Cremona's table of elliptic curves

Curve 101745v1

101745 = 32 · 5 · 7 · 17 · 19



Data for elliptic curve 101745v1

Field Data Notes
Atkin-Lehner 3- 5+ 7- 17- 19+ Signs for the Atkin-Lehner involutions
Class 101745v Isogeny class
Conductor 101745 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 718848 Modular degree for the optimal curve
Δ 1583862888825 = 36 · 52 · 72 · 173 · 192 Discriminant
Eigenvalues -1 3- 5+ 7-  0  2 17- 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-1128398,-461079444] [a1,a2,a3,a4,a6]
j 217962984621942385561/2172651425 j-invariant
L 1.7577827881846 L(r)(E,1)/r!
Ω 0.14648191469211 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 11305h1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations