Cremona's table of elliptic curves

Curve 103200bb1

103200 = 25 · 3 · 52 · 43



Data for elliptic curve 103200bb1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 43- Signs for the Atkin-Lehner involutions
Class 103200bb Isogeny class
Conductor 103200 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 276480 Modular degree for the optimal curve
Δ -162502848000000 = -1 · 212 · 310 · 56 · 43 Discriminant
Eigenvalues 2+ 3- 5+ -2  1 -3 -3  8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-10333,-738037] [a1,a2,a3,a4,a6]
Generators [413:8100:1] Generators of the group modulo torsion
j -1906624000/2539107 j-invariant
L 8.0143955502844 L(r)(E,1)/r!
Ω 0.22563630618215 Real period
R 0.88797717012806 Regulator
r 1 Rank of the group of rational points
S 1.0000000005757 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 103200bo1 4128h1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations