinar una base de H_f ($\forall f\in \mathrm{New}_M$ and $\forall M|N$) para determinar una base para $\Omega^1(X_0^*(N))$ (y usar el teorema de Petri), estas ideas se encuentra en "Hecke operators" Atkin-Lehner paper in Annals.

N no libre cuadrados, $J_0^*(N)/\mathbb{Q}$ and $\Omega^1(X_0^*(N))$

For an integer d > 0, B_d denote the operator

$$B_d \colon S_2(\Gamma_0(M) \to S_2(\Gamma_0(M \cdot d), \quad f \mapsto f(q^d).$$

Proposición

Para un primo $p \nmid M$ y $i \geq 0$, sea $f \in S_2(\Gamma_0(p^i \cdot M))^{B(M)}$ s. t. $w_{p^i}(f) = \varepsilon \cdot f$ ($\varepsilon = 1$ si i = 0). Para k > i, sea \mathcal{S}_f el e.v. de $S_2(\Gamma_0(p^k \cdot M))$ generado por los k - i + 1 l. i. $\{f, B_p(f), \cdots, B_p^{k-i}(f)\}$. Entonces,

(i) Las formas modulares siguientes son una base de \mathcal{S}_f :

$$g_j = (1 + pB_p)^{k-i-j} (1 - pB_p)^j f, \quad 0 \le j \le k-i.$$

y eigenvector para w_{p^k} : $w_{p^k}(g_j) = (-1)^j \varepsilon g_j$.

(ii) La dimensión s_f del e.v. $\mathcal{S}_f^{B(p^k \cdot M)}$ es

$$s_f = \left\{ \begin{array}{ll} \frac{k-i+1}{2} & \text{ si } k-i \text{ es impar,} \\ \frac{k-i+1+\varepsilon}{2} & \text{ si } k-i \text{ es par.} \end{array} \right.$$

Curvas Bielipticas, pueden no ser sobre Q.

• La otra gran diferencia cuando N no libre de cuadrados es $\operatorname{End}_{\mathbb{Q}}(J_0^*(N)) \neq \operatorname{End}_{\overline{\mathbb{Q}}}(J_0^*(N))$.

Lema [Silverman-Harris]

Sea X_K con $g_X \geq 6$. Si X es bielíptica, entonces existe una única involución bielíptica y esta definida sobre K.

Lema [BGGP=Baker,González-Jiménez,González,Poonen]

Sea A una v.a. definida sobe $\mathbb Q$ s.t. $A \overset{\mathbb Q}{\sim} \prod_{i=1}^m A_{f_i}^{n_i}$ por algun $f_i \in \mathrm{New}_{N_i}$, con

 $A_{f_i}
\stackrel{\mathbb{Q}}{\sim} A_{f_j}$ si $i \neq j$. Entonces $\operatorname{End}(A) = \operatorname{End}_{\mathbb{Q}}(A)$ sil, para todo caracter cuadrático de Dirichlet χ , $f_i \otimes \chi \neq f_j^{\sigma}$ para todo $\sigma \in G_{\mathbb{Q}}$ y para todo i y j.

curvas bielipticas, pueden no ser sobre Q

Lema [Pyle]

Sea $f \in \operatorname{New}_M$ sin CM y s.t. $\dim A_f > 1$. Si existe un primo p s.t. $a_p(f)^2 \notin \mathbb{Z}$, entonces A_f no tiene un cociente eliptico sobre $\overline{\mathbb{Q}}$.

Lema [BGGP]

Sea $f \in \text{New}_M$ y χ_D el caracter cuadrático asociado a $K = \mathbb{Q}(\sqrt{D})$. Existe una isogenia entre A_f y $A_{f \otimes \chi_D}$ definida sobre K.

N no libre de cuadrados. Cribas

- Hay un mapeo $X_0^*(N=ML) \to X_0^*(M)$ con M libre de cuadrados (y L con ciertas propiedades) nos reducimos a ciertos valores de N.
- Cuando un par (N,E) es estudiado sobre $\mathbb Q$ (es el caso general si $g_N^* \geq 6$), aplicamos el lema de desigualdades contando puntos sobre cuerpos finitos y cribas similares al caso N libre de cuadrados, a excepción

que los pares (N, E) ahora son $f_E \in New_M$ y

$$n_{f_E} = \dim \langle f_E(q^d) : d|N/M\rangle^{B(N)} \ge 1.$$

Determinamos la lista de N con $2 \le g_N^* \le 5$.

- Para $g_N^* \leq 5$, solo aparecen posibles pares (N,E) con E/\mathbb{Q} pero con involución definida sobre una extension cuadrática K' (asociada al carácter de Dirichlet χ). En particular,
- Cuando 8|N o 9||N there hay involuciones provinentes del normalizador de $\Gamma_0^*(N)$ en $PSL_2(\mathbb{R})$.

Pares a estudiar, después de cribas con $g_N^* \leq 5$

g_N^*	N
$\frac{3N}{2}$	88, 104, 112, 116, 135, 153, 168, 180, 184, 198, 204, 276, 284, 380
3	136, 144, 152, 162, 164, 171, 189, 196, 207, 234, 236, 240, 245, 248, 252,
	270, 294, 312, 315, 348, 420, 476.
4	148, 160, 172, 176, 200, 224, 225, 228, 242, 260, 264, 275, 280, 300, 306, 308,
	342, 350.
5	192, 208, 212, 216, 316, 364, 376, 378, 396, 414, 440, 444, 495, 572, 630.

Ejemplo $q_N^* < 5$: $X_0^*(160)$, $q_{160}^* = 4$

 $X_0^*(160)$ no es hipereliptica. La decomposición de $J_0^*(160)$ es

$$J_0^*(160) \overset{\mathbb{Q}}{\sim} A_{f_1}^2 \prod_{i=3}^4 A_{f_i} \text{ con } A_{f_1} \overset{\mathbb{Q}}{\sim} E20a \,,\, A_{f_3} \overset{\mathbb{Q}}{\sim} E80b \,,\, A_{f_4} \overset{\mathbb{Q}}{\sim} E160a \,,$$

$$f_1\in \operatorname{New}_{20}^{w_5}$$
, $f_3\in \operatorname{New}_{80}^{w_5}$, $f_4\in \operatorname{New}_{160}^*$ y $f_3=f_1\otimes \chi_{-1}$.

Porqué

$$(1-2B_2)(1+2B_2)^2 = 1 + 2B_2 - 4B_2^2 - 8B_2^3$$
, $(1-2B_2)^3 = 1 - 6B_2 + 12B_2^2 - 8B_2^3$,

Una base de $\Omega^1_{X_0^*(160)/\mathbb{Q}}$: $\omega_i = h_i(q) dq/q$, $1 \leq i \leq 4$ con

$$h_1(q) = f_1(q) + 2f_1(q^2) - 4f_1(q^4) - 8f_1(q^8),$$

$$h_2(q) = f_1(q) - 6f_1(q^2) + 12f_1(q^4) - 8f_1(q^8),$$

$$h_3(q) = f_3 - 2f_3(q^2),$$

$$h_4(q) = f_4(q).$$

Recordad dim $\mathcal{L}_2 = 1$, dim $\mathcal{L}_3 = 5$.

Calculando $Q_i(x, y, z, t) \in \mathcal{L}_i$ con $Q_i(h_1, h_2, h_3, h_4) = 0$, i = 2, 3:

$$Q_2 = -48t^2 + 8tx + 3x^2 - 8ty + 6xy - y^2 + 36xz + 12yz - 8z^2.$$

$$Q_3 = 20t^2x - 12tx^2 - 3x^3 - 20t^2y - 4ty^2 + 3xy^2 - 9x^2z + 6xyz + 3y^2z + 16tz^2 + 6xz^2 - 6yz^2 + 10tz^2 + 10tz^$$

$X_0^*(160)$ no es bielíptica sobre $\mathbb Q$

Los pares (160, E80b) y (160, E160a) necesitan un estudio para saber si pueden ser bielipticos o no sobre \mathbb{Q} .

No lo son porqué Q_2 no es par en z, ni tampoco en t.

El par (160, E20a) podria ser bieliptico sobre \mathbb{Q} sil existe $\mathcal{A} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Q})$ s.t. los polinomios

$$R_2 := Q_2(a_1x + a_2y, b_1x + b_2y, z, t), \ R_3 := Q_3(a_1x + a_2y, b_1x + b_2y, z, t)$$

satisfacen

$$\boxed{R_2 \text{ es par en } x} \text{ y } \boxed{R_3(x,y,z,t) - R_3(-x,y,z,t) = \lambda x \, R_2 \text{, para } \lambda \in \mathbb{Q} \, .}$$

Podemos considerar las situacions con $a_1=0$ y $a_1=1$, para concluir

No existe matriz A haciendo R_2 par con respeto x.

 $X_0^*(160)$ no es bielíptica sobre \mathbb{Q} .

$X_0^*(160)$ es bielíptica sobre $\overline{\mathbb{Q}}$

Un par (160, E) puede ser bielíptica sobre $K' = \mathbb{Q}(i)$, con $E \stackrel{K'}{\sim} E20a$.

Esto sucede sil existe
$$\mathcal{A}=\left(\begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array}\right)\in \mathrm{GL}_3(K)$$
 s.t.

$$R_2 := Q_2(a_1x + a_2y + a_3z, b_1x + b_2y + b_3z, c_1x + c_2y + c_3z, t),$$

$$R_3 := Q_3(a_1x + a_2y + a_3z, b_1x + b_2y + b_3z, c_1x + c_2y + c_3z, t)$$

 R_2 es par en x y $R_2|(R_3(x,y,z,t)-R_3(-x,y,z,t))$.

Tomamos
$$\mathcal{A} = \left(\begin{array}{ccc} i & i & 1 \\ 1 & -3 & 0 \\ 0 & -4i & 1 \end{array} \right)$$
 , y obtenemos

$$R_2 = 6t^2 + (2-6i)x^2 - 4ty + 3y^2 - 4itz + 6iyz - (1-6i)z^2,$$

$$R_3 = 4tx^2 + 10t^2y + (6-6i)x^2y - 6ty^2 + 3y^3 + 10it^2z + (6+6i)x^2z - 12ityz + 9iy^2z + 10tz^2 - (3-6i)yz^2 - (6-3i)z^3,$$

Ahora R_2 y R_3 son pares en x, por tanto $X_0^*(160)$ es bielíptica sobre $\mathbb{Q}(i)$.

Pares que se debe estudiar (N, E), con $g_N^* > 5$

g_N^*	(N,E)
6	(244,61a), (272,34a), (332,83a), (332,166a), (336,42a), (336,112a),
	(564, 94a), (620, 62a), (780, 65a), (780, 130c)
7	(320, 32a), (324, 27a), (360, 20a), (360, 30a), (450, 15a), (450, 75b),
	(456, 57a), (456, 76a), (456, 152a), (492, 123b), (504, 21a), (504, 36a),
	(504, 42a), (550, 55a), (550, 275a), (550, 550a), (558, 558a), (636, 53a),
	(660, 110b), (924, 77a), (924, 462a)
8	(408, 102a), (468, 26b), (468, 234b), (468, 234c), (480, 20a), (480, 24a),
	(480,80b), (480,160a), (540,45a), (540,54b), (990,66a), (990,99a),
	(1020, 102a)
9	(560, 56a), (560, 70a), (560, 280a), (1140, 190b), (1140, 285b)
10	(840, 20a), (840, 140b), (840, 210d), (1050, 175b)
11	(672, 112c), (672, 224a)
13	(1260, 21a), (1260, 70a), (1260, 90b), (1260, 210d)

Ejemplo $g_N^* > 5$: $X_0^*(558)$, $g_{558}^* = 7$

 $X_0^*(558)$ no es hipereliptica, no trigonal y dim $\mathcal{L}_2=10$. La descomposición $J_0^*(558)/\mathbb{Q}$:

$$\prod_{i=1}^{3} A_{f_{i}} \times A_{f_{5}}, \ A_{f_{1}} \overset{\mathbb{Q}}{\sim} 186c, \ A_{f_{2}} \overset{\mathbb{Q}}{\sim} E558a, \ f_{1} \in \text{New}_{186}^{B(62)}, f_{2} \in \text{New}_{558}^{*}, f_{3} \in \text{New}_{93}^{*}, \dim A_{f_{3}} = 2, f_{5} \in \text{New}_{93}^{B(31)}, \dim A_{f_{5}} = 3,$$

$$g_1=f_1$$
, $g_2=f_2$, $\{g_3,g_4\}$ y $\{g_5,g_6,g_7\}$ bases de $\langle f_3^\sigma\colon\sigma\in G_\mathbb{Q}\rangle\cap\mathbb{Z}[[q]]$ y $\langle f_5^\sigma\colon\sigma\in G_\mathbb{Q}\rangle\cap\mathbb{Z}[[q]]$ resp.

Tomemos
$$(1+2B_2)(1\pm 3B_3)=1+2B_2\pm B_3\pm 6B_6$$
,

una base de $\Omega^1_{X_0^*(558)/\mathbb{Q}}$: $\omega_i = h_i(q) \, dq/q$, $1 \leq i \leq 7$ con

$$\begin{array}{lll} h_1(q) = & f_1(q) - 3f_1(q^3)\,, \\ h_2(q) = & f_2(q)\,, \\ h_3(q) = & g_3(q) + 2g_3(q^2) + 3g_3(q^3) + 6g_3(q^6)\,, \\ h_4(q) = & g_4(q) + 2g_4(q^2) + 3g_4(q^3) + 6g_4(q^6)\,, \\ h_5(q) = & g_5(q) + 2g_5(q^2) - 3g_5(q^3) - 6g_5(q^6)\,, \\ h_6(q) = & g_6(q) + 2g_6(q^2) - 3g_6(q^3) - 6g_6(q^6)\,, \\ h_7(q) = & g_7(q) + 2g_7(q^2) - 3g_7(q^3) - 6g_7(q^6)\,. \end{array}$$

Ejemplo $g_N^* > 5$: $X_0^*(558)$, $g_{558}^* = 7$

Sea $Q \in \mathbb{Q}_h[x_1, \dots, x_7]$ de grado 2 (28 coeficientes):

$$a_1x_1^2 + a_2x_2^2 + a_3x_3^2 + a_4x_4^2 + a_5x_5^2 + a_6x_6^2 + a_7x_7^2 + a_8x_1x_2 + a_9x_1x_3 + a_{10}x_1x_4 + a_{11}x_1x_5 + a_{12}x_1x_6 + a_{13}x_1x_7 + a_{14}x_2x_3 + a_{15}x_2x_4 + a_{16}x_2x_5 + a_{17}x_2x_6 + a_{18}x_2x_7 + a_{19}x_3x_4 + a_{20}x_3x_5 + a_{21}x_3x_6 + a_{22}x_3x_7 + a_{23}x_4x_5 + a_{24}x_4x_6 + a_{25}x_4x_7 + a_{26}x_5x_6 + a_{27}x_5x_7 + a_{28}x_6x_7$$

 $Q(h_1,\cdots,h_7)=0$, obtenemos a_1,\cdots,a_{28} como combinación lineal de (recordad $\mathcal{L}_2=10)$ $a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_9,a_{10},a_{11}$.

Mas concretamente uno obtiene, $a_8 = a_{14} = a_{15} = a_{16} = a_{17} = a_{18} = 0$.

Por tanto, $Q(x_1, \dots, x_7)$ es par en la variable $x_2 \ \forall Q \in \mathcal{L}_2$.

 $X_0^*(558)$ es bielíptica sobre $\mathbb Q$ y la clase de $\mathbb Q$ -isogenia de cociente bielíptico es E558a.

Resultados, N no libre de cuadrados

Teorema[B-González]

Sea N>1 entero no libre de cuadrados con $g_N^*\geq 2$. Entonces,

ullet La curva $X_0^*(N)$ es bielíptica sobre $\mathbb{Q} \Leftrightarrow N$ aparece en la tabla siguiente

g_N^*	N
2	88, 112, 116, 121, 153, 180, 184, 198, 204, 276, 284, 380
3	128, 144, 152, 164, 189, 196, 207, 234, 236, 240, 245, 248, 252,
	294, 312, 315, 348, 420, 476
4	148, 172, 200, 224, 225, 228, 242, 260, 264, 275, 280, 300, 306, 342
5	364, 444, 495
7	558

La curva $X_0^*(N)$ es bielíptica sobre $\overline{\mathbb{Q}}$, pero no sobre $\mathbb{Q} \Leftrightarrow N=160$.

• $\Gamma_2(X_0^*(N),\mathbb{Q})=\infty\Leftrightarrow N$ aparece en la lista siguiente

 $88, 104, 112, 116, 117, 121, 125, 128, 135, 136, 147, 148, 152, 153, 164\\ 168, 171, 172, 176, 180, 184, 198, 204, 207, 224, 225, 228, 234, 236, 240\\ 248, 252, 260, 264, 276, 279, 280, 284, 312, 315, 342, 348, 364, 380, 420\\ 444, 476, 495, 558.$

Resultados, $X_0^{W_N}(N)$, N libre de cuadrados

Teorema [B.-González-Kamel]

Sea N>1 entero libre de cuadrados. Supongamos que el género de $X_0(N)/W_N$ es >2para un subgrupo no trivial W_N de B(N) diferente de $\langle w_N \rangle$. La curva $X_0(N)/W_N$ es bielíptica sil, existe $v \in B(N) \setminus W_N$ cumpliendo que el género de $X_0(N)/\langle W_N, v \rangle$ es uno, excepto por las siguientes curvas bielípticas modulares cocientes de género 4: $X_0(154)/\langle w_2, w_{77} \rangle$, $X_0(285)/\langle w_3, w_{95} \rangle$ y $X_0(286)/\langle w_2, w_{143} \rangle$.

$$End_{\overline{\mathbb{Q}}}(J_0^{W_N}(N)) = End_{\mathbb{Q}}(J_0^{W_N}(N)).$$

 $J_0(N)^{W_N} \sim A_i^{n_i} \times \ldots \text{ con } n_i \geq 2.$

Resultados, $X_0^{W_N}(N)$, N no libre de cuadrados

Teorema[B-Kamel-Schweizer]

Sea N>1 entero no libre de cuadrados. Donde el género de $X_0(N)/W_N$ es ≥ 2 para un subgrupo no trivial W_N de B(N) diferente de $\langle w_N \rangle$. La curva $X_0(N)/W_N$, denotada por el pareo (N,W_N) es bielíptica sil aparece a continuación:

• Es un par (N, W_N) con $|W_N| = 2$ y N es el conjunto

$$\{40, 48, 52, 63, 68, 72, 75, 76, 80, 96, 98, 99, 100, 108, 124, 188\},$$

o es un par (N,W_N) con $|W_N|=4$ y N en el conjunto

$$\{84, 90, 120, 126, 132, 140, 150, 156, 220.\},\$$

Todo estas curvas cocientes modulares son bielípticas sobre \mathbb{Q} con un cociente elíptica dado por $X_0^*(N)$ de género 1,

2 o es uno de los siguientes 29 pares, ordenados por género

Genero	(N, W_N)
2	$(44, \langle w_4 \rangle), (60, \langle w_{20} \rangle), (60, \langle w_4, w_3 \rangle)$
3	$(56,\langle w_8\rangle),(60,\langle w_4\rangle)$
4	$(60, \langle w_3 \rangle), (60, \langle w_5 \rangle), (112, \langle w_7 \rangle), (168, \langle w_3, w_{56} \rangle)$
5	$(84, \langle w_4 \rangle), (88, \langle w_{11} \rangle), (90, \langle w_9 \rangle)$
	$(117, \langle w_9 \rangle), (120, \langle w_{15} \rangle), (126, \langle w_{63} \rangle), (168, \langle w_8, w_7 \rangle),$
	$(168, \langle w_7, w_{24} \rangle), (180, \langle w_4, w_9 \rangle), (184, \langle w_{23} \rangle), (252, \langle w_4, w_{63} \rangle)$
6	$(104,\langle w_8\rangle),(168,\langle w_8,w_3\rangle)$
7	$(120, \langle w_{24} \rangle), (136, \langle w_8 \rangle), (252, \langle w_9, w_7 \rangle)$
9	$(126, \langle w_9 \rangle), (171, \langle w_9 \rangle), (252, \langle w_4, w_9 \rangle)$
10	$(176, \langle w_{16} \rangle)$

Sobre la demostración caso $X_0^{W_N}(N)$ bielíptico

Algunos "steps" para la demostración

- Consideramos morfismo $X_0^{W_N} \to X_0^*(N)$, reduce lista N donde bielíptica, hiperelíptica o de género ≤ 1 de $X_0^*(N)$.
- ullet Calculo de género de $X_0^{W_N}(N)$ para su estudio.
- Estudio diferenciado para N producto de 2,3 o 4 primos.
- ullet Modificación del caso $X_0^*(N)$ para descomposición de la Jacobiana en $X_0^{W_N}(N)$.
- Cribas via estudio de puntos fijos de involuciones no Atkin-Lehner para N no libre de cuadrados

Cribas adicionales

Castellnuovo, Criterio no-ramificado

Sea $\phi:X\to Y$ un mapeo de curvas de grado d. Si X posee una involución bielíptica v, entonces

$$g(X) \le dg(Y) + d + 1$$

o el morfismo ϕ factoriza a traves de X/v.

En particular: Una curva hiperelíptica de género $g \geq 4$ no és bielíptica. Una curva trigonal de con género > 4 no es bielíptica. Una curva de género $g \geq 6$ tiene como mucho un involución bielíptica.

Sea w una involución de X com más de 8 puntos fijos. Entonces, o bién w es una involución bielíptica o bién X no es bielíptica

Sea X una curva de género g con una involución bielíptica v y sea G un subgrupo de Aut(X) tal que la curva Y=X/G tenga género $h\geq 2$.

- (a) Si el mapeo $\phi: X \to Y$ es ramificado, i.e. si g-1 > |G|(h-1), y $g \ge 6$, entonces Y ha de ser hiperelíptica y v induce la involución hiperelíptica en Y.
- (b) (criterio de recubrimiento no-ramificado) Si Y no es hiperelíptica, entondes debe ser bielíptica y el mapeo $\phi:X\to Y$ debe ser no-ramificado, i.e.

Computo de puntos fijos de involuciones

Buscando involuciones bielípticas

Sea G un subgrupo de $Aut(X_0(N))$ donde todo elemento no-trivial es una involución. Entonces los puntos fijos de estas involucions són disjuntas y el género de $X_0(N)/G$ se obtiene por

$$|G|(2g(X_0(N)/G)-2)+\sum_{w\in G}\#(w,X_0(N))=2g(X_0(N))-2.$$

Sea $N=2^{\alpha}M$ con $\alpha\geq 2$ y M impar.

- (a) Entonces S_2 es una involución de $X_0(N)$, definida sobre \mathbb{Q} , y conmuta con todas las involuciones AL w_r con r impar. También, $V_2 = S_2 w_{2^{\alpha}} S_2$ es una involución de $X_0(N)$, definida sobre \mathbb{Q} , y conmuta con toda w_r con r||M.
- (b) Si $\alpha > 3$, entonces V_2 también conmuta con $w_{2\alpha}$. Por tanto, $V_2w_{2\alpha}$ es una involución, y $S_2w_{2^{\alpha}}$ tiene orden 4. Realmente, $\langle S_2, w_{2^{\alpha}} \rangle \cong D_4$.
- (c) Si $\alpha = 2$, entonces $\langle S_2, w_4 \rangle$ es no-abeliano de orden 6 con $V_2 = S_2 w_4 S_2 = w_4 S_2 w_4$ siendo la tercera involución y S_2w_4 y w_4S_2 con orden 3.

Involuciones

Si $N=2^{\alpha}M$ con $\alpha\geq 2$ y M impar, entonces

$$X_0(N)/w_{2\alpha}S_2w_{2\alpha} = X_0(N/2).$$

Sean u y v dos involuciones que conmutan en una curva X. Entonces uv es una involución y

$$\#(uv, X) = 2\#(u, X/v) - \#(u, X).$$

Sea $N=2^{\alpha}M$ con $\alpha\geq 2$ y M impar. Y sea r||M.

- (a) $\#(V_2, X_0(N)) = \#(w_{2^{\alpha}}, X_0(N))$ y $\#(V_2w_r, X_0(N)) = \#(w_{2^{\alpha}}w_r, X_0(N)).$
- (b) $\#(S_2, X_0(N)) = \#(w_{2^{\alpha}} S_2 w_{2^{\alpha}}, X_0(N)) = (2g(X_0(N)) 2) 2(2g(X_0(N/2)) 2).$
- (c) $\#(S_2w_r, X_0(N)) = \#(w_{2^{\alpha}}S_2w_{2^{\alpha}}w_r, X_0(N)) = 2\#(w_r, X_0(N/2)) \#(w_r, X_0(N)).$
- (d) Si $\alpha \geq 3$, entonces

$$\#(V_2 w_{2^{\alpha}}, X_0(N)) = 2\#(S_2, X_0(N/2)) - \#(S_2, X_0(N)) y$$

$$\#(V_2 w_{2^{\alpha}} w_r, X_0(N)) = 2\#(S_2 w_r, X_0(N/2)) - \#(S_2 w_r, X_0(N)).$$

Involuciones

$$\mathsf{Sea}\; 9 || \, N \; \mathsf{y} \; S_3 \, = \left(\begin{array}{cc} 1 & 1/3 \\ 0 & 1 \end{array} \right) \!.$$

- (a) S_3 normaliza $\Gamma_0(N)$ e induce un automorphism en $X_0(N)$ de orden 3 definido sobre $\mathbb{Q}(\sqrt{-3})$. Su conjugado Galois es S_2^2 . A más, S_3 commuta con las involuciones de Atkin-Lehner w_r con $r\equiv 1 \mod 3$, mientras para $r\equiv 2 \mod 3$ tenemos que $w_rS_3=S_3^2w_r$ and $w_0 S_3$ has order 3.
- (b) $V_3=S_3w_9S_3^2$ es una involución en $X_0(N)$. Con respeto las involuciones de Atkin-Lehner tenemos $w_r V_3 = \begin{cases} V_3 w_r & \text{if } r \equiv 1 \mod 3 \text{ or } r = 9 \text{ and} \\ V_3 w_0 w_r & \text{if } r \equiv 2 \mod 3 \end{cases}$ A más, si $r \equiv 2 \mod 3$ entonces $\langle V_3, w_r \rangle \cong D_4$ y $V_3 w_r$ tiene orden $4 \text{ con } (V_3 w_r)^2 = w_0$.
- (c) V_3 como involución en $X_0(N)$ está definida sobre $\mathbb{Q}(\sqrt{-3})$. Su conjugado $Gal(\mathbb{Q}(\sqrt{-3})/\mathbb{Q})$ es V_3w_0 . En particular, V_3 y V_3w_0 tienen el mismo número de puntos fijos en $X_0(N)$.
- (d) Mas generalmente, tenemos

$$\#(V_3w_9,X_0(N))=\#(V_3,X_0(N))=\#(w_9,X_0(N))$$

v para $r \equiv 1 \mod 3$ también

$$\#(V_3w_9w_r,X_0(N))=\#(V_3w_r,X_0(N))=\#(w_9w_r,X_0(N)).$$

(e) V_3 como involución en $X_0(N)/W$ es definida sobre \mathbb{Q} sil $w_9 \in W$.

Involuciones

Supon 4||N y N=4M. Sea W' un subgrupo de B(N) generado por w_4 , w_{m_1},\ldots,w_{m_s} con $m_i||M$. Entonces

$$X_0(N)/W' \cong X_0(N)/\langle S_2 w_4 S_2, w_{m_1}, \dots, w_{m_s} \rangle = X_0(N)/\langle w_4 S_2 w_4, w_{m_1}, \dots, w_{m_s} \rangle$$

$$X_0(2M)/\langle w_{m_1},\ldots,w_{m_s}\rangle.$$

Por tanto, si $A\in GL_2(\mathbb{R})$ es una involución bielíptica de $X_0(2M)/\langle w_{m_1},\ldots,w_{m_s}\rangle$, entonces S_2AS_2 normaliza en $\langle \Gamma_0(N),W'\rangle$ e induce una involución bielípica en $X_0(N)/W'$.

Sea 9||N. Y W' un subgrupo de B(N) generado por w_{n_1},\ldots,w_{n_t} $(n_i||N)$ y sea $W"=\langle\{w_{n_i}w_9^{e(n_i)}\}_{i\in\{1,\ldots,t\}}\rangle$ donde e(m)=0 si $m\equiv 1\mod 3$ o si 9||m y $m/9\equiv 1\mod 3$, y e(m)=1 en caso opuesto. Entonces V_3 induce un isomorfismo

$$X_0(N)/W' \cong X_0(N)/W$$
".

g_{W_N}	(N, W_N)	(w, E)	$\mathbb{Q}-Jacobian decomp.$
6	$(104, \langle w_8 \rangle)$	$(V_2w_{104}, E26a)$	$(E26a)^2 \times E26b \times E52a \times A_{f,104}$
	$(156,\langle w_4,w_{13}\rangle)$	$(w_3, E26b = X_0^*(156))$	$(E26b)^2 \times A_{f,39}^2$
	$(168, \langle w_8, w_3 \rangle)$	$(V_2w_{168}, E14a)$	$(E14a)^2 \times E42a \times E56b \times E84b \times E168b$
	$(220, \langle w_5, w_{44} \rangle)$	$(w_4, E110b = X_0^*(220))$	$E11a \times E20a \times A_f \times 110b \times 110c$
	$(220,\langle w_{11},w_{20}\rangle)$	$(w_4, E110b)$	$E11a \times E20a \times A_f \times 110b \times 110c \\ E44a \times E55a \times E110b \times A_f \times E220a$
7	$(120, \langle w_{24} \rangle)$	$(V_2w_{40}, E15a)$	$(E15a)^2 \times (E20a)^2 \times E30a \times E40a \times E120a$
	$(124, \langle w_4 \rangle)$	$(w_{31}, E62a = X_0^*(124)$	$(A_{f_1,31})^2 \times E62a \times A_{f_3,62} $ $(E17a)^2 \times E34a \times A_{f_3,64} \times A_{f_4,136}$
	$(136, \langle w_8 \rangle)$	$(V_2w_{136}, E17a)$	$(E17a)^2 \times E34a \times A_{f_3,64} \times A_{f_4,136}$
	$(252, \langle w_9, w_7 \rangle)$	$(V_3 w_7, E36a)$	$(E21a)^3 \times E36a \times (E42a)^2 \times E84b$
8	$(220, \langle w_4, w_5 \rangle)$	$(w_{11}, E110b = X_0^*(220))$	$(E11a)^2 \times A_f^2 \times E110b \times E110c$
9	$(126, \langle w_9 \rangle)$	$(V_3 w_7, E14a)$	$(E14a)^2 \times (E21a)^2 \times E42a \times (A_{f,63})^2$
	$(171, \langle w_9 \rangle)$	$(V_3 w_{171}, E19a)$	$(E19a)^2 \times E57a \times E57b \times E57c \times A_{f,171}, dim(A_f) = 4$
	$(252,\langle w_9,w_4\rangle)$	$(V_3w_7, E14a)$	$(E14a)^2 \times (E21a)^2 \times E42a \times (A_{f,63})^2$
10	$(176, \langle w_{16} \rangle)$	$(V_3w_{176}, E11a)$	$(E11a)^3 \times E44a \times E88a \times A_{f_1,88} \times E176a \times A_{f_2,176}$
11	$(188, \langle w_4 \rangle)$	$(w_{47}, X_0^*(188) = E94a)$	$A_{f_1}^2 \times E94a \times A_{f_3}, dim(A_{f_1}) = 4$

Tabla, $g_{W_N} \geq 6$ Bielíptico

Curvas bielipticas cocientes no definidas sobre ${\mathbb Q}$

Ningún morfismo de grado 2 a la c.e. definido sobre $\mathbb Q$

$(252, \langle w_4, w_{63} \rangle)$	$(V_3, E14a)$ $(V_3w_7, E14a)$
$(126, \langle w_{65} \rangle)$	
	$(V_3, E14a)$ $(V_3w_9, E14a)$

Curvas bielipticas cocientes, con cociente bielíptico no sobre $\mathbb Q$

$$(63\langle w_9
angle)$$
, género 3. $J_0^{W_N}\sim_{\mathbb{Q}} X_0^*(63)\times A_{f,63}$, con $\dim(A_{f,63})=2$ y

$$A_{f,63} \sim_{\mathbb{Q}(\sqrt{-3})} E^2$$

con

$$E: Y^2 = -(26 + 6\sqrt{-3})X^3 - 27X^2 + 6\sqrt{-3}X + 1$$

Donde $(w_7, X_0^*(63) = E21a)$ es un par bielíptico sobre $\mathbb Q$ pero tenemos dos involuciones bielípticas más no definidas sobre $\mathbb Q$ con cociente elíptico E (una conjugación de la otra).

Referencias

- 1 Bars, F.; González Rovira, J.: Bielliptic modular curves $X_0^*(N)$ with square-free levels. Math. Comp. 88 (2019), no. 320, 29392957.
- 2 Bars, F.; González Rovira, J.: Bielliptic modular curves $X_0^*(N)$, Journal of Algebra 559, 726-759, (2020).
- 3 Badr, E.; Bars, F.: Bielliptic smooth plane curves and quadratic points. International Journal of Number Theory 17 (04), 1047-1066 (2021).
- 4 F Bars, J González, M Kamel : Bielliptic quotient modular curves with N square-free. Journal of Number Theory 216, 380-402, (2020).
- 5 F.Bars, M.Kamel, A. Schweizer: Bielliptic quotient modular curves. Preprint September 2021.

