Cremona's table of elliptic curves

Curve 100800dz1

100800 = 26 · 32 · 52 · 7



Data for elliptic curve 100800dz1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 100800dz Isogeny class
Conductor 100800 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 196608 Modular degree for the optimal curve
Δ -78764805000000 = -1 · 26 · 38 · 57 · 74 Discriminant
Eigenvalues 2+ 3- 5+ 7+  4 -2 -2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,9825,204500] [a1,a2,a3,a4,a6]
j 143877824/108045 j-invariant
L 3.1209717467122 L(r)(E,1)/r!
Ω 0.39012147582456 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 100800fs1 50400dh2 33600k1 20160cl1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations