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Text extracted from Poincaré recurrence and number theory by H. Furstenberg (1981).



What is ergodic theory about?

Very roughly speaking one study the long term behavior of en evolving system.
In this talk the setting is:
• (X,X , µ) is a probability space.

• T : X → X is a bi-measurable, measure preserving transformation. This means that
µ(T−1A) = µ(A) for all A ∈ X .

If I speak of several transformations T1, . . . , Td I mean that each one is measure preserving
(as above).



Theorem (Poincaré recurrence theorem (1890))

Let (X,X , µ, T ) be a measure preserving system, and A ∈ X , µ(A) > 0. Then, there exists
n ∈ N \ {0} such that µ(A ∩ T−nA) > 0.

Formally proved by Carathéodory (1919) using measure theory

Some questions:
• Can be n chosen in a nice set? (for instance the square numbers).
• Multiple recurrence?
• Quantitative versions of recurrence?
• How about groups other than (Z,+)



The ergodic theorem

Theorem (Von Neumann’s Ergodic Theorem (1932))

Let (X,X , µ, T ) be a measure preserving system and f ∈ L2(µ). Then

lim
N→∞

1

N

N−1∑
n=0

f ◦ Tn → E(f |I(T )).

Theorem (Weak version)

Let (X,X , µ, T ) be a measure preserving system and A ∈ X , µ(A) > 0. Then

lim
n→∞

1

n

N−1∑
n=0

µ(A ∩ T−nA) ≥ µ(A)2.



Sets of recurrence

Definition

A subset R ⊆ N is a set of recurrence, if for any measure preserving system (X,X , µ, T ), and
µ(A) > 0, there exists n ∈ R such that µ(A ∩ T−nA) > 0.

Examples:

• N \ {0}.
• For an infinite set A, the difference set A−A = {a− b : a, b ∈ A, a > b}.
• Shifted primes (P− 1, P+ 1).

• {n2 : n ∈ N} \ {0}.
• {p(n) : n ∈ N} \ {0} where p is divisible.



More definitions (topological)

A topological dynamical system is a tuple (X,T ) where:

• X is a compact metric space.

• T : X → X is a homeomorphism.

• The system (X,T ) is minimal if all orbits are dense in X.

We can consider similar definitions for recurrence sets.

Definition

A subset R ⊆ N is a set of topological recurrence, if for any minimal (X,T ), and any
non-empty open set U ⊆ X, there exists n ∈ R such that U ∩ T−nU 6= ∅.
Obs:
Recurrence =⇒

6⇐= Top. Recurrence



Dynamics and equations

Monochromatic solutions to some equation.

Theorem

• A subset R ⊆ N is a set of recurrence iff for any positive density subset S of N, there
exist different n,m ∈ E such that n−m ∈ R.

• A subset R ⊆ N is a set of topological recurrence iff for any coloring N = C1 ∪ · · · ∪ C`
of N, there exist n 6= m of the same color such that n−m ∈ R.

Theorem (Furstenberg-Sárközy)

For any S of positive density, there exist different n,m ∈ S such that n−m is a perfect
square.

Proof.
The set R = {k2 : k ∈ N} \ {0} is a set of recurrence.



The question of existence of (arbitrarily long) arithmetic progressions in certain subsets of
integers has a long history.

van der Warden (1927) If we partition the naturals into finitely many colors, at least one of
the subsets contains arbitrarily long arithmetic progressions.

Erdös and Turán (1936) conjectured it suffices to have positive upper density.

d(E) = lim sup
N→∞

1

N
|E ∩ [1, N ] |

Historical progress:
Roth (1952) : True for length 3 using Fourier analysis.

Szemerédi (1969) : True for length 4 combinatorial proof.

Szemerédi (1975) : True for arbitrary length! combinatorial proof.

Furstenberg (1977) : True for arbitrary length! using ergodic theory.

Fustenberg’s proof initiated ergodic Ramsey theory: many applications to number theory and
combinatorics.
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A little about Furstenberg approach: connect the ergodic world with the combinatoric one via
the Fustenberg correspondence principle.
Let E be a set of integers with positive upper density. There exist a measure preserving
system (X,X , µ, T ) and a subset A ⊆ X such that µ(A) = d(E) and

d((E + n1) ∩ (E + n2) · · · ∩ (E + nd)) ≥ µ(T−n1A ∩ · · · ∩ T−ndA)

Note that

E ∩ (E + n) ∩ (E + 2n) · · · ∩ (E + (d− 1)n) 6= ∅

if and only if there exist

a ∈ E, a− n ∈ E, a− 2n ∈ E, . . . , a− (d− 1)n ∈ E.

These points are in an arithmetic progression of lenght d.



So, in order to show that for some n

E ∩ (E + n) ∩ (E + 2n) · · · ∩ (E + (d− 1)n) 6= ∅

it suffices to show

d(E ∩ (E + n) ∩ (E + 2n) · · · ∩ (E + (d− 1)n) > 0

and for this it suffices to show

µ(A ∩ T−nA ∩ T−2nA · · · ∩ T−ndA) > 0



This is the content of the Furstenberg multiple recurrence theorem (1977):

Theorem (Fustenberg (1977))

For every (X,X , µ, T ), and every A ∈ X , µ(A) > 0 there exists n ∈ N such that

µ(A ∩ T−nA ∩ T−2nA · · · ∩ T−dnA) > 0

Indeed he showed a stronger result:

Theorem (Fustenberg (1977))

for every (X,X , µ, T ), and every A ∈ X , µ(A) > 0 we have

lim inf
N→∞

1

N

N−1∑
n=0

µ(A ∩ T−nA ∩ T−2nA · · · ∩ T−dnA) > 0

so there are many n’s that work!



A glance at other questions/directions

Conjecture (Erdös-Graham (1980))

For any coloring N = C1 ∪ · · ·C`, there exist x, y, z of the same color such that x2 + y2 = z2.

• It is not true for measure recurrence (i.e. asking in a positive density subset).

• M. Heule, O. Kullmann, and V. Marek (2016), true for 2 colors.

Conjecture (Erdös-Graham, relaxed version)

For any coloring N = C1 ∪ · · ·C`, there exist x, z of the same color such that x2 + y2 = z2.

Pythagorean triples can be parametrized:
x2 + y2 = z2 iff there exist n,m, k such that x = k(n2 −m2), y = 2knm, z = k(n2 +m2).
The points x, z are a Pythagorean pair iff

x

z
=
n2 −m2

n2 +m2
for some m,n.
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Multiplicative actions

A multiplicative system is an action of the semigroup (N∗,×).
Example:
Tn : S

1 → S1, Tn(z) = zn (or x 7→ x+ log(n)) .
We may extend it to an action of (Q>0,×) if the transformations are invertible.

Proposition

• A subset R ⊆ Q>0 is a set of topological recurrence iff for any coloring N = C1 ∪ · · ·C`
there exist two elements x 6= y of the same color such that xz−1 ∈ R.

• A subset R ⊆ Q>0 is a set of recurrence iff for any positive density of the same color such
that xz−1 ∈ R

Recall that z2 − x2 is a square number iff xz−1 = n2−m2

n2+m2 . The combinatorial/number
theoretical problem can be restated in dynamical terms:

Question

Is the set

{
n2 −m2

n2 +m2
: n,m ∈ N

}
a set of (multiplicative) topological recurrence?
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This approach was started by Frantzikinakis and Host.

Theorem (Frantzikinakis and Host (2013))

For a, b, c, d ∈ Z, the set {
(n+ am)(n+ bm)

(n+ cm)(n+ dm)
: n,m ∈ N

}
is a set of topological recurrence if a 6= b y c 6= d.

Corollary

For any coloring of N, there exist two distinct natural numbers x, y of the same color such
that 16x2 + 9y2 is a perfect square.



What they really showed is the following.

Theorem (Frantzikinakis and Host (2013))

Let (X,X , µ, (Tn)n∈Q>0) be a measure preserving system and A ∈ X , µ(A) > 0. Then

lim inf
N→∞

1

N2

∑
n,m≤N

µ(T−1(n+cm)(n+dm)A ∩ T
−1
(n+am)(n+bm)A) > 0

Remark: if a(n,m) = (n+am)(n+bm)
(n+bm)(n+cm) , the expression above is equivalent to

lim inf
N→∞

1

N2

∑
n,m≤N

µ(A ∩ T−1a(n,m)A) > 0



Results of ergodic flavor

Definition (Subordinated semigroups)

We say that a semigroup (Nk, ∗) is subordinated to the Euclidean norm ‖ · ‖ in Nk if there
exists a constant C > 0 such that

‖n ∗m‖ ≤ C‖n‖‖m‖ for all n,m ∈ Nk. (1)

Definition (Parametrized multiplicative function)

For k ∈ N, we say that f : Nk → Q≥0 is a parametrized multiplicative function if there exists
an operation ∗ : Nk × Nk → Nk so that (Nk, ∗) is a semigroup subordinated to the euclidean
norm in Nk and

f(n ∗m) = f(n)f(m)

for all n,m ∈ Nk. We say that f is a commutative parametrized multiplicative function if one
can choose (Nk, ∗) to be a cancelative commutative semigroup.



Theorem (D., Le, Moreira, Sun, (2021))

Let (X,X , µ, T ) be a measure preserving (N,×)-system and A ∈ X with µ(A) > 0. Let
f : Nk → N be a commutative parametrized multiplicative function and ` ∈ N. Then

lim inf
N→∞

En∈[N ]kµ
(
A ∩ T−1f(n)A ∩ T

−1
f(n)2

A ∩ · · · ∩ T−1
f(n)`

A
)
> 0.

In particular,

lim inf
N→∞

1

N2

∑
n,m≤N

µ(A ∩ T−1
n2+m2A) > 0

or

lim inf
N→∞

1

N2

∑
n,m≤N

µ(A ∩ T−1
nimjA) > 0

or even

lim inf
N→∞

1

N2

∑
n1,n2,n3,n4≤N

µ(A ∩ T−1
n2
1+n

2
2+n

2
3+n

2
4
A) > 0



More results on topological recurrence

Not much is known about sets of topological recurrence.

Theorem (D., Le, Moreira, Sun, (2021))

For every a, b ∈ N, {an+ b : n ∈ N} is a set of multiplicative recurrence if and only if
a|b(b− 1).

Theorem (D., Le, Moreira, Sun, (2021))

Let a, c, ` ∈ N, b, d ∈ Z and let R :=

{(
an+b
cn+d

)`
: n ∈ N

}
.

1) If a 6= c, then R is not a set of topological multiplicative recurrence.

2) If a = c, b 6= d and there exists a prime p such that p|a but p - ¸bd, then R is not a set
of topological multiplicative recurrence.

3) If a = c and either a|b or a|d, then R is a set of topological multiplicative recurrence.

For example, for a, k ∈ N∗, (an+ k)/an is a set of topological recurrence.
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Applications to number theory

Definition

A function f : N∗ → C is called completely multiplicative´ if f(mn) = f(m)f(n) for
m,n ∈ N∗.

Theorem (O. Klurman and A. Mangerel. (2018))

Let f be a multiplicative function with |f | = 1. Then

lim inf
n→∞

|f(n+ 1)− f(n)| = 0.

Theorem (D., Le, Moreira, Sun, (2021))

Let f be a multiplicative function with |f | = 1. Then for a, k ∈ N,

lim inf
n→∞

|f(an+ k)− f(an)| = 0.



Proof idea.
Consider the topological (N,×)-system (S1, T ) where S1 = {z ∈ C : |z| = 1} and
Tne

2πix = f(n)e2πix for all x ∈ [0, 1) and n ∈ N. Let A = {e2πix : x ∈ (−ε/2, ε/2)} ⊂ S1.
Use that an+k

an is a set of topological recurrence.



Questions

Question

Let (X,B, µ, T ) be a multiplicative measure preserving system and A ∈ B with µ(A) > 0. Is
it true that

lim inf
N→∞

En,m∈[N ]µ(T
−1
n2+m2A ∩ T−1m2A) > 0,

or
lim inf
N→∞

En,m∈[N ]µ(T
−1
n2+n

A ∩ T−1
m2A) > 0?

We do not know whether {(6n+ 3)/(6n+ 2) : n ∈ N} is a set of topological multiplicative
recurrence. Because of this reason, we ask:

Question

For a ∈ N, b, d ∈ Z, is it true that S = {(an+ b)/(an+ d) : n ∈ N} is a set of topological
multiplicative recurrence if and only if a|b or a|d?



Questions

Question

For which polynomial P ∈ Z[x] is {P (n) : n ∈ N} a set of topological multiplicative
recurrence?

Even the answer for the following question is unknown:

Question

Is {n2 + 1 : n ∈ N} a set of topological multiplicative recurrence?

Question

Are P− 1 and P+ 1 sets of topological multiplicative recurrence?



Gracias!


