Cremona's table of elliptic curves

Curve 100800kz3

100800 = 26 · 32 · 52 · 7



Data for elliptic curve 100800kz3

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 100800kz Isogeny class
Conductor 100800 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -9185400000000000000 = -1 · 215 · 38 · 514 · 7 Discriminant
Eigenvalues 2- 3- 5+ 7+  0  2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,417300,-102454000] [a1,a2,a3,a4,a6]
Generators [301:7101:1] Generators of the group modulo torsion
j 21531355768/24609375 j-invariant
L 5.5670793373829 L(r)(E,1)/r!
Ω 0.12432381716504 Real period
R 5.5973580068041 Regulator
r 1 Rank of the group of rational points
S 1.0000000053568 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 100800mu3 50400cx2 33600ec3 20160dz4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations