Cremona's table of elliptic curves

Curve 102921f1

102921 = 3 · 7 · 132 · 29



Data for elliptic curve 102921f1

Field Data Notes
Atkin-Lehner 3+ 7+ 13+ 29- Signs for the Atkin-Lehner involutions
Class 102921f Isogeny class
Conductor 102921 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 61440 Modular degree for the optimal curve
Δ -20576686767 = -1 · 3 · 72 · 136 · 29 Discriminant
Eigenvalues -1 3+  0 7+  0 13+ -2  0 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-88,6872] [a1,a2,a3,a4,a6]
Generators [-20:43:1] [-8:88:1] Generators of the group modulo torsion
j -15625/4263 j-invariant
L 6.1166729589478 L(r)(E,1)/r!
Ω 0.98802148011324 Real period
R 3.0954149683547 Regulator
r 2 Rank of the group of rational points
S 1.0000000002862 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 609a1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations