Cremona's table of elliptic curves

Curve 100793j1

100793 = 72 · 112 · 17



Data for elliptic curve 100793j1

Field Data Notes
Atkin-Lehner 7- 11- 17+ Signs for the Atkin-Lehner involutions
Class 100793j Isogeny class
Conductor 100793 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 691200 Modular degree for the optimal curve
Δ -80171544302654651 = -1 · 76 · 119 · 172 Discriminant
Eigenvalues  0 -1 -3 7- 11-  2 17+  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,63243,12148905] [a1,a2,a3,a4,a6]
Generators [-51:2964:1] Generators of the group modulo torsion
j 134217728/384659 j-invariant
L 2.9918591312 L(r)(E,1)/r!
Ω 0.24098524324283 Real period
R 1.5518891866746 Regulator
r 1 Rank of the group of rational points
S 0.9999999953562 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2057e1 9163g1 Quadratic twists by: -7 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations