Cremona's table of elliptic curves

Curve 101175d1

101175 = 3 · 52 · 19 · 71



Data for elliptic curve 101175d1

Field Data Notes
Atkin-Lehner 3+ 5+ 19+ 71- Signs for the Atkin-Lehner involutions
Class 101175d Isogeny class
Conductor 101175 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 116736 Modular degree for the optimal curve
Δ -291953109375 = -1 · 36 · 56 · 192 · 71 Discriminant
Eigenvalues -1 3+ 5+  4  2  0  0 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,1,-4238,-111094] [a1,a2,a3,a4,a6]
j -538757027353/18684999 j-invariant
L 1.1810115155353 L(r)(E,1)/r!
Ω 0.29525296880697 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4047b1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations