Cremona's table of elliptic curves

Curve 100800mh4

100800 = 26 · 32 · 52 · 7



Data for elliptic curve 100800mh4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 100800mh Isogeny class
Conductor 100800 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 3.1885164950559E+23 Discriminant
Eigenvalues 2- 3- 5+ 7+ -4 -6  6  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-20066700,-21424286000] [a1,a2,a3,a4,a6]
Generators [-2995:108675:1] Generators of the group modulo torsion
j 2394165105226952/854262178245 j-invariant
L 5.1077009195843 L(r)(E,1)/r!
Ω 0.073438820928837 Real period
R 4.3469013223308 Regulator
r 1 Rank of the group of rational points
S 0.99999999896012 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 100800nu4 50400ba3 33600gf4 20160ej3 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations